Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Supporting Information

A General and Practical Palladium-Catalyzed Monoarylation of β-Methyl

C(sp³)–H of Alanine

Kai Chen, Shuo-Qing Zhang, Jing-Wen Xu, Fang Hu, Bing-Feng Shi*

Department of Chemistry, Zhejiang University, Hangzhou 310027, China ^{*}To whom correspondence should be addressed. Email: bfshi@zju.edu.cn.

Table of Contents	S01
General Information	S02
Experimental Procedures	S03-S23
Optimization of Reaction Conditions for Mono-arylation of 1a	S03-S06
General Procedure for Mono-arylation of 1a	S07-S23
Applications	S24-S27
1. Cleavage of the 8-Aminoquinoline Directing Group	S24
2. Sequential Reaction for C-C Coupling	S25-S27
Chiral HPLC Data	S28-S33
References	S34
NMR Spectrum	S35-S70

General Information: Unless otherwise noted all commercial materials were used without further purification. Solvents obtained from Alading were used directly without further purification, and solvents obtained from other corporations were used after purification directed by *Purification of Laboratory Chemicals, 6th Ed.* Nuclear magnetic resonance (NMR) spectra were recorded with Bruker AVANCE 400MHz. ¹H and ¹³C chemical shifts are reported in ppm downfield of tetramethylsilane and referenced to residual solvent peak (CHCl₃ = 7.26 (¹H NMR), DMSO = 2.50 (¹H NMR), CDCl₃ = 77.16 (¹³C NMR)) unless otherwise noted. Multiplicities are reported using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad resonance. High resolution mass spectra for new compounds were recorded at Mass Spectrometry Facilities, Zhejiang University. X-ray diffractions were recorded at X-Ray Facilities, Zhejiang University.

Experimental Procedures:

(S)-N-(2-Phthalimidopropionyl)-8-aminoquinoline (1a)¹

¹H NMR (400 MHz, CDCl₃) δ 10.32 (s, 1H), 8.77 – 8.70 (m, 1H), 8.69 (dd, J = 4.2, 1.3 Hz, 1H), 8.14 (dd, J = 8.3, 1.5 Hz, 1H), 7.90 (dd, J = 5.4, 3.0 Hz, 2H), 7.75 (dd, J = 5.4, 3.1 Hz, 2H), 7.55 – 7.48 (m, 2H), 7.42 (dd, J = 8.3, 4.2 Hz, 1H), 5.27 (q, J = 7.4 Hz, 1H), 1.98 (d, J = 7.3 Hz, 3H); HPLC Chiralpack[®] AD-H column (*n*-hexane/isopropanol = 55:45, 0.70 mL/min) t_r 17.410 min (major): >99% ee.

Optimization of Reaction Conditions for Mono-arylation of 1a

(1) Optimization of Base for Mono-arylation (*t*-AmOH/H₂O used as solvent)

	+ ,NO ₂ 2 a (1.2 eq)	20 mol% Pd(OA <i>t</i> -AmOH/H ₂ O = 4:1. T	xc) ₂ , Base T(h), Temp(°C)	
Entry	Base	Temp (°C)	Time (h)	Yield
1	NaOAc	90	13	58%
2	KOAc	90	13	61%
3	LiOAc	90	13	43%
4	CsOAc	90	13	55%
5	Cs_2CO_3	90	13	Trace
6	Na ₂ CO ₃	90	13	<10%
7	K_2CO_3	90	13	<10%
8	K_3PO_4	90	13	<10%
9	NaOAc	80	24	59%
10	KOAc	80	24	71% (28%)
11	LiOAc	80	24	52%
12	CsOAc	80	24	71% (31%)

^{*a*} Reaction conditions: **1a** (69.1 mg, 0.2 mmol, 1.0 eq), **2a** (67.0 mg, 0.24 mmol, 1.2 eq), $Pd(OAc)_2$ (9.0 mg, 0.04 mmol, 20 mol%), base (0.3 mmol, 1.5 eq), *t*-AmOH/H₂O = 4:1 (1.2 mL + 0.3 mL), air atmosphere. ^b Yields of 2-mmol-scale reaction indicated in parentheses.

(2) Optimization of Solvent for Mono-arylation (KOAc used as base)

	+ NO ₂	20 mol% Pd(OAc) ₂ , KOAc (1.5 eq) Solvent, 24h, 90ºC	
Entry	Base	Solvent	Yield
1	KOAc	t-AmOH/H ₂ O = 4/1	69%
2	KOAc	MeCN	27%
3	KOAc	<i>t</i> -AmOH	40%
4	KOAc	t-BuOH/H ₂ O = 4/1	46%
5	KOAc	PhMe	0
6	KOAc	1,4-dioxane	0

^{*a*} Reaction conditions: **1a** (69.1 mg, 0.2 mmol), **2a** (67.0 mg, 0.24 mmol, 1.2 eq), $Pd(OAc)_2$ (9.0 mg, 0.04 mmol, 20 mol%), KOAc (29.4 mg, 0.3 mmol, 1.5eq), solvent (1.5 mL), air atmosphere, reaction at 90°C for 24h.

(3) Optimization of Solvent for Mono-arylation (AgOAc used as silver additive)

	2a (1.2 eq)	20 mol% Pd(OAc) ₂ , AgOAc (1.5 eq) Solvent, 24h, 110°C	$ \begin{array}{c} $
·	Entry	Solvent	Yield 3a + 3a '
-	1	t-AmOH/H ₂ O = 4/1	27% + 4%
	2	$t-BuOH/H_2O = 4/1$	24% + 6%
	3	AcOH	19% + 38%
	4	t-AmOH	27% + 12%
	5	t-BuOH	26% + 14%
	6	MeCN	18% + 11%
	7	PhMe	15% + 5%
	8	DMF	0

^{*a*} Reaction conditions: **1a** (69.1 mg, 0.2 mmol), **2a** (67.0 mg, 0.24 mmol, 1.2 eq), $Pd(OAc)_2$ (9.0 mg, 0.04 mmol, 20 mol%), AgOAc (50.1 mg, 0.3 mmol, 1.5eq), solvent (1.5 mL), air atmosphere, reaction at 110°C for 24h.

(4) Optimization of Silver Additive and Palladium(II) Catalysis for Mono-arylation

O N O N + O N O N + O Ia	20 NO ₂ 2a (1.2 eq)) mol% Pd(II) catalysis, Ag salt t-BuOH, 24h, 75 ℃	$ \begin{array}{c} $	
	Entry	Ag salts (eq)	Yield 3a + 3a '	
	1	AgOAc (1.5eq)	25% + 12%	
	2	Ag ₂ CO ₃ (0.75eq)	26% + 24%	
	3	AgOTf (1.5eq)	33% + 10%	
	4	AgNO ₃ (1.5eq)	30% + 10%	
	5	AgF (1.5eq)	25% + 14%	
	6	Ag ₂ O (0.75 eq)	38% + 14%	
	7	AgBF ₄ (1.5eq)	81% + 3%	

^{*a*} Reaction conditions: **1a** (69.1 mg, 0.2 mmol), **2a** (67.0 mg, 0.24 mmol, 1.2 eq), Pd(OAc)₂ (9.0 mg, 0.04 mmol, 20 mol%), Ag(I) salt (0.3 mmol, 1.5 eq), *t*-BuOH (1.5 mL), air atmosphere, reaction for 24h.

