Organocatalytic asymmetric strategies to carbocyclic structures

by $\boldsymbol{\gamma}$-alkylation-annulation sequences

Bjarke S. Donslund, Kim Søholm Halskov, Lars A. Leth, Bruno Matos Paz and Karl Anker Jørgensen*

[*] Center for Catalysis
Department of Chemistry, Aarhus University
DK-8000 Aarhus C, Denmark
Fax (45) 8715 5956, e-mail: kaj@chem.au.dk

Contents

1. General methods S2
2. Synthesis of starting materials S3
2.1. Characterization data for enals $\mathbf{1}$ S3
3. General procedures for the organocatalytic reactions S6
3.1. Asymmetric formation of chiral carbocycles $\mathbf{5}$ S6
3.2. Asymmetric formation of chiral carbocycles 7 S11
4. X-Ray structures and crystal data S14
5. NMR spectra of novel compounds S17
6. $U P C^{2}$ traces S50

1. General methods

NMR spectra were acquired on a Bruker AVANCE III HD spectrometer running at 400 MHz for ${ }^{1} \mathrm{H}, 100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}, 376 \mathrm{MHz}$ for ${ }^{19} \mathrm{~F}$ and 162 MHz for ${ }^{31} \mathrm{P}$, respectively. Chemical shifts (δ) are reported in ppm relative to residual solvent signals ($\mathrm{CHCl}_{3}, 7.26 \mathrm{ppm}$ for ${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 77.0 \mathrm{ppm}$ for ${ }^{13} \mathrm{C} \mathrm{NMR}$). For ${ }^{19} \mathrm{~F}$ NMR and ${ }^{31} \mathrm{P}$ NMR internal standards of CFCl_{3} and $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ were used, respectively. The following abbreviations are used to indicate the multiplicity in NMR spectra: s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; m, multiplet; bs, broad signal. ${ }^{13} \mathrm{C}$ NMR spectra were acquired in broad band decoupled mode. Mass spectra were recorded on a Bruker MicroTOF-Q High Performance LC-MS system. Analytical thin layer chromatography (TLC) was performed using pre-coated aluminium-backed plates (Merck Kieselgel 60 F254) and visualized by ultraviolet radiation or KMnO_{4} stain. For flash chromatography (FC) silica gel (Silica gel 60, 230-400 mesh, Fluka) was used. Optical rotations were measured on a Bellingham+Stanley ADP440+ polarimeter, α values are given in deg $\cdot \mathrm{cm}^{3} \cdot \mathrm{~g}^{-1} \cdot \mathrm{dm}^{-1}$; concentration c in $\mathrm{g} \cdot(100 \mathrm{ml})^{-1}$. The enantiomeric excess (ee) of the products was determined by chiral stationary phase Waters ACQUITY UPC ${ }^{2}$ (Daicel Chiralpak) or HPLC (Daicel Chiralcel IA column). Unless otherwise noted, gradient runs were performed with 100\% supercritical CO_{2} for 30 s , then going from $99 \% \mathrm{CO}_{2}$ to $60: 40 \mathrm{CO}_{2} /$ solvent over 4 min . Reference samples for UPC ${ }^{2}$ analysis were prepared using a mixture of product obtained from reactions with $\mathbf{3}$ and ent-3. Unless otherwise noted, analytical grade solvents and commercially available reagents were used without further purification.

2. Synthesis of starting materials

Enals 1 were synthesized from their corresponding ketones, which were commercially available via a Horner-Wadsworth-Emmons and DIBAL-H reduction sequence according to the procedures previously reported. ${ }^{1}$ Electrophiles $\mathbf{2}$ were synthesized according to procedures previously reported. ${ }^{2}$ Catalyst 3a was purchased from commercial sources. Catalyst $\mathbf{3 b}$ was synthesized in accordance to literature procedures. ${ }^{3}$ Nitrostyrenes 6 were purchased from commercial sources.
For characterization of E / Z mixtures, * denotes minor isomer, + denotes overlap of signals from both isomers, while no signs denotes signals of major isomer. For compounds $1{ }^{13} \mathrm{C}$ NMR signals are only given for the major isomer. A majority of the enals 1 have already been described in previous publications, ${ }^{4}$ however, for the benefit of the reader, characterization data for all enals $\mathbf{1}$ are provided.

2.1. Characterization data for enals $\mathbf{1}$

1b

Orange solid obtained as a 4.2:1 E/Z mixture. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.21(\mathrm{~d}, \mathrm{~J}=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.92^{*}(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.07^{+}(\mathrm{m}, 2 \mathrm{H}), 6.94^{+}$ (td, J = 8.6, 2.7 Hz, 2H), 6.86* (d, J = 2.7 Hz, 1H), $6.51(\mathrm{dt}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.6^{*}(\mathrm{dt}$, $J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.80^{*}(\mathrm{~s}, 3 \mathrm{H}), 3.09$ (ddd, $\left.J=7.8,4.9,1.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.83^{+}$ ($\mathrm{t}, J=6.3 \mathrm{~Hz}, 4 \mathrm{H}$), $2.64^{*}(\mathrm{td}, J=6.5,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.97^{+}(\mathrm{dq}, J=12.5,6.5 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 191.4,158.2,157.5,134.1,132.8,130.6,122.8,118.1,109.1$, 55.5, 29.4, 27.1, 23.4. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 203.1067$; found:
203.1065.

[^0]$\left.\mathrm{CDCl}_{3}\right) \delta$ 191.1, 161.6, 157.3, 142.5, 127.5, 126.0, 121.0, 113.8, 113.4, 55.5, 30.7, 27.2, 23.1. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 203.1067; found: 203.1067.

Orange solid obtained as a 3.3:1 E / Z mixture. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.21(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 9.89^{*}(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29^{+}(\mathrm{d}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}) .7 .21^{+}(\mathrm{t}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}), 6.53(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.05^{*}(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.86^{*}(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.78^{+}(\mathrm{m}, 4 \mathrm{H})$, 2.61-2.55* (m, 2H), 2.06* (k, J = 6.4 Hz, 2H), $1.98(k, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right)$ (193.5*, 191.2, 161.5*, 158.1, 157.2, 157.1*, 134.5, 134.0*, 128.9, 128.2*, 126.6, 126.0*, 125.9*, 123.3*, 123.1, 117.4, 111.7*, 111.4, 55.5, 55.4*, 34.7*, 26.5, 23.6*, 23.2, 22.9*, 22.5*. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 203.1067; found: 203.1068.