(5) Optimization of the Loading of Palladium(II) Catalysis for Mono-arylation

^{*a*} Reaction conditions: **1a** (69.1 mg, 0.2 mmol), **2a** (67.0 mg, 0.24 mmol, 1.2 eq), Pd(II) catalysis (0.004-0.04 mmol, 2-20 mol%), AgBF₄ (58.4 mg, 0.3 mmol, 1.5 eq), *t*-BuOH (1.5 mL), air atmosphere, reaction at 75°C for 24h. ^{*b*} Yields of 3-mmol-scale reaction indicated in parentheses. (*S*)-*N*-(**3**-(**4**-Methoxy-3-nitro-phenyl)-2-phthalimidopropionyl)-8-aminoquinoline (3a)

Under the optimized condition, **3a** was purified by column chromatography in petroleum ether: dichloromethane: acetone = 7:4:1 and obtained as a white solid (78.5 mg, 79%) with **1a** (6.0 mg, 9%) recovered and **3a**' (3.3 mg, 3%) isolated. ¹H NMR (400 MHz, CDCl₃) δ 10.28 (s, 1H), 8.70 (dd, J =5.1, 3.9 Hz, 1H), 8.59 (dd, J = 4.2, 1.6 Hz, 1H), 8.12 (dd, J = 8.3, 1.6 Hz, 1H), 7.85 (dd, J = 5.4, 3.1 Hz, 2H), 7.79 – 7.71 (m, 3H), 7.54 – 7.48 (m, 3H), 7.39 (dd, J = 8.3, 4.3 Hz, 1H), 6.97 (d, J = 8.6 Hz, 1H), 5.38 (dd, J = 10.3, 6.2 Hz, 1H), 3.88 (s, 3H), 3.82 (dd, J = 14.5, 6.3 Hz, 1H), 3.76 (dd, J = 14.4, 10.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 167.97, 165.88, 152.08, 148.50, 139.45, 138.51, 138.51, 136.42, 136.42, 134.95, 134.95, 134.61, 134.61, 133.72, 133.72, 131.54, 129.33, 127.95, 127.38, 126.34, 123.90, 122.31, 121.82, 116.90, 114.02, 56.60, 55.92, 33.59; HRMS (EI) m/z: 496.1383 (M⁺); calc. for C₂₇H₂₀N₄O₆: 496.1383; HPLC Chiralpack[®] AD column (*n*-hexane/isopropanol = 55:45, 1.25mL/min) t_r 23.832 min (major), 30.005 min (minor): 99% ee.

3-mmol scale reactions: 1158.5 mg, 78%; 1148.2 mg, 77%; 1105.0 mg, 74%, respectively.

(S) - N - (2, 2 - Bis (4 - methoxy - 3 - nitro - phenyl) - 2 - phthalimidopropionyl) - 8 - aminoquinoline (3a')

The compound **3a**' was obtained as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 10.13 (s, 1H), 8.70 (dd, *J* = 4.1, 1.1 Hz, 1H), 8.56 (dd, *J* = 7.4, 1.3 Hz, 1H), 8.11 (d, *J* = 7.9 Hz, 1H), 8.06 (d, *J* = 2.2 Hz, 1H), 7.84 (d, *J* = 2.2 Hz, 1H), 7.79 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.75 (dd, *J* = 8.7, 2.2 Hz, 1H), 7.68 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.58 (dd, *J* = 8.7, 2.2 Hz, 1H), 7.51 – 7.36 (m, 3H), 6.98 (d, *J* = 8.8 Hz, 2H), 5.84 (d, *J* = 12.3 Hz, 1H), 5.73 (d, *J* = 12.3 Hz, 1H), 3.84 (s, 3H), 3.80 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.68, 164.57, 152.46, 152.10, 148.37, 139.79, 139.42, 134.51, 133.93, 133.39, 133.13, 132.30, 132.13, 131.14, 127.80, 127.15, 125.32, 125.27, 123.84, 122.45, 121.75, 114.43, 114.28, 58.29, 56.52, 47.69; HRMS (EI) *m/z*: 647.1660 (M⁺); calc. for C₃₄H₃₅N₅O₉: 647.1652.

General Procedure (GP1) for Mono-arylation of Alanine Derivative

Small-scale (0.2 mmol) reactions: To a 30-mL vial was added **1a** (69.1 mg, 0.2 mmol), Pd(OAc)₂ (4.5 mg, 0.02 mmol), aryl iodide (0.24 mmol, for several specific reactions, 0.30 mmol of aryl iodide was used), AgBF₄ (58.4 mg, 0.3 mmol), and *t*-BuOH (1.5 mL). The mixture was stirred at 75°C for 2 hours (for several specific substrates, the reactions were stirred for 24 hours). After cooling to room temperature, the reaction was diluted with dichloromethane (5 mL) and triethylamine (0.5 mL) was added to the mixture. After the mixture was maintained for 6 hours, it was then filtered through a pad of Celite and washed by dichloromethane (30 mL). The filtrate was washed by water (15 mL), and the aqueous phase was extracted with dichloromethane (2 × 10 mL). The combined organic phase was then washed by brine (15 mL), and dried over anhydrous MgSO₄. Evaporation of organic solvent and purification by column chromatography gave the corresponding product.

Large-scale (2.0 mmol) reactions: To a 100-mL vial was added **1a** (690.7 mg, 2.0 mmol), Pd(OAc)₂ (44.5 mg, 0.2 mmol), aryl iodide (2.4 mmol, for several specific reactions, 3.0 mmol of aryl iodide was used), AgBF₄ (506.2 mg, 2.6 mmol), and *t*-BuOH/DCE (10 mL + 5 mL). The mixture was stirred at 75°C for 4 hours (for several specific substrates, the reactions were stirred for 24 hours). After cooling to room temperature, the reaction was diluted with dichloromethane (50 mL) and triethylamine (2 mL) was added to the mixture. After the mixture was maintained for 6 hours, it was then filtered through a pad of Celite and washed by dichloromethane (60 mL). The filtrate was washed by water (50 mL), and the aqueous phase was extracted with dichloromethane (2 × 30 mL). The combined organic phase was then washed by brine (50 mL), and dried over anhydrous MgSO₄. Evaporation of organic solvent and purification by column chromatography gave the corresponding product.

Scope of aryl iodides:

(S)-N-(3-(4-Methyl-phenyl)-2-phthalimidopropionyl)-8-aminoquinoline (3b)

The compound **3b** was prepared according to the **GP1** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 5.4:3.8:0.8. **3b** was obtained as a white solid (81.9 mg, 94% of 0.2 mmol; 776.0 mg, 89% of 2.0 mmol). ¹H NMR (400 MHz, CDCl₃) δ 10.33 (s, 1H), 8.74 (dd, *J* = 6.3, 2.4 Hz, 1H), 8.61 (dd, *J* = 4.0, 0.9 Hz, 1H), 8.11 (dd, *J* = 8.2, 1.0 Hz, 1H), 7.82 (dd, *J* = 5.3, 3.1 Hz, 2H), 7.70 (dd, *J* = 5.3, 3.1 Hz, 2H), 7.55 – 7.45 (m, 2H), 7.38 (dd, *J* = 8.2, 4.2 Hz, 1H), 7.18 (d, *J* = 7.8 Hz, 2H), 7.03 (d, *J* = 7.7 Hz, 2H), 5.44 (dd, *J* = 8.3 Hz, 1H), 3.85 – 3.69 (m, 2H), 2.24 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.08, 166.65, 148.40, 138.61, 136.60, 136.38, 134.28, 134.01, 133.66, 131.80, 129.53, 128.98, 127.97, 127.44, 123.70, 122.10, 121.75, 116.90, 56.47, 34.46, 21.19; HRMS (EI) *m/z*: 435.1588 (M⁺); calc. for C₂₇H₂₁N₃O₃: 435.1583; HPLC Chiralpack[®] AD-H column (*n*-hexane/isopropanol = 55:45, 0.70mL/min) t_r 23.556 min (major), 34.406 min (minor): 99% ee.

(S)-N-(3-(3-Methyl-phenyl)-2-phthalimidopropionyl)-8-aminoquinoline (3c)

The compound **3c** was prepared according to the **GP1** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 5.4:3.8:0.8. **3c** was obtained as a white solid (83.8 mg, 96% of 0.2 mmol; 791.3 mg, 91% of 2.0 mmol). ¹H NMR (400 MHz, CDCl₃) δ 10.32 (s, 1H), 8.74 (dd, J = 6.4, 2.3 Hz, 1H), 8.61 (dd, J = 4.0, 0.9 Hz, 1H), 8.11 (dd, J = 8.2 Hz, 0.9 Hz, 1H), 7.82 (dd, J = 5.3, 3.0 Hz, 2H), 7.70 (dd, J = 5.3, 3.1 Hz, 2H), 7.55 – 7.45 (m, 2H), 7.38 (dd, J = 8.2, 4.2 Hz, 1H), 7.15 – 7.06 (m, 3H), 6.97 (d, J = 6.5 Hz, 1H), 5.44 (dd, J = 9.9, 6.6 Hz, 1H), 3.85 – 3.69 (m, 2H), 2.21 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.03, 166.58, 148.37, 138.54, 138.39, 136.70, 136.32, 134.25, 133.95, 131.75, 129.91, 128.67, 127.91, 127.80, 127.37, 126.08, 123.62, 122.08, 121.71, 116.82, 56.38, 34.79, 21.38; HRMS (EI) *m*/*z*: 435.1585 (M⁺); calc. for C₂₇H₂₁N₃O₃: 435.1583. (*S*)-*N*-(**3**-(**4**-**Methoxyl-phenyl)-2-phthalimidopropionyl)-8-aminoquinoline (3e)**

The compound **3e** was prepared according to the **GP1** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 5:4.2:0.8. **3e** was obtained as a white solid (79.6 mg, 88% of 0.2 mmol; 807.4 mg, 89% of 2.0 mmol). ¹H NMR (400 MHz, CDCl₃) δ 10.32 (s, 1H), 8.73 (dd, *J* = 6.0, 2.8 Hz, 1H), 8.62 (dd, *J* = 4.0, 1.2 Hz, 1H), 8.13 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.83 (dd, *J* = 5.3, 3.1 Hz, 2H), 7.71 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.55 – 7.48 (m, 2H), 7.40 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.20 (d, *J* = 8.5 Hz, 2H), 6.76 (d, *J* = 8.5 Hz, 2H), 5.40 (dd, *J* = 9.6, 7.2 Hz, 1H), 3.80 – 3.67 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 168.07, 166.63, 158.60, 148.39, 138.58, 136.36, 134.29, 133.98, 131.76, 130.16, 128.72, 127.95, 127.41, 123.68, 122.10, 121.74, 116.87, 114.22, 56.52, 55.27, 34.05; HRMS (EI) *m/z*: 451.1528 (M⁺); calc. for C₂₇H₂₁N₃O₄: 451.1532.

(S)-N-(3-(3-Methoxyl-phenyl)-2-phthalimidopropionyl)-8-aminoquinoline (3f)

The compound **3f** was prepared according to the **GP1** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 5:4.2:0.8. **3f** was obtained as a white solid (81.1 mg, 90% of 0.2 mmol; 782.8 mg, 87% of 2.0 mmol). ¹H NMR (400 MHz, CDCl₃) δ 10.32 (s, 1H), 8.74 (d, *J* = 6.4 Hz, 1H), 8.60 (d, *J* = 2.7 Hz, 1H), 8.10 (d, *J* = 8.2 Hz, 1H), 7.82 (dd, *J* = 4.5, 2.2 Hz, 2H), 7.70 (dd, *J* = 4.4, 2.4 Hz, 2H), 7.53 – 7.46 (m, 2H), 7.37 (dd, *J* = 7.9, 4.0 Hz, 1H), 7.14 (t, *J* = 7.9 Hz, 1H), 6.89 (d, *J* = 7.5 Hz, 1H), 6.83 (s, 1H), 6.71 (d, *J* = 8.2 Hz, 1H), 5.47 (dd, *J* = 9.6, 6.9 Hz, 1H), 3.85 – 3.73 (m, 2H), 3.67 (s, 3H); ¹³C NMR (101 MHz, CDCl3) δ 167.96, 166.45, 159.79, 148.35, 138.47, 138.30, 136.29, 134.27, 133.87, 131.67, 129.79, 127.85, 127.30, 123.60, 122.08, 121.70, 121.36, 116.76, 114.23, 113.00, 56.18, 55.15, 34.85; HRMS (EI) *m/z*: 451.1540 (M⁺); calc. for C₂₇H₂₁N₃O₄: 451.1532.

(S)-N-(3-(2-Methoxyl-phenyl)-2-phthalimidopropionyl)-8-aminoquinoline (3g)

The compound **3g** was prepared according to the **GP1** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 5:4.2:0.8. **3g** was obtained as a white solid (68.9 mg, 76%) with **1a** (11.5 mg, 16%) recovered. ¹H NMR (400 MHz, CDCl₃) δ 10.38 (s, 1H), 8.77 (dd, J = 6.7, 1.3 Hz, 1H), 8.66 (d, J = 3.9 Hz, 1H), 8.11 (d, J = 8.2 Hz, 1H), 7.80 (dd, J = 5.2, 3.1 Hz, 2H), 7.68 (dd, J = 5.2, 3.1 Hz, 2H), 7.55 – 7.45 (m, 2H), 7.39 (dd, J = 8.2, 4.2 Hz, 1H), 7.17 (t, J = 7.8 Hz, 1H), 7.11 (d, J = 7.2 Hz, 1H), 6.83 (d, J = 8.2 Hz, 1H), 6.74 (t, J = 7.4 Hz, 1H), 5.61 (dd, J = 10.4, 4.7 Hz, 1H), 3.92 – 3.81 (m, 4H), 3.75 (dd, J = 13.5, 10.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 168.06, 167.20, 157.75, 148.31, 138.54, 136.32, 134.09, 131.83, 131.03, 128.58, 127.91, 127.39, 125.32, 123.47, 121.90, 121.68, 120.57, 116.73, 110.31, 55.37, 54.62, 30.75; HRMS (EI) m/z: 451.1539 (M⁺); calc. for C₂₇H₂₁N₃O₄: 451.1532.