Orange solid obtained as a 5.7:1 E / Z mixture. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.33(\mathrm{~d}, \mathrm{~J}=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 10.00^{*}(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.33-7.95^{+}(\mathrm{m}, 15 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.29^{*}(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.58^{+}(\mathrm{m}, 4 \mathrm{H}), 3.33-3.26(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.82^{*}$ (m, 2H), 2.39-2.24 $(\mathrm{m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.1, 159.1, 133.3, 131.7, 131.3, 131.2, 129.7, 129.1, 128.1, 127.8, 127.4, 126.7, 125.9, 125.4, 125.3, 124.4, 124.0, 123.0, 122.0, 26.9, 26.6, 23.3. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 297.1274; found: 297.1275.

Yellow solid obtained as a single isomer. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.19(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32$ (dd, $J=10.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=8.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dt}, J=8.3,2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.42(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{k}, J=6.3$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.9,161.3(\mathrm{~d}, \mathrm{~J}=244.1 \mathrm{~Hz}), 155.7(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz})$, $135.8(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 134.7(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 130.9(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 123.0,117.6(\mathrm{~d}, \mathrm{~J}=21.6$ $\mathrm{Hz}), 111.4(\mathrm{~d}, \mathrm{~J}=22.0 \mathrm{~Hz}), 29.3,26.6,22.8 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-115.68-(-115.78)$ (m). HRMS (ESI+) m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{FO}[\mathrm{M}+\mathrm{H}]^{+}$: 191.0867; found: 191.0868.

1g
O Yellow solid obtained as a single isomer. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.24(\mathrm{~d}, \mathrm{~J}=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=8.5 ; 2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.62(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.03(\mathrm{k}, J=6.3$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 190.7,154.0,147.1,147.0,134.8,130.8,124.5$, 124.3, 120.7, 30.3, 26.7, 22.4. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 218.0812$; found: 218.0812

1h

Orange oil obtained as a 3.1:1 E / Z mixture. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.17(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 9.44^{*}(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.10^{+}(\mathrm{m}, 8 \mathrm{H}), 6.18^{*}(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=8.0$, $1 \mathrm{H}), 2.99(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.85-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.77^{*}(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.72^{+}(\mathrm{m}, 10 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.3,166.9,139.8,129.7,129.2,129.1,128.2,127.5,126.7$, 34.6, 30.1, 27.6, 26.6. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 187.1117; found: 187.1118.

Yellow solid obtained as a single isomer. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.13(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.62(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.53(\mathrm{~d}, J=7.6,1 \mathrm{H}), 4.31(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 190.1,156.8,150.1,132.8,125.3,121.3,119.9,119.8,118.2,65.3,26.0$. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 175.0754$; found: 175.0754.
$1 i$

Orange solid obtained as a $5.6: 1 \mathrm{E} / \mathrm{Z}$ mixture. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.17(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56$ (dd, $J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.13$ $(\mathrm{m}, 1 \mathrm{H}), 6.47(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.15-3.11(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 190.6,154.2,136.8,132.0,130.7,127.9,127.6,125.1,124.5,27.1,26.6$. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}: 191.0525$; found: 191.0527.
1j

Brown solid obtained as a 2.1:1 E / Z mixture. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.26^{*}(\mathrm{~d}, \mathrm{~J}=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 10.08(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36^{*}(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.64^{*}(\mathrm{~d}, J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.82^{*}(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-$ $2.94(\mathrm{~m}, 2 \mathrm{H}), 2.80^{+}(\mathrm{t}, J=6.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.56-2.53^{*}(\mathrm{~m}, 2 \mathrm{H}), 2.05^{+}(\mathrm{p}, J=6.3 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.2,158.5,152.9,142.7,120.8,119.5,106.4,25.4,23.7,23.1$. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 163.0759$; found: 163.0754.

11

1m

For synthesis, see previous reports. ${ }^{5}$ The compound was obtained as a 9:1 E / Z mixture.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 10.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 10.04^{*}(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-$ $7.11^{+}(\mathrm{m}, 10 \mathrm{H}), 6.11(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.01^{*}(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}) 5.96(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.73^{*}$ (d, J = 8.4 Hz, 1H), 3.83* (s, 2H), 3.56 (s, 2H), 2.96-2.90 (m, 2H) 2.65-2.58*, (m, 1H), 2.462.41* $(\mathrm{m}, 2 \mathrm{H}), 2.36-2.28^{+}(\mathrm{m}, 3 \mathrm{H}), 1.88-1.78^{+}(\mathrm{m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ 191.4, 156.0, 139.7, 139.1, 136.0, 128.5 (2C), 128.4 (2C), 126.2, 123.2, 39.1, 26.5, 26.1, 22.2. HRMS (ESI+) m / z calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}+\mathrm{Na}\right]^{+}: 235.1093$; found 235.1093.

Yellow solid obtained as a 11.7:1 E / Z mixture. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.19(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 9.85^{*}(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.10^{*}(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.99^{*}(\mathrm{~s}, 1 \mathrm{H}), 6.51$ ($\mathrm{d}, \mathrm{J}=8.0,1 \mathrm{H}$) , 6.04* $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.75^{+}(\mathrm{t}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.61-$ 2.56* $(\mathrm{m}, 2 \mathrm{H}), 2.32^{+}(\mathrm{s}, 6 \mathrm{H}), 2.24^{+}(\mathrm{s}, 6 \mathrm{H}), 2.12-2.05^{*}(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.2,159.0,136.8,135.4,135.3,133.5,133.3,123.8,122.6,26.6$, 26.5, 23.1, 21.0, 19.5. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}:$201.1274; found: 201.1276.

[^1]

Orange solid obtained as a 5:1 E / Z mixture. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.18(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{dt}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}$, 3 H), 3.08 (ddd, $J=8.0,4.9,1.7 \mathrm{~Hz}, 2 \mathrm{H}$), $2.84(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 190.9,157.1,151.5,147.7,134.4,125.1,120.8,111.3,107.3$, 55.9, 55.9, 29.8, 26.8, 23.1. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 233.1178$; found: 201.1177.