 $(S) - N - (3 - (3 - Cyano-phenyl) - 2 - phthalimidopropionyl) - 8 - aminoquinoline \ (3h)$

The compound **3h** was prepared according to the **GP1** and the reaction was stirred for 24 hours. **3h** was purified by column chromatography in petroleum ether: dichloromethane: acetone = 8:4:1 and obtained as a white solid (57.3 mg, 64% of 0.2 mmol; 776.4 mg, 58% of 3.0 mmol) with **1a** (15.2 mg, 22% of 0.2 mmol) recovered. ¹H NMR (400 MHz, CDCl₃) δ 10.28 (s, 1H), 8.71 (dd, *J* = 5.1, 3.8 Hz, 1H), 8.58 (dd, *J* = 4.4, 1.2 Hz, 1H), 8.13 (dd, *J* = 8.2 Hz, 1H), 7.85 (dd, *J* = 5.3, 3.1 Hz, 2H), 7.75 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.61 – 7.54 (m, 2H), 7.54 – 7.49 (m, 2H), 7.47 (d, *J* = 7.7 Hz, 1H), 7.41 – 7.33 (m, 2H), 5.41 (dd, *J* = 10.3, 6.1 Hz, 1H), 3.87 (dd, *J* = 14.3, 6.1 Hz, 1H), 3.80 (dd, *J* = 14.2, 10.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 167.88, 165.77, 148.48, 138.63, 138.49, 136.44, 134.64, 133.68, 132.76, 131.48, 131.01, 129.67, 127.95, 127.39, 123.90, 122.33, 121.82, 118.66, 116.90, 112.87, 55.75, 34.44; HRMS (EI) *m/z*: 446.1365 (M⁺); calc. for C₂₇H₁₈N₄O₃: 446.1379. (**5**)-*N*-(**3**-(**4**-**Cyano-phenyl)-2-phthalimidopropionyl)-8-aminoquinoline (3**i)

The compound **3i** was prepared according to the **GP1** and the reaction was stirred for 24 hours. **3i** was purified by column chromatography in petroleum ether: dichloromethane: acetone = 8:4:1 and obtained as a white solid (61.8 mg, 69% of 0.2 mmol; 832.4 mg, 62% of 3.0 mmol) with **1a** (13.2 mg, 19% of 0.2 mmol) recovered and **3i'** (9.5 mg, 9% of 0.2 mmol) isolated. ¹H NMR (400 MHz, CDCl₃) δ 10.28 (s, 1H), 8.71 (dd, *J* = 5.4, 3.5 Hz, 1H), 8.57 (dd, *J* = 4.2, 1.4 Hz, 1H), 8.13 (dd, *J* = 8.3, 1.4 Hz, 1H), 7.85 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.75 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.57 – 7.50 (m, 4H), 7.43 – 7.36 (m, 3H), 5.44 (dd, *J* = 10.2, 6.4 Hz, 1H), 3.94 – 3.78 (m, 2H); ¹³C NMR (101 MHz,CDCl₃) δ 167.85, 165.77, 148.46, 142.68, 138.50, 136.46, 134.64, 133.67, 132.62, 131.47, 130.01, 127.96, 127.40, 123.88, 122.35, 121.83, 118.82, 116.90, 111.12, 55.57, 34.91; HRMS (EI) *m/z*: 446.1384 (M⁺); calc. for C₂₇H₁₈N₄O₃: 446.1379.

(S)-N-(3-(4-tert-Butylcarbamoyl-phenyl)-2-phthalimidopropionyl)-8-aminoquinoline (3i')

The compound **3i**' was obtained as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 10.32 (s, 1H), 8.72 (dd, J = 5.7, 3.3 Hz, 1H), 8.59 (dd, J = 4.2, 1.4 Hz, 1H), 8.12 (dd, J = 8.3, 1.4 Hz, 1H), 7.82 (dd, J = 5.4, 3.1 Hz, 2H), 7.72 (dd, J = 5.4, 3.1 Hz, 2H), 7.59 (d, J = 8.1 Hz, 2H), 7.53 – 7.48 (m, 2H), 7.39 (dd, J = 8.3, 4.2 Hz, 1H), 7.33 (d, J = 8.1 Hz, 2H), 5.88 (s, 1H), 5.45 (dd, J = 9.9, 6.8 Hz, 1H), 3.89 – 3.79 (m, 2H), 1.43 (s, 9H); HRMS (EI) *m/z*: 520.2110 (M⁺); calc. for C₃₁H₂₈N₄O₄: 520.2111.

(S)-N-(3-(3-Fluoro-phenyl)-2-phthalimidopropionyl)-8-aminoquinoline (3j)

The compound **3j** was prepared according to the **GP1** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 5.8:3.5:0.7. **3j** was obtained as a white solid (75.3 mg, 86% of 0.2 mmol; 698.6 mg, 79% of 2.0 mmol). ¹H NMR (400 MHz, CDCl₃) δ 10.30 (s, 1H), 8.72 (dd, *J* = 6.0, 2.1 Hz, 1H), 8.57 (d, *J* = 3.9 Hz, 1H), 8.09 (d, *J* = 8.2 Hz, 1H), 7.82 (dd, *J* = 4.5, 3.4 Hz, 2H), 7.69 (dd, *J* = 4.5, 3.4 Hz, 2H), 7.54 – 7.44 (m, 2H), 7.36 (dd, *J* = 8.1, 4.2 Hz, 1H), 7.19 (dd, *J* = 14.2, 7.5 Hz, 1H), 7.08 (d, *J* = 7.6 Hz, 1H), 7.02 (d, *J* = 9.6 Hz, 1H), 6.86 (t, *J* = 8.4 Hz, 1H), 5.44 (dd, *J* = 9.7, 6.8 Hz, 1H), 3.88 – 3.74 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.90, 166.12, 164.12, 161.67, 148.36, 139.41, 139.34, 138.42, 136.30, 134.37, 133.75, 131.54, 130.32, 130.24, 127.84, 127.28, 124.74, 124.72, 123.67, 122.15, 121.72, 116.77, 116.21, 116.00, 114.14, 113.93, 55.95, 34.51; HRMS (EI) *m/z*: 439.1335 (M⁺); calc. for C₂₆H₁₈FN₃O₃: 439.1332.

(S)-N-(3-(4-Fluoro-phenyl)-2-phthalimidopropionyl)-8-aminoquinoline (3k)

The compound **3k** was prepared according to the **GP1** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 5.8:3.5:0.7. **3k** was obtained as a white solid (79.5 mg, 90% of 0.2 mmol; 804.7 mg, 91% of 2.0 mmol). ¹H NMR (400 MHz, CDCl₃) δ 10.30 (s, 1H), 8.72 (dd, J = 6.2, 2.0 Hz, 1H), 8.58 (d, J = 3.3 Hz, 1H), 8.09 (d, J = 8.2 Hz, 1H), 7.81 (dd, J = 4.8, 3.1 Hz, 2H), 7.69 (dd, J = 4.9, 3.1 Hz, 2H), 7.54 – 7.44 (m, 2H), 7.36 (dd, J = 8.1, 4.2 Hz, 1H), 7.26 – 7.19 (m, 2H), 6.90 (t, J = 8.5 Hz, 2H), 5.42 (dd, J = 9.5, 7.1 Hz, 1H), 3.84 – 3.69 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.93, 166.25, 163.08, 160.64, 148.35, 138.41, 136.30, 134.35, 133.83, 133.76, 132.47, 132.44, 131.51, 130.65, 130.57, 127.84, 127.28, 123.64, 122.13, 121.71, 116.76, 115.74, 115.53, 56.19, 33.98; HRMS (EI) *m/z*: 439.1337 (M⁺); calc. for C₂₆H₁₈FN₃O₃: 439.1332. (*S*)-*N*-(**3**-(**4**-Ethyl-phenyl)-**2**-phthalimidopropionyl)-**8**-aminoquinoline (**3**)

The compound **3l** was prepared according to the **GP1** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 5:4.2:0.8. **3l** was obtained as a white solid (84.8 mg, 94% of 0.2 mmol; 801.5 mg, 89% of 2.0 mmol). ¹H NMR (400 MHz, CDCl₃) δ 10.33 (s, 1H), 8.74 (dd, *J* = 6.3, 2.1 Hz, 1H), 8.61 (dd, *J* = 4.2, 0.9 Hz, 1H), 8.11 (dd, *J* = 8.3, 0.9 Hz, 1H), 7.82 (dd, *J* = 5.2, 3.0 Hz, 2H), 7.69 (dd, *J* = 5.2, 3.1 Hz, 2H), 7.55 – 7.45 (m, 2H), 7.38 (dd, *J* = 8.2, 4.2 Hz, 1H), 7.21 (d, *J* = 7.8 Hz, 2H), 7.06 (d, *J* = 7.7 Hz, 2H), 5.45 (dd, *J* = 9.1, 7.4 Hz, 1H), 3.87 – 3.69 (m, 2H), 2.55 (q, *J* = 7.5 Hz, 2H), 1.14 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.07, 166.66, 148.38, 142.96, 138.59, 136.35, 134.25, 133.99, 133.90, 131.79, 129.04, 128.28, 127.94, 127.40, 123.64, 122.08, 121.72, 116.87, 56.44, 34.48, 28.52, 15.57; HRMS (EI) *m/z*: 449.1742 (M⁺); calc. for C₂₈H₂₃N₃O₃: 449.1739.

(S)-N-(3-(4-tert-Butyl-phenyl)-2-phthalimidopropionyl)-8-aminoquinoline (3m)

The compound **3m** was prepared according to the **GP1** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 6:3:1. **3m** was obtained as a white solid (86.9 mg, 91% of 0.2 mmol; 890.1 mg, 93% of 2.0 mmol). ¹H NMR (400 MHz, CDCl₃) δ 10.33 (s, 1H), 8.74 (dd, *J* = 6.6, 2.4 Hz, 1H), 8.62 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.11 (dd, *J* = 8.3, 1.6 Hz, 1H), 7.82 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.70 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.55 – 7.46 (m, 2H), 7.38 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.24 (s, 4H), 5.46 (dd, *J* = 9.7, 6.8 Hz, 1H), 3.86 – 3.71 (m, 2H), 1.23 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ = 168.05, 166.67, 149.84, 148.36, 138.56, 136.31, 134.20, 133.99, 133.68, 131.81, 128.76, 127.92, 127.36, 125.64, 123.56, 122.05, 121.69, 116.83, 56.37, 34.47, 34.38, 31.38; HRMS (ESI) *m/z*: 478.2110 (MH⁺); calc. for C₃₀H₂₇N₃O₃H: 478.2131.

(S)-N-(3-(4-Chloro-phenyl)-2-phthalimidopropionyl)-8-aminoquinoline (3n)

The compound **3n** was prepared according to the **GP1** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 6:3:1. **3n** was obtained as a white solid (84.1 mg, 92% of 0.2 mmol; 788.1 mg, 86% of 2.0 mmol). ¹H NMR (400 MHz, CDCl₃) δ 10.28 (s, 1H), 8.72 (dd, *J* = 5.8, 3.2 Hz, 1H), 8.60 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.12 (dd, *J* = 8.3, 1.6 Hz, 1H), 7.84 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.73 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.56 – 7.48 (m, 2H), 7.39 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.22 (q, *J* = 8.6 Hz, 4H), 5.41 (dd, *J* = 9.5, 7.2 Hz, 1H), 3.83 – 3.71 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ = 167.98, 166.21, 148.43, 138.56, 136.39, 135.40, 134.44, 133.87, 132.96, 131.66, 130.52, 129.02, 127.96, 127.41, 123.78, 122.20, 121.78, 116.89, 56.09, 34.25; HRMS (ESI) *m/z*: 456.1118 (MH ⁺); calc. for C₂₆H₁₈ClN₃O₃H: 456.1115.

(S)-N-(3-(4-Bromo-phenyl)-2-phthalimidopropionyl)-8-aminoquinoline (30)

The compound **30** was prepared according to the **GP1** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 6:3:1. **30** was obtained as a white solid (89.5 mg, 89% of 0.2 mmol; 882.6 mg, 88% of 2.0 mmol). ¹H NMR (400 MHz, CDCl₃) δ 10.28 (s, 1H), 8.72 (dd, J = 5.7, 3.2 Hz, 1H), 8.60 (dd, J = 4.2, 1.6 Hz, 1H), 8.12 (dd, J = 8.3, 1.6 Hz, 1H), 7.84 (dd, J = 5.5, 3.1 Hz, 2H), 7.73 (dd, J = 5.5, 3.1 Hz, 2H), 7.55 – 7.48 (m, 2H), 7.39 (dd, J = 8.3, 4.2 Hz, 1H), 7.35 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 8.4 Hz, 2H), 5.41 (dd, J = 9.3, 7.5 Hz, 1H), 3.82 – 3.71 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) $\delta = 167.97$, 166.18, 148.44, 138.55, 136.39, 135.92, 134.44, 133.85, 131.96, 131.65, 130.89, 127.95, 127.40, 123.79, 122.20, 121.78, 121.07, 116.88, 56.01, 34.31; HRMS (ESI) m/z: 500.0584 (MH⁺); calc. for C₂₆H₁₈BrN₃O₃H: 500.0610.