3. General procedures for the organocatalytic reactions

3.1. Asymmetric formation of chiral carbocycles 5

A glass vial equipped with a magnetic stirring bar was charged with enal 1 ($0.10 \mathrm{mmol}, 1.0$ eq), catalyst 3a $(0.005 \mathrm{mmol}, 0.05 \mathrm{eq}), \mathrm{PhCO}_{2} \mathrm{H}(0.005 \mathrm{mmol}, 0.05 \mathrm{eq})$ and $\mathrm{CHCl}_{3}(0.3 \mathrm{~mL})$. Electrophile $2(0.12 \mathrm{mmol}, 1.2$ eq) was then added and the mixture was stirred for 24 h at ambient temperature. The mixture was then
 temperature and subsequently subjected directly to FC on silica gel to yield product 5.
For the following compounds altered conditions were applied: Compounds $\mathbf{5 c}$, \mathbf{h} were synthesized with 10 mol\% of 3 a and $10 \mathrm{~mol} \% \mathrm{PhCO}_{2} \mathrm{H}$. Compound 5 e was synthesized with a reaction time of 4 h for the second step. Compounds $\mathbf{5 j}$,I were synthesized with a reaction time of 48 h for the first step. Compound $\mathbf{5 m}$ was synthesized with $20 \mathrm{~mol} \%$ of 3 a and in the absence of $\mathrm{PhCO}_{2} \mathrm{H}$.

5a

Isolated as a yellow oil by FC on silica gel using $\mathrm{Et}_{2} \mathrm{O}$ /pentane $3: 97$ to $1: 19$ as eluent. $[\alpha]_{D}^{22}=-488.2\left(c 0.5\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79-7.74(\mathrm{~m}$, $1 \mathrm{H}), 7.71-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.14(\mathrm{~m}$, $3 \mathrm{H}), 6.86$ (dd, $J=6.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ (dd, $J=6.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=16.6$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{qd}, \mathrm{J}=$ $12.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.6,144.2,139.4,139.0,138.7$, 135.4, 132.1, 131.2, 129.5, 129.0 (2C), 128.6, 128.1 (2C), 126.4, 124.1, 116.2, 36.6, 30.5, 29.8, 29.8. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 287.1430; found: 287.1429. UPC^{2} : $\mathrm{IB}, \mathrm{CO}_{2} / \mathrm{MeOH}$ gradient, $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-}$ ${ }^{1}$; $\mathrm{t}_{\text {minor }}=4.03 \mathrm{~min} ; \mathrm{t}_{\text {major }}=4.19 \mathrm{~min}$.

Isolated as a yellow oil by FC on silica gel using $\mathrm{Et}_{2} \mathrm{O} /$ pentane 1:14 as eluent.

5b
$[\alpha]_{D}^{22}=-318.7\left(\mathrm{c} 0.2\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.67(\mathrm{~m}$, $2 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{dd}, \mathrm{J}=6.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, 3.03 (dd, J = 16.6, 7.1 Hz, 1H), 2.89-2.64 (m, 3H), 2.30-2.13 (m, 2H), 1.68$1.54(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.7,158.3,144.3,139.0,138.8$, 135.7, 133.1, 132.2, 131.4, 130.5, 129.1 (2C), 128.2 (2C), 116.6, 115.5, 108.5, 55.5, 36.6, 30.3, 30.0, 29.8. HRMS (ESI+) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 317.1536; found: 317.1537. UPC ${ }^{2}$: IB, $\mathrm{CO}_{2} / i-\mathrm{PrOH}$ gradient, 3.0 $\mathrm{mL} \cdot \mathrm{min}^{-1} ; \mathrm{t}_{\text {major }}=4.39 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=4.17 \mathrm{~min}$.

5c

Isolated as a yellow oil by FC on silica gel using $\mathrm{Et}_{2} \mathrm{O} /$ pentane 1:9 as eluent. $[\alpha]_{D}^{22}=-697.4\left(c 0.5\right.$ in $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, \mathrm{~J}=8.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 2 \mathrm{H}), 6.85$ (dd, J $=6.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=8.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.62$ (dd, $J=6.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.03$ (dd, $J=16.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.85$ (dd, $J=8.7,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.77-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.55(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.4,160.0,144.5,141.2,139.7,138.9,134.2,131.0,128.9$ (2C), 128.0 (2C), 125.9, 125.1, 114.2, 113.4, 113.3, 55.3, 36.5, 30.8, 30.0, 29.7. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 317.1536; found: 317.1541. UPC^{2} : $\mathrm{IA}, \mathrm{CO}_{2} / \mathrm{MeOH}$ gradient, $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {minor }}=5.81 \mathrm{~min} ; \mathrm{t}$ major $=6.14 \mathrm{~min}$.

Isolated as a yellow solid by FC on silica gel using $\mathrm{Et}_{2} \mathrm{O} /$ pentane $1: 20$ as eluent.
 $[\alpha]_{D}^{22}=-280.0\left(c 1.2\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.67 (s, 1H), 7.55-7.49 (m, 1H), 7.47-7.37 (m, 3H), $7.18(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.84$ (dd, $J=6.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=6.2 \mathrm{~Hz}, 2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}$, 3 H), 3.17 (ddd, $J=17.0,4.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.04 (dd, $J=16.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.80-2.63 $(\mathrm{m}, 1 \mathrm{H}), 2.45$ (ddd, $J=17.0,12.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}) 2.32(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.50(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 190.6,157.2,144.4,139.0,138.8,135.3,133.2,131.2,129.0(2 \mathrm{C}), 128.5,128.1$ (2C), 126.5, 116.8, 116.3, 109.7, 55.5, 36.0, 29.9, 29.3, 22.8. HRMS (ESI+) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 317.1536; found: 317.1537. UPC ${ }^{2}$: ID, $\mathrm{CO}_{2} / i-\mathrm{PrOH}$ gradient, $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=5.07 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=5.21 \mathrm{~min}$

Isolated as a yellow solid by FC on silica gel using $\mathrm{Et}_{2} \mathrm{O} /$ pentane $1: 10$ as eluent. $[\alpha]_{D}^{22}=-120.2\left(c 2.0\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.58$ $(\mathrm{s}, 1 \mathrm{H}), 8.32(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.19-8.10(\mathrm{~m}, 3 \mathrm{H}), 8.01-7.96(\mathrm{~m}, 3 \mathrm{H})$, 7.76-7.71 (m, 2H), 7.59-7.45 (m, 3H), 7.14 (dd, $J=6.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ (dd, $J=6.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dt}, J=16.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{ddd}, J=17.0$, $13.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.18$ (dd, J = 17.0, $7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.04-2.89 (m, 1H), 2.54$2.33(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{dq}, J=13.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.6,145.0,139.0,138.8,135.4$, $133.9,133.3,131.6,131.3,131.1,129.9,129.7,129.1$ (2C), 128.2 (2C), 128.0, 127.8, 127.2, 126.3, 125.2, 125.1, 124.9, 124.7, 123.2, 120.7, 117.6, 36.1, 30.0, 29.8, 26.4. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}:$ 411.1743; found: 411.1743. HPLC: IA, 95:5 hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=23.68 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=22.45$ min.

5f

Isolated as a yellow solid by FC on silica gel using $\mathrm{Et}_{2} \mathrm{O} /$ pentane $1: 10$ as eluent. $[\alpha]_{D}^{22}=-260.6\left(c 1.3\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{dd}, J=8.4,7.0 \mathrm{~Hz}$, 1 H), 6.93 (dt, $J=8.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 6.84 (dd, $J=6.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.69$ (dd, $J=6.1$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=16.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.64(\mathrm{~m}, 3 \mathrm{H}), 2.31-2.13(\mathrm{~m}$, $2 \mathrm{H}), 1.61(\mathrm{dq}, J=12.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.5,161.6(\mathrm{~d}, \mathrm{~J}=244.4 \mathrm{~Hz}), 143.1(\mathrm{~d}, \mathrm{~J}=$ $3.0 \mathrm{~Hz}), 138.5,138.3,136.0,134.9(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}), 133.9(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}), 131.4,130.8(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 129.0$ (2C), $128.2(2 \mathrm{C}), 117.3,115.8(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 110.1(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 36.2,29.84,29.79,29.77 .{ }^{19} \mathrm{~F}$ NMR (376 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-116.35-(-116.46)(\mathrm{m})$. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{FO}[\mathrm{M}+\mathrm{H}]^{+}: 305.1336$; found: 305.1340. UPC ${ }^{2}$: IB, $\mathrm{CO}_{2} / i-\mathrm{PrOH}$ gradient, $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=3.79 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=3.68 \mathrm{~min}$.

Isolated as a yellow solid by FC on silica gel using $\mathrm{Et}_{2} \mathrm{O} /$ pentane 1:9 to 3:17

$5 g$ as eluent. $[\alpha]_{D}^{22}=-369.8\left(c 0.53\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.60$ (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{dd}, J=8.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.52$ $(\mathrm{m}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=6.1,2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.86$ (dd, $J=6.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-2.71(\mathrm{~m}, 4 \mathrm{H}), 2.33-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.65$ (qd, $J=12.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.4,146.9,145.8$, $141.3,138.2,137.6,136.8,133.6,131.6,130.4,129.0$ (2C), 128.2 (2C), 122.4, 119.2, 118.7, 35.9, 30.6, 29.6, 28.9. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 332.1281 , found: 332.1284. UPC ${ }^{2}$: IB, $\mathrm{CO}_{2} / \mathrm{MeOH}$ gradient, $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \mathrm{t}_{\text {major }}=4.94 \mathrm{~min}, \mathrm{t}_{\text {minor }}=4.78 \mathrm{~min}$.

Isolated as a pale yellow oil by FC on silica gel using $\mathrm{Et}_{2} \mathrm{O}$ /pentane 3:97 to 1:19 as eluent. $[\alpha]_{D}^{22}=-181.0\left(c 0.4\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73-7.66(\mathrm{~m}$, $2 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 2 \mathrm{H})$, $7.17-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.71(\mathrm{~m}$, $4 \mathrm{H}), 2.69-2.56(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 197.3,153.1,140.9,139.7,138.7,137.8,134.3,131.3,129.4,129.0$ (2C), 128.1, 128.1 (2C), 127.4, 126.3, 120.9, 36.1, 33.6, 30.2, 29.0, 25.3. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 301.1587; found: 301.1591. UPC ${ }^{2}$: IA, $\mathrm{CO}_{2} / i-\mathrm{PrOH}$ gradient, $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {minor }}=$ $3.60 \mathrm{~min} ; \mathrm{t}_{\text {major }}=3.67 \mathrm{~min}$.

Isolated as a yellow solid by FC on silica gel using $\mathrm{Et}_{2} \mathrm{O}$ /pentane $3: 22$ to $1: 9$ as eluent. $[\alpha]_{D}^{22}=-476.5\left(c 0.5\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69-7.64(\mathrm{~m}$, $2 \mathrm{H}), 7.61(\mathrm{dd}, J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.21$ (ddd, $J=8.5,7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.94 (ddd, $J=8.2,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (dd, $J=8.3$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=6.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J=6.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43$ (dd, $J=$ $10.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=12.2,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.35(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=$ $16.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.23 (ddd, $J=19.2,16.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.3,156.5,139.0$, $138.4,138.2,133.4,131.4,130.8,128.9$ (2C), 128.1 (2C), 124.2, 121.6, 120.0, 118.2, 113.7, 70.5, 35.7, 23.9. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}:$289.1223; found: 289.1224. UPC ${ }^{2}$: IA, $\mathrm{CO}_{2} / \mathrm{MeOH}$ gradient, 3.0 $\mathrm{mL} \cdot \mathrm{min}^{-1} ; \mathrm{t}_{\text {minor }}=5.26 \mathrm{~min} ; \mathrm{t}_{\text {major }}=5.48 \mathrm{~min}$.

5j

Isolated as an yellow oil by FC on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane $1: 1$ to $3: 1$ as eluent. $[\alpha]_{D}^{22}=-365.0\left(c 0.5\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.64(\mathrm{~m}$, $3 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{dd}, \mathrm{J}=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{td}, \mathrm{J}$ $=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{td}, J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=6.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.63$ (dd, J = 6.1, 2.7 Hz, 1H), 3.38-3.23 (m, 1H), 3.05-2.84 (m, 3H), 2.56-2.43 (m, 1H). ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.4,142.0,138.3,138.3,135.8,135.5,132.4,131.5$, 129.0, 128.9 (2C), 128.5, 128.2 (2C), 125.9, 125.6, 119.0, 40.6, 32.2, 29.2. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}: 305.0995$; found: 305.0997. UPC ${ }^{2}$: ID, $\mathrm{CO}_{2} / \mathrm{MeOH}$ gradient, $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=5.73 \mathrm{~min}$; $\mathrm{t}_{\text {minor }}=6.19 \mathrm{~min}$.

5k

Isolated as a yellow oil by FC on silica gel using $\mathrm{Et}_{2} \mathrm{O}$ / pentane $1: 9$ as eluent. $[\alpha]_{D}^{22}=$ -108.0 (c 0.2 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.47$ (m, 1H), 7.46-7.39 (m, 2H), $7.31(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=5.9,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.51(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=6.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=16.6,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.93-2.87 (m, 1H), 2.84-2.75 (m, 1H), 2.73-2.62 (m, 1H), 2.33-2.25 (m, 1H), 2.22$2.13(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{qd}, \mathrm{J}=12.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.5$, $156.6,142.6,140.8,139.7,139.1,133.1,131.2,129.1$ (2C), 128.2 (2C), 118.3, 114.0, 106.2, 35.0, 30.9, 29.3, 23.6. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 277.1223; found: 277.1221. UPC ${ }^{2}$: IA, $\mathrm{CO}_{2} / \mathrm{i}-\mathrm{PrOH}$ gradient, $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=4.25 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=4.06 \mathrm{~min}$.