 $(S) - N - (3 - (4 - Nitro-phenyl) - 2 - phthalimidopropionyl) - 8 - aminoquinoline\ (3p)$

The compound **3p** was prepared according to the **GP1** and the reaction was stirred for 24 hours. **3p** was purified by column chromatography in petroleum ether: dichloromethane: acetone = 8:4:1 and obtained as a white solid (73.0 mg, 78% of 0.2 mmol; 743.2 mg, 79% of 2.0 mmol). ¹H NMR (400 MHz, CDCl₃) δ 10.29 (s, 1H), 8.71 (dd, *J* = 5.2, 3.7 Hz, 1H), 8.56 (dd, *J* = 4.0, 1.1 Hz, 1H), 8.14 (dd, *J* = 8.3, 1.0 Hz, 1H), 8.10 (d, *J* = 8.5 Hz, 2H), 7.85 (dd, *J* = 5.3, 3.1 Hz, 2H), 7.75 (dd, *J* = 5.3, 3.0 Hz, 2H), 7.57 – 7.50 (m, 2H), 7.47 (d, *J* = 8.4 Hz, 2H), 7.39 (dd, *J* = 8.2, 4.2 Hz, 1H), 5.47 (dd, *J* = 9.3, 7.3 Hz, 1H), 3.96 – 3.86 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.86, 165.70, 148.47, 147.19, 144.83, 138.51, 136.48, 134.69, 133.66, 131.46, 130.12, 127.98, 127.42, 124.07, 123.94, 122.39, 121.85, 116.93, 55.56, 34.65; HRMS (EI) *m/z*: 466.1276 (M⁺); calc. for C₂₆H₁₈N₄O₅: 466.1277.

 $(S) - N - (3 - (4 - Acetyl - phenyl) - 2 - phthalimidopropionyl) - 8 - aminoquinoline\ (3q)$

The compound **3q** was prepared according to the **GP1** and purified by column chromatography in petroleum ether: dichloromethane: acetone = 6:4:1. **3q** was obtained as a white solid (76.6 mg, 83% of 0.2 mmol; 731.0 mg, 79% of 2.0 mmol). ¹H NMR (400 MHz, CDCl₃) δ 10.31 (s, 1H), 8.71 (dd, *J* = 5.8, 2.9 Hz, 1H), 8.55 (dd, *J* = 4.0, 0.8 Hz, 1H), 8.09 (d, *J* = 8.2 Hz, 1H), 7.85 – 7.76 (m, *J* = 7.4 Hz, 4H), 7.70 (dd, *J* = 5.2, 3.1 Hz, 2H), 7.53 – 7.46 (m, *J* = 8.7, 5.6 Hz, 2H), 7.41 – 7.33 (m, *J* = 12.4, 6.1 Hz, 3H), 5.47 (t, *J* = 8.3 Hz, 1H), 3.87 (d, *J* = 8.3 Hz, 2H), 2.51 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.90, 167.92, 166.09, 148.43, 142.61, 138.53, 136.41, 136.01, 134.48, 133.78, 131.56, 129.40, 128.91, 127.94, 127.39, 123.79, 122.25, 121.78, 116.88, 55.84, 34.75, 26.69; HRMS (EI) *m/z*: 463.1527 (M⁺); calc. for C₂₈H₂₁N₃O₄: 463.1532.

(S)-N-(3-(4-Methoxycarbonyl-phenyl)-2-phthalimidopropionyl)-8-aminoquinoline (3r)

The compound **3r** was prepared according to the **GP1** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 5.1:4:0.9. **3r** was obtained as a white solid (92.3 mg, 96% of 0.2 mmol; 800.3 mg, 83% of 2.0 mmol). ¹H NMR (400 MHz, CDCl₃) δ 10.31 (s, 1H), 8.71 (dd, *J* = 5.9, 2.4 Hz, 1H), 8.56 (d, *J* = 3.7 Hz, 1H), 8.09 (d, *J* = 8.2 Hz, 1H), 7.89 (d, *J* = 7.9 Hz, 2H), 7.80 (dd, *J* = 4.8, 3.0 Hz, 2H), 7.69 (dd, *J* = 4.8, 3.0 Hz, 2H), 7.53 – 7.45 (m, 2H), 7.40 – 7.33 (m, *J* = 7.7 Hz, 3H), 5.47 (t, *J* = 8.3 Hz, 1H), 3.91 – 3.78 (m, *J* = 13.0 Hz, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 167.86, 166.91, 166.06, 148.38, 142.28, 138.43, 136.33, 134.41, 133.72, 131.47, 130.06, 129.16, 128.94, 127.86, 127.31, 123.71, 122.18, 121.73, 116.78, 55.80, 52.13, 34.71; HRMS (EI) *m/z*: 479.1479 (M⁺); calc. for C₂₈H₂₁N₃O₅: 479.1481; HPLC Chiralpack[®] AD column (*n*-hexane/isopropanol = 55:45, 1.25mL/min) t_r 15.898 min (major), 20.833 min (minor): 99% ee. (*S*)-*N*-(**3**-(**4**-Acetamido-phenyl)-2-phthalimidopropionyl)-8-aminoquinoline (3s)

The compound **3s** was prepared according to the **GP1** and purified by column chromatography in petroleum ether: acetone = 2:3. **3s** was obtained as a white solid (75.3 mg, 83% of 0.2 mmol; 746.5 mg, 82% of 2.0 mmol) with **1a** (8.3 mg, 12% of 0.2 mmol) recovered. ¹H NMR (400 MHz, CDCl₃) δ 10.34 (s, 1H), 8.73 – 8.64 (m, 1H), 8.59 (d, *J* = 3.3 Hz, 1H), 8.08 (d, *J* = 8.0 Hz, 1H), 7.81 (s, 1H), 7.77 (dd, *J* = 5.0, 3.1 Hz, 2H), 7.66 (dd, *J* = 5.2, 3.1 Hz, 2H), 7.47 (d, *J* = 4.3 Hz, 2H), 7.41 – 7.31 (m, *J* = 12.4, 6.2 Hz, 3H), 7.18 (d, *J* = 8.2 Hz, 2H), 5.41 (t, *J* = 8.3 Hz, 1H), 3.82 – 3.69 (m, 2H), 2.06 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.84, 167.97, 166.49, 148.36, 138.32, 137.20, 136.21, 134.29, 133.64, 132.04, 131.40, 129.39, 127.75, 127.10, 123.53, 122.17, 121.69, 119.96, 116.66, 56.17, 34.14, 24.38; HRMS (EI) *m/z*: 478.1647 (M⁺); calc. for C₂₈H₂₂N₄O₄: 478.1641.