Isolated as a yellow solid by FC on silica gel using $\mathrm{Et}_{2} \mathrm{O}$ /pentane 1:1 as eluent. [$\left.\alpha\right]_{D}^{22}$ $=-196.9\left(c 0.6\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.45$ (m, 1H), 7.45-7.39 (m, 2H), $7.20(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=6.1,2.7 \mathrm{~Hz}, 1 \mathrm{H})$, 6.36 (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.16 (dd, $J=6.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.35 (dd, $J=18.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.09(\mathrm{dd}, J=16.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ (ddd, $J=18.0,12.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.61(\mathrm{~m}$, $\left.1 \mathrm{H}), 2.29-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 196.3, 149.1, 142.0, 140.1, 139.1, 135.1, 132.7, 130.9, 128.9 (2C), 128.0 (2C), 122.0, 121.9, 113.4, 106.4, 84.1, 34.7, 30.9, 29.2, 28.0 (3C), 24.6. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 376.1907$; found: 376.1914. UPC ${ }^{2}$: ID, $\mathrm{CO}_{2} / \mathrm{MeOH}$ gradient, $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {minor }}=4.90 \mathrm{~min} ; \mathrm{t}_{\text {major }}=5.67 \mathrm{~min}$.

5m

Isolated as a yellow oil by FC on silica gel using EtOAc/pentane 1:1 as eluent. $[\alpha]_{D}^{22}=-8.4 \quad\left(c 1.3 \mathrm{in} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.13(\mathrm{~m}, 5 \mathrm{H})$, 6.78 (dd, $J=5.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{t}, \mathrm{J}=4.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.13-3.97 (m, 4H), $3.54(\mathrm{~s}, 2 \mathrm{H}), 2.65-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{dd}, \mathrm{J}=16.2,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.33-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.17-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{dq}, J=11.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{q}$, $J=7.3 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.4(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 140.0,138.1(\mathrm{~d}$, $J=9.9 \mathrm{~Hz}), 134.8(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 134.1,128.6(2 \mathrm{C}), 128.0(2 \mathrm{C}), 126.0,123.2(\mathrm{~d}, J=188.7 \mathrm{~Hz}), 116.3,(\mathrm{~d}, J=$ $18.8 \mathrm{~Hz}), 61.6(\mathrm{~d}, 4.7 \mathrm{~Hz}), 61.5(\mathrm{~d}, 4.9 \mathrm{~Hz}), 38.6,35.2(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 30.2(\mathrm{~d}, J=8.9 \mathrm{~Hz}), 29.8,25.9,16.5(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}), 16.4(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 19.9. HRMS (ESI+) m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$: 359.1771; found: 359.1774. UPC ${ }^{2}$: IA, $\mathrm{CO}_{2} / \mathrm{MeOH}$ gradient, $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=3.24 \mathrm{~min} ; \mathrm{t}$ minor $=3.07 \mathrm{~min}$.

Isolated as a pale yellow oil by FC on silica gel using $\mathrm{Et}_{2} \mathrm{O} /$ pentane $1: 30$ as eluent.

5n $[\alpha]_{D}^{22}=-329.8\left(c 0.6\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79-7.73(\mathrm{~m}, 1 \mathrm{H})$, $7.23-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.74(\mathrm{dd}, \mathrm{J}=5.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{q}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 2.91-2.76(\mathrm{~m}, 3 \mathrm{H}), 2.73-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{dq}, \mathrm{J}=$ $12.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.2,142.6$, 139.0, 134.3, 132.4, 129.4, 128.3, 127.5, 126.4, 123.9, 116.1, 60.4, 36.5, 30.5, 29.8, 29.6, 14.4. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 255.1380; found: 255.1380. UPC ${ }^{2}$: IC, $\mathrm{CO}_{2} / \mathrm{i}-$ PrOH gradient, $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; $\mathrm{t}_{\text {major }}=3.78 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=3.86 \mathrm{~min}$.

50

Isolated as a yellow oil by FC on silica gel using EtOAc/pentane 1:1 as eluent. $[\alpha]_{D}^{22}=-228.6\left(c 0.7\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{dd}, \mathrm{J}=5.7$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=5.7,2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.71(\mathrm{dd}, \mathrm{J}=5.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.01(\mathrm{~m}, 4 \mathrm{H}), 2.93-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.58$
($\mathrm{m}, 1 \mathrm{H}$), $2.54(\mathrm{dd}, J=16.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{dq}, J=12.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.33(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.5(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 138.8,138.0(\mathrm{~d}, J=10.0 \mathrm{~Hz})$, $132.2(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 129.3,128.3,126.4,124.1(\mathrm{~d}, J=189.0 \mathrm{~Hz}), 123.8,115.5(\mathrm{~d}, J=20.0 \mathrm{~Hz}), 61.7(\mathrm{~d}, J=5.1$ $\mathrm{Hz}), 61.6(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 35.9(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 30.4,30.0(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 29.7,16.5(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 16.4(\mathrm{~d}, J=6.7$ $\mathrm{Hz}) .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.0 \mathrm{HRMS}(\mathrm{ESI}+) \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 319.1458$; found: 319.1460. UPC ${ }^{2}$: IC, $\mathrm{CO}_{2} / i-\mathrm{PrOH}$ gradient, $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=5.49 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=5.23 \mathrm{~min}$.

Isolated as a pale yellow solid by FC on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /pentane $3: 2$ to 4:1 as eluent. $[\alpha]_{D}^{22}=-142.2\left(c 0.5 \mathrm{in} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95-7.89$ $(\mathrm{m}, 2 \mathrm{H}), 7.76-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.16(\mathrm{~m}$, $3 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.74$ (dd, $J=6.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.57(\mathrm{~m}, 4 \mathrm{H}), 2.13-$ $1.98(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{qd}, \mathrm{J}=12.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.7$, 140.1, 139.0, 135.3, 133.3, 133.1, 131.5, 129.4, 129.2 (2C), 128.9, 127.8 (2C),
126.5, 124.1, 114.5, 36.7, 30.2, 29.6, 28.6. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 323.1100$; found: 323.1102. UPC ${ }^{2}$: IA, $\mathrm{CO}_{2} / \mathrm{MeOH}$ gradient, $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=5.02 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=5.23 \mathrm{~min}$.

3.2. Asymmetric formation of chiral carbocycles 7

A glass vial equipped with a magnetic stirring bar was charged with enal $\mathbf{1}(0.20 \mathrm{mmol}, 2.0 \mathrm{eq})$, catalyst 3b ($0.02 \mathrm{mmol}, 0.2 \mathrm{eq}$), nitro olefin $6(0.10 \mathrm{mmol}, 1.0 \mathrm{eq}), i-\operatorname{PrNEt}_{2}(0.50 \mathrm{mmol}, 0.5 \mathrm{eq})$ and $\mathrm{MeCN}(0.3 \mathrm{~mL})$. The mixture was stirred for $22-65 \mathrm{~h}$ at $40{ }^{\circ} \mathrm{C}$ (individual reaction times specified below). The solvent was evaporated in vacuo and the mixture was then subjected to FC (loaded with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) on silica gel to yield product 7. For compound $\mathbf{7 b}$ DABCO ($0.50 \mathrm{mmol}, 0.5 \mathrm{eq}$) was employed instead of $i-\mathrm{PrNEt}_{2}$. Compound $7 \mathbf{7 i}$ was synthesized using $0.10 \mathrm{mmol}(1.0 \mathrm{eq})$ of enal 1 and 0.20 mmol of nitro olefin 6 (2.0 eq).

Isolated after 22 h of reaction time as a yellow solid by FC on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane $1: 2$ as eluent. $[\alpha]_{D}^{22}=-45.6$. (c 0.2 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{dd}, J=7.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, \mathrm{J}=6.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.21(\mathrm{~m}$, $7 \mathrm{H}), 7.11(\mathrm{dd}, \mathrm{J}=7.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=6.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, \mathrm{J}=13.4,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.08-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.72(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{qd}, \mathrm{J}=12.6$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.5,145.2,142.8,138.6,132.5,129.5$, $129.4,129.2,128.8$ (2C), 127.6 (2C), 127.2, 126.6, 124.7, 113.1, 47.9, 46.5, 30.1, 29.8. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 304.1338$; found: 304.1336. UPC ${ }^{2}$: IC, $\mathrm{CO}_{2} / i-\mathrm{PrOH}$ gradient, $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=6.61 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=6.10 \mathrm{~min}$.

Isolated after 48 h of reaction time as a yellow solid by FC on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane $1: 2$ as eluent. $[\alpha]_{D}^{22}=-27.0\left(c 0.7\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.54$ (dd, $J=6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=$ $17.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.58 (ddd, $J=17.2,11.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H})$, 2.11-2.03 (m, 1H), $1.88(\mathrm{dq}, J=12.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $147.5,147.4,143.5,136.8,135.6,133.8,133.3,132.2,129.2,128.8$ (2C), 127.4 (2C), 127.1, 123.0, 112.8, 46.9, 46.4, 31.2, 27.1, 21.0, 19.4. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 332.1645$; found: 332.1645. $U P C^{2}$: IC, $\mathrm{CO}_{2} / i-\mathrm{PrOH}$ gradient, $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=6.91 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=6.20 \mathrm{~min}$.

Isolated after 24 h of reaction time as a yellow solid by FC on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /pentane 4:6 to 6:4 as eluent. $[\alpha]_{D}^{22}=-66.0$ (c 0.1 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{dd}, \mathrm{J}=6.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.13(\mathrm{~d}, J=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=8.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{dd}, J=$ $6.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $4.02(\mathrm{dd}, J=13.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{tdd}, \mathrm{J}=13.3$, $4.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.59(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{qd} J=12.6,5.3$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.2,148.7,145.2,142.8,133.4,131.1,130.3,129.0,128.8$ (2C), 127.6 (2C), 127.2, 116.4, 113.3, 108.8, 55.4, 47.9, 46.5, 30.19, 29.33. HRMS (ESI+) m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}$: 334.1443; found: 334.1438. UPC ${ }^{2}$: IC, $\mathrm{CO}_{2} / i-\mathrm{PrOH}$ gradient, $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}$ major $=6.69 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=$ 7.17 min.

7d

Isolated after 65 h of reaction time as an orange solid by FC on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /pentane 4:6 to 6:4 as eluent. $[\alpha]_{D}^{22}=-25.5$ (c 0.1 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=6.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-$ $7.18(\mathrm{~m}, 5 \mathrm{H}), 6.74(\mathrm{dd}, J=8.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{dd}, J=$ $6.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=14.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.99-2.89(\mathrm{~m}, 1 \mathrm{H})$,
2.76-2.61 (m, 2H), 1.89-1.80 (m, 1H), 1.75-1.60 (m, 1H). ${ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.8,147.6,145.0$, $143.0,140.7,130.1,128.7$ (2C), 127.8 (2C), 127.1, 126.5, 125.1, 113.6, 113.2, 111.0, 55.3, 48.2, 46.5, 30.5, 29.4. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 334.1443 ; found: 334.1439. UPC ${ }^{2}$: IC, $\mathrm{CO}_{2} / i-\mathrm{PrOH}$ gradient, $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=7.47 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=8.29 \mathrm{~min}$.

Isolated after 65 h of reaction time as a yellow solid by FC on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane 4:6 to 1:1 as eluent. $[\alpha]_{D}^{22}=-4.4\left(c 1.0\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{dd}, J=6.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.15(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ (dd, $J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{dd}, J=6.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=11.0,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.01-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{ddd}, J=18.0,12.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.95(\mathrm{~m}$, 1 H), 1.76 (qd, $J=12.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 157.2,148.1,146.2$, $143.3,134.2,128.9,128.8$ (2C), 127.5 (2C), 127.4, 127.2, 126.8, 116.7, 113.4, 110.4, 55.5, 47.2, 46.2, 30.4, 23.6. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 334.1443 ; found: 334.1437. UPC ${ }^{2}$: IB, $\mathrm{CO}_{2} / i-\mathrm{PrOH}$ gradient, $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=4.95 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=4.65 \mathrm{~min}$.

7f

Isolated after 52 h of reaction time as an orange solid by FC on silica gel using $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane 1:1:4 as eluent. $[\alpha]_{D}^{22}=-96.6\left(c 0.3\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42$ (dd, J = 6.9, $2.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.17$ $(\mathrm{m}, 3 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{dd}, J=6.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=$ $14.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.99-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.61(\mathrm{~m}$, $2 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.63(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.9$, $148.0,147.7,145.0,143.0,132.8,129.9,128.8(2 \mathrm{C}), 127.8(2 \mathrm{C}), 127.1,124.6,111.3,111.1,106.9,56.0$, 55.9, 48.2, 46.4, 29.9, 29.7. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 364.1549; found: 364.1548. UPC ${ }^{2}$: $\mathrm{IB}, \mathrm{CO}_{2} / \mathrm{i}-\mathrm{PrOH}$ gradient, $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=5.25 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=5.00 \mathrm{~min}$.