(S)-N-(3-(4-Trifluoromethyl-phenyl)-2-phthalimidopropionyl)-8-aminoquinoline (3t)

The compound **3t** was prepared according to the **GP1** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 5:4.2:0.8. **3t** was obtained as a white solid (90.3 mg, 92% of 0.2 mmol; 881.5 mg, 90% of 2.0 mmol). ¹H NMR (400 MHz, CDCl₃) δ 10.29 (s, 1H), 8.71 (dd, *J* = 6.2, 2.4 Hz, 1H), 8.55 (d, *J* = 3.9 Hz, 1H), 8.08 (d, *J* = 8.2 Hz, 1H), 7.82 (dd, *J* = 5.1, 3.1 Hz, 2H), 7.70 (dd, *J* = 5.2, 3.1 Hz, 2H), 7.53 – 7.45 (m, 4H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.35 (dd, *J* = 8.2, 4.2 Hz, 1H), 5.49 (dd, *J* = 9.6, 7.0 Hz, 1H), 3.94 – 3.81 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.91, 166.00, 148.37, 141.09, 138.40, 136.33, 134.45, 133.69, 131.49, 129.48, 129.12, 127.86, 127.28, 125.71, 125.68, 125.50, 123.72, 122.80, 122.22, 121.74, 116.79, 55.77, 34.58; HRMS (EI) *m/z*: 489.1299 (M⁺); calc. for C₂₇H₁₈F₃N₃O₃: 489.1300.

(S)-N-(3-(3,4-Difluoro-phenyl)-2-phthalimidopropionyl)-8-aminoquinoline (3u)

The compound **3u** was prepared according to the **GP1** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 5.8:3.5:0.7. **3u** was obtained as a white solid (77.1 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ 10.27 (s, 1H), 8.71 (dd, J = 5.5, 3.3 Hz, 1H), 8.59 (d, J = 4.0 Hz, 1H), 8.12 (d, J = 8.2 Hz, 1H), 7.85 (dd, J = 5.2, 3.1 Hz, 2H), 7.74 (dd, J = 5.3, 3.1 Hz, 2H), 7.55 – 7.47 (m, 2H), 7.38 (dd, J = 8.2, 4.2 Hz, 1H), 7.12 (dd, J = 10.7, 7.9 Hz, 1H), 7.06 – 6.96 (m, 2H), 5.39 (dd, J = 10.2, 6.4 Hz, 1H), 3.79 (dd, J = 14.6, 6.6 Hz, 1H), 3.73 (dd, J = 14.3, 10.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 167.90, 165.94, 151.55, 151.43, 150.74, 150.61, 149.08, 148.96, 148.37, 148.28, 148.15, 138.39, 136.32, 134.47, 133.92, 133.88, 133.83, 133.68, 131.47, 127.85, 127.27, 125.16, 125.12, 125.10, 125.07, 123.73, 122.21, 121.74, 118.15, 117.97, 117.63, 117.46, 116.78, 55.90, 34.00; HRMS (EI) *m/z*: 457.1232 (M⁺); calc. for C₂₆H₁₇F₂N₃O₃: 457.1238. (**S**)-*N*-(**3**-(**4**-**Acetamido-3-chloro-phenyl)-2-phthalimidopropionyl)-8-aminoquinoline (3v)**

The compound **3v** was prepared according to the **GP1** and purified by column chromatography in petroleum ether: acetone = 2:1. **3v** was obtained as a white solid (82.5 mg, 80%) with **1a** (9.1 mg, 13%) recovered. ¹H NMR (400 MHz, CDCl₃) δ 10.28 (s, 1H), 8.73 – 8.64 (m, 1H), 8.58 (d, *J* = 3.5 Hz, 1H), 8.21 (d, *J* = 8.4 Hz, 1H), 8.09 (d, *J* = 8.2 Hz, 1H), 7.82 (dd, *J* = 4.7, 3.3 Hz, 2H), 7.70 (dd, *J* = 4.7, 3.2 Hz, 2H), 7.57 (s, 1H), 7.51 – 7.45 (m, 2H), 7.36 (dd, *J* = 8.2, 4.2 Hz, 1H), 7.32 (s, 1H), 7.16 (d, *J* = 8.4 Hz, 1H), 5.38 (t, *J* = 8.3 Hz, 1H), 3.74 (d, *J* = 8.3 Hz, 2H), 2.17 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.26, 168.00, 166.14, 148.47, 138.56, 136.40, 134.47, 133.83, 133.60, 133.52, 131.66, 129.53, 128.48, 127.96, 127.40, 123.83, 122.63, 122.23, 121.78, 121.64, 116.90, 56.04, 34.01, 24.99; HRMS (EI) *m*/*z*: 512.1254 (M⁺); calc. for C₂₈H₂₁ClN₄O₄: 512.1251.

(S)-N-(3-(2,4-Dimethoxy-phenyl)-2-phthalimidopropionyl)-8-aminoquinoline (3w)

The compound **3w** was prepared according to the **GP1** and the reaction was stirred for 24 hours in presence of 0.3 mmol (1.5 eq) of 1-iodo-2,4-dimethoxybenzene. **3w** was purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 5:4:1 and obtained as a white solid (82.0 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 10.35 (s, 1H), 8.76 (d, *J* = 6.6 Hz, 1H), 8.66 (d, *J* = 3.1 Hz, 1H), 8.11 (d, *J* = 8.2 Hz, 1H), 7.86 – 7.76 (m, 2H), 7.72 – 7.64 (m, 2H), 7.54 – 7.45 (m, 2H), 7.39 (dd, *J* = 8.2, 4.2 Hz, 1H), 7.01 (d, *J* = 8.2 Hz, 1H), 6.42 (s, 1H), 6.26 (d, *J* = 8.2 Hz, 1H), 5.56 (dd, *J* = 10.3, 4.9 Hz, 1H), 3.84 (s, 3H), 3.78 (dd, *J* = 13.8, 4.9 Hz, 1H), 3.74 – 3.63 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 168.15, 167.34, 160.24, 158.74, 148.34, 138.64, 136.36, 134.23, 134.10, 131.97, 131.42, 127.98, 127.47, 123.54, 121.90, 121.70, 117.67, 116.82, 104.14, 98.58, 55.46, 55.38, 54.87, 30.21; HRMS (EI) *m/z*: 481.1639 (M⁺); calc. for C₂₈H₂₃N₃O₅: 481.1638.

(S)-N-(3-(3,4-Dimethoxy-phenyl)-2-phthalimidopropionyl)-8-aminoquinoline (3x)

The compound **3x** was prepared according to the **GP1** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 5:4:1. **3x** was obtained as a white solid (84.0 mg, 87% of 0.2 mmol; 870.3 mg, 90% of 2.0 mmol). ¹H NMR (400 MHz, CDCl₃) δ 10.30 (s, 1H), 8.72 (dd, *J* = 6.4, 2.2 Hz, 1H), 8.59 (d, *J* = 3.2 Hz, 1H), 8.08 (d, *J* = 8.1 Hz, 1H), 7.80 (dd, *J* = 5.2, 3.0 Hz, 2H), 7.68 (dd, *J* = 5.2, 3.1 Hz, 2H), 7.53 – 7.44 (m, 2H), 7.36 (dd, *J* = 8.2, 4.2 Hz, 1H), 6.83 (d, *J* = 8.1 Hz, 1H), 6.76 (s, 1H), 6.70 (d, *J* = 8.2 Hz, 1H), 5.43 (dd, *J* = 10.3, 6.5 Hz, 1H), 3.81 – 3.67 (m, 8H); ¹³C NMR (101 MHz, CDCl₃) δ 167.97, 166.50, 148.86, 148.32, 147.85, 138.43, 136.26, 134.27, 133.86, 131.61, 129.03, 127.83, 127.27, 123.55, 122.05, 121.67, 121.20, 116.74, 111.89, 111.29, 56.31, 55.76, 55.71, 34.36; HRMS (EI) *m/z*: 481.1636 (M⁺); calc. for C₂₈H₂₃N₃O₅: 481.1638.