79

Isolated after 24 h of reaction time as a yellow oil by FC on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /pentane 1:2 as eluent. $[\alpha]_{D}^{22}=+116.6$ (c 0.5 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.09(\mathrm{~m}, 9 \mathrm{H}), 6.25(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{bs}$, $1 \mathrm{H}), 2.95(\mathrm{dd}, \mathrm{J}=11.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.75(\mathrm{~m}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.4,146.9,140.4$ (2C), 140.1, 130.1, 128.8 (3C), 128.3, 127.5, 127.4, 126.7 (2C), 126.4, 117.4, 47.3, 44.7, 35.0, 34.5, 25.2. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 318.1489; found: 318.1493. UPC ${ }^{2}$: IC, $\mathrm{CO}_{2} / \mathrm{i}-\mathrm{PrOH}$ gradient, $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=4.37 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=4.71 \mathrm{~min}$.

7h

Isolated after 48 h of reaction time as a yellow oil by FC on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane 1:3 as eluent. $[\alpha]_{D}^{22}=+93.0\left(c 0.2\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.13(\mathrm{~m}, 3 \mathrm{H})$, 6.13 (dd, $J=6.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.16$ (ddd, $J=18.0,11.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{t}, J=3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=17.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{dq}, J=12.7$, $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.55(\mathrm{~m}, 6 \mathrm{H}), 1.31-1.18(\mathrm{~m}, 3 \mathrm{H}), 1.18-0.98(\mathrm{~m}, 2 \mathrm{H}), 0.97-0.85$ ($\mathrm{m}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 150.8,146.1,137.5,135.9,129.3,129.1,128.5,126.2,124.7,114.0$, 43.7, 42.4, 39.1, 34.9, 30.1, 28.8, 27.2, 26.4, 26.3, 26.2. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 310.1802; found: 310.1802. UPC ${ }^{2}$: ID, $\mathrm{CO}_{2} / i-\mathrm{PrOH}$ gradient, $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; $\mathrm{t}_{\text {major }}=3.33 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=3.47 \mathrm{~min}$.

Isolated after 48 h of reaction time as a yellow solid by FC on silica gel using

$7 i$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /pentane $1: 1 \rightarrow 2: 1$ as eluent. $[\alpha]_{D}^{22}=-40.0\left(c 0.2\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{dd}, J=7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=6.8,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.11(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{dd}$, $J=6.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=13.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.05-2.95(\mathrm{~m}$, $1 \mathrm{H}), 2.86-2.72(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{dq}, J=12.6,5.9 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.7,148.8,145.1,138.6,134.7,132.6,129.5,129.4,128.8,128.7$ (2C), 126.6, 124.7, $114.2(2 \mathrm{C}), 113.1,55.3,47.0,46.7,30.2,29.9$. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 334.1438; found: 334.1441. UPC ${ }^{2}$: IB, $\mathrm{CO}_{2} / i-\mathrm{PrOH}$ gradient, $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=4.62 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=4.45 \mathrm{~min}$.

Isolated after 48 h as a yellow solid by FC on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane 2:1 as

7j eluent. $[\alpha]_{D}^{22}=-168.8\left(c 0.5\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72-7.66(\mathrm{~m}$, $1 \mathrm{H}), 7.57(\mathrm{dd}, \mathrm{J}=6.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.17$ $(\mathrm{m}, 4 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=6.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.07(\mathrm{t}, \mathrm{J}=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{qd}, \mathrm{J}=12.6$, $5.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.6,145.6,140.2,138.6,134.2,132.6$, 130.0, 129.9, 129.6, 129.4, 128.2, 127.4 (bs), 127.3, 126.6, 124.7, 113.1, 46.2 (bs), 43.5 (bs), 30.17, 29.37. HRMS (ESI+) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 338.0942; found: 338.0939. UPC ${ }^{2}$: IB, $\mathrm{CO}_{2} / \mathrm{i}-\mathrm{PrOH}$ gradient, $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=4.66 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=4.44 \mathrm{~min}$.

4. X-Ray structures and crystal data

Compound 5p

Item	Value
Molecular formula	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}$
Formula weight	322.4
Crystal system	triclinic
Space group	P1
a (Å)	8.0288
b (Å)	9.2244
c (Å)	11.46
$\alpha\left({ }^{\circ}\right)$	103.126
$\beta\left({ }^{\circ}\right)$	98.144
$Y\left({ }^{\circ}\right.$)	98.902
Volume (\AA^{3})	802.7
Z	2
T (K)	100
$\rho\left(\mathrm{g} \mathrm{cm}^{-1}\right)$	1.334
$\lambda(A)$	0.56086
$\mu\left(\mathrm{mm}^{-1}\right)$	0.115
\# measured refl	36305
\# unique refl	7505
$\mathrm{R}_{\text {int }}$	0.0489
\# parameters	415
$\mathrm{R}\left(\mathrm{F}^{2}\right)$, all refl	0.0798

$R_{w}\left(F^{2}\right)$, all refl	0.1354
Goodness of fit	1.057

Crystal data for [5p]: $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}, \mathrm{M}=322.4$, triclinic, space group P1 (no. 1), $a=8.0288$ (16) \AA, $b=$ $9.2244(19) \AA, c=11.46(3) \AA, \alpha=103.126(5)^{\circ}, b=98.144(7)^{\circ}, v=98.902(5)^{\circ}, V=802.7(3) \AA^{3}, T=$ $100 \mathrm{~K}, Z=2, \mathrm{~d}_{\mathrm{c}}=1.334 \mathrm{~g} \mathrm{~cm}^{-3}, \mu\left(\mathrm{Mo} \mathrm{K} \alpha, \lambda=0.56086 \AA\right.$) $=0.115 \mathrm{~mm}^{-1}, 36305$ reflections collected, 7505 unique $\left[R_{\text {int }}=0.0489\right.$], which were used in all calculations. Refinement on F^{2}, final $R(F)=$ $0.0798, R_{w}(F 2)=0.1354$. CCDC number 971515 .

Compound $\mathbf{7 j}$

Item	Value
Molecular formula	$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{ClNO}_{2}$
Formula weight	337.79
Crystal system	orthorhombic
Space Group	P 212121
a (\AA)	11.8439
b (\AA)	11.8914
c (\AA)	22.4284
$\left.\alpha{ }^{(}\right)$	90
$\beta{ }^{\circ}$)	90
$\gamma{ }^{(}{ }^{\circ}$	90
Volume (\AA^{3})	3158.84
Z	8
T (K)	100
$\rho\left(\mathrm{g} \mathrm{cm}^{-1}\right)$	1.421
$\lambda(\AA)$	0.71073
$\mu\left(\mathrm{mm}^{-1}\right)$	0.254
\# measured refl	25699
\# unique refl	10247
$\mathrm{R}_{\text {int }}$	0.0636
\# parameters	442
R(F2), all refl	0.0918
$\mathrm{R}_{\mathrm{w}}\left(\mathrm{F}^{2}\right)$, all refl	0.1417
Goodness of fit	1.04

Crystal data for [7j]: $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{ClNO}_{2}, M=337.79$, orthorhombic, space group P 212121 (no. 115), $a=$ $11.8439(4) \AA, b=11.8914(2) \AA, c=22.4284(6) \AA, V=3158.84(14) \AA^{3}, T=100 \mathrm{~K}, Z=8, d_{c}=1.421 \mathrm{~g}$ $\mathrm{cm}^{-3}, \mu(\mathrm{Mo} K \alpha, \lambda=0.71073 \AA)=0.254 \mathrm{~mm}^{-1}, 25699$ reflections collected, 10247 unique $\left[R_{\text {int }}=\right.$ $0.0636]$, which were used in all calculations. Refinement on F^{2}, final $R(F)=0.0918, R_{w}(F 2)=0.1417$. CCDC number 1009726.

5. NMR spectra of novel compounds

KSH-377.HNMR.10.fid

KSH-377.CNMR.2.10.fid

LAL27-FC.C.10.fid

$5 g$

5h

326_C.10.fid

| 12.0 | 11.5 | 11.0 | 10.5 | 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0.5 | -1.0 |
| :--- |

309_C.10.fid

336_C.10.fid

KSH-356.B.HNMR.10.fid

NSH-392.A.HNMR.20.fid

6. UPC ${ }^{2}$ traces

	Retention Time (min)	\% Area
1	4.034	2.69
2	4.190	97.31

	Retention Time (min)	\% Area
1	4.283	46.01
2	4.504	53.99

	Retention Time (min)	\% Area
1	4.169	3.93
2	4.394	96.07

	Retention Time (min)	\% Area
1	5.657	48.05
2	5.928	51.95

.	RT	Area	Q Area	Height
1	21.788	2198747	51.77	70316
2	23.352	2048623	48.23	67847

	RT	Area	\% Area	Height
1	22.454	488053	4.14	16207
2	23.681	11297024	95.86	358442

	Retention Time (min)	\% Area
1	3.680	3.12
2	3.788	96.88

	Retention Time (min)	\% Area
1	4.780	3.04
2	4.937	96.96

	Retention Time (min)	\% Area
1	3.602	7.05
2	3.668	92.95

	Retention Time (min)	\% Area
1	5.372	48.49
2	5.671	51.51

	Retention Time (min)	\% Area
1	5.367	1.77
2	5.639	98.23

	Retention Time (min)	\% Area
1	5.732	95.15
2	6.189	4.85

	Retention Time (min)	\% Area
1	4.296	47.40
2	4.409	52.60

	Retention Time (min)	\% Area
1	4.064	7.12
2	4.252	92.88

	Retention Time (min)	\% Area
1	4.896	3.02
2	5.672	96.98

	Retention Time (min)	\% Area
1	3.106	46.52
2	3.279	53.48

	Retention Time (min)	\% Area
1	3.069	97.13
2	3.245	2.87

	Retention Time (min)	\% Area
1	3.705	66.45
2	3.773	33.55

	Retention Time (min)	\% Area
1	3.783	98.02
2	3.864	1.98

	Retention Time (min)	\% Area
1	5.190	27.54
2	5.419	72.46

	Retention Time (min)	\% Area
1	5.182	3.49
2	5.433	96.51

	Retention Time (min)	\% Area
1	5.053	50.76
2	5.261	49.24

	Retention Time (min)	\% Area
1	5.021	97.96
2	5.231	2.04

	Retention Time (min)	\% Area
1	6.092	96.52
2	6.609	3.48

	Retention Time (min)	\% Area
1	4.066	41.06
2	4.219	58.94

	Retention Time (min)	\% Area
1	4.041	3.80
2	4.197	96.20

	Retention Time (min)	$\%$ Area
1	7.466	94.91
2	8.292	5.09

	Retention Time (min)	$\%$ Area
1	4.642	46.87
2	4.953	53.13

	Retention Time (min)	\% Area
1	4.650	4.07
2	4.951	95.93

	Retention Time (min)	\% Area
1	4.970	45.82
2	5.226	54.18

	Retention Time (min)	\% Area
1	5.002	2.01
2	5.247	97.99

	Retention Time (min)	\% Area
1	4.371	92.69
2	4.706	7.31

	Retention Time (min)	\% Area
1	3.332	97.64
2	3.471	2.36

	Retention Time (min)	\% Area
1	4.465	50.43
2	4.637	49.57

	Retention Time (min)	\% Area
1	4.447	2.48
2	4.616	97.52

	Retention Time (min)	\% Area
1	4.435	8.20
2	4.661	91.80

[^0]: ${ }^{1}$ H. Jiang, K. S. Halskov, T. K. Johansen and K. A. Jørgensen, Chem.-Eur. J., 2011, 17, 3842.
 ${ }^{2}$ Diethyl (3-oxo-3-phenylprop-1-en-2-yl)phosphonate (2a): C. De Fusco, T. Fuoco, A. Lattanzi and G. Croce, Org. Lett., 2012, 14, 4078; ethyl 2-(diethoxyphosphoryl)acrylate (2b): A. T. Biju, M. Padmanaban, N. E. Wurz and F. Glorius, Angew. Chem., Int. Ed., 2011, 50, 8412; tetraethyl ethene-1,1-diylbis(phosphonate) (2c) was purchased from commercial sources; diethyl (1-(phenylsulfonyl)vinyl)phosphonate (2d): W. Flitsch and W. Lubisch, Chem. Ber., 1984, 117, 1424.
 ${ }^{3}$ Ł. Albrecht, G. Dickmeiss, F. C. Acosta, C. Rodríguez-Escrich, R. L. Davis and K. A. Jørgensen, J. Am. Chem. Soc., 2012, 134, 2543.
 ${ }^{4}$ K. S. Halskov, B. S. Donslund, S. Barfüsser and K. A. Jørgensen, Angew. Chem., Int. Ed., 2014, 53, 4137.

[^1]: ${ }^{5}$ K. S. Halskov, T. K. Johansen, R. L. Davis, M. Steurer, F. Jensen and K. A. Jørgensen, J. Am. Chem. Soc., 2012, 134, 12943.