(S)-N-(3-(3-Acetoxy-4-methoxy-phenyl)-2-phthalimidopropionyl)-8-aminoquinoline (3y)

The compound **3y** was prepared according to the **GP1** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 5:4:1. **3y** was obtained as a white solid (93.7 mg, 92% of 0.2 mmol; 895.4 mg, 88% of 2.0 mmol). ¹H NMR (400 MHz, CDCl₃) δ 10.30 (s, 1H), 8.71 (dd, *J* = 5.7, 3.0 Hz, 1H), 8.60 (d, *J* = 3.0 Hz, 1H), 8.10 (d, *J* = 8.1 Hz, 1H), 7.81 (dd, *J* = 5.1, 3.1 Hz, 2H), 7.69 (dd, *J* = 5.2, 3.1 Hz, 2H), 7.53 – 7.45 (m, 2H), 7.37 (dd, *J* = 8.2, 4.2 Hz, 1H), 7.13 (d, *J* = 8.3 Hz, 1H), 7.00 (s, 1H), 6.81 (d, *J* = 8.4 Hz, 1H), 5.42 (dd, *J* = 9.1, 7.7 Hz, 1H), 3.80 – 3.68 (m, 5H), 2.24 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.87, 168.01, 166.33, 150.07, 148.37, 139.66, 138.43, 136.29, 134.26, 133.81, 131.61, 129.14, 127.84, 127.35, 127.28, 123.65, 123.52, 122.09, 121.71, 116.74, 112.55, 56.03, 55.85, 33.88, 20.69; HRMS (EI) *m*/*z*: 509.1588 (M⁺); calc. for C₂₉H₂₃N₃O₆: 509.1587.

(S)-N-(3-(4-Nitro-3-fluoro-phenyl)-2-phthalimidopropionyl)-8-aminoquinoline (3z)

The compound **3z** was prepared according to the **GP1** and the reaction was stirred for 24 hours. **3z** was purified by column chromatography in petroleum ether: dichloromethane: acetone = 8:4:1 and obtained as a white solid (72.8 mg, 75% of 0.2 mmol; 1284.1 mg, 88% of 3.0 mmol). ¹H NMR (400 MHz, DMSO) δ 10.26 (s, 1H), 8.69 (p, *J* = 4.4 Hz, 1H), 8.55 (dd, *J* = 4.1, 1.2 Hz, 1H), 8.13 (dd, *J* = 8.3, 1.2 Hz, 1H), 7.95 (t, *J* = 8.2 Hz, 1H), 7.87 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.77 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.57 – 7.47 (m, 2H), 7.39 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.30 – 7.18 (m, 2H), 5.45 (dd, *J* = 10.2, 6.3 Hz, 1H), 3.96 – 3.80 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.84, 165.39, 157.00, 154.35, 148.50, 146.78, 146.70, 138.47, 136.50, 134.80, 133.55, 131.42, 127.97, 127.40, 126.65, 125.31, 125.27, 124.04, 122.46, 121.88, 119.27, 119.07, 116.93, 55.20, 34.60; HRMS (EI) *m/z*: 484.1184 (M⁺); calc. for C₂₆H₁₇FN₄O₅: 484.1183.

(S)-N-(3-(3,5-Bis(trifluoromethyl)-phenyl)-2-phthalimidopropionyl)-8-aminoquinoline (3aa)

The compound **3aa** was prepared according to the **GP1** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 5:4.2:0.8. **3aa** was obtained as a white solid (100.8 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 10.27 (s, 1H), 8.70 (dd, *J* = 5.7, 2.5 Hz, 1H), 8.54 (d, *J* = 4.0 Hz, 1H), 8.09 (d, *J* = 8.2 Hz, 1H), 7.83 (dd, *J* = 4.6, 3.1 Hz, 2H), 7.78 – 7.70 (m, 4H), 7.68 (s, 1H), 7.54 – 7.47 (m, 2H), 7.35 (dd, *J* = 8.1, 4.2 Hz, 1H), 5.44 (dd, *J* = 10.3, 6.0 Hz, 1H), 3.97 (dd, *J* = 14.3, 5.9 Hz, 1H), 3.87 (dd, *J* = 14.1, 10.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 167.82, 165.51, 148.44, 139.73, 138.41, 136.38, 134.66, 133.55, 132.43, 132.10, 131.77, 131.43, 131.34, 129.50, 127.89, 127.31, 124.52, 123.83, 122.34, 121.78, 121.19, 121.15, 121.12, 116.86, 55.54, 34.41; HRMS (EI) *m/z*: 557.1169 (M⁺); calc. for C₂₈H₁₇F₆N₃O₃: 557.1174.

(S)-N-(3-(3,4-Dimethyl-phenyl)-2-phthalimidopropionyl)-8-aminoquinoline (3ab)

The compound **3ab** was prepared according to the **GP1** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 5:4.2:0.8. **3ab** was obtained as a white solid (88.4 mg, 98% of 0.2 mmol; 2074.5 mg, 92% of 5.0 mmol). ¹H NMR (400 MHz, CDCl₃) δ 10.31 (s, 1H), 8.74 (dd, *J* = 6.1, 2.6 Hz, 1H), 8.62 (dd, *J* = 3.9, 1.1 Hz, 1H), 8.12 (dd, *J* = 8.2, 1.1 Hz, 1H), 7.83 (dd, *J* = 5.3, 3.0 Hz, 2H), 7.71 (dd, *J* = 5.3, 3.1 Hz, 2H), 7.55 – 7.47 (m, 2H), 7.39 (dd, *J* = 8.2, 4.2 Hz, 1H), 7.08 – 6.94 (m, 3H), 5.42 (dd, *J* = 9.7, 6.8 Hz, 1H), 3.80 – 3.67 (m, 2H), 2.15 (s, 3H), 2.12 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.11, 166.72, 148.35, 138.60, 136.95, 136.37, 135.20, 134.23, 134.10, 134.03, 131.86, 130.40, 130.04, 127.96, 127.43, 126.40, 123.65, 122.07, 121.72, 116.91, 56.54, 34.47, 19.75, 19.48; HRMS (EI) *m/z*: 449.1746 (M⁺); calc. for C₂₈H₂₃N₃O₃: 449.1739. HPLC Chiralpack[®] AD-H column (*n*-hexane/isopropanol = 55:45, 0.70mL/min) t_r 20.364 min (major), 27.017 min (minor): 99% ee.

(S)-N-(3-(4-Acetoxy-3-iodo-5-nitro-phenyl)-2-phthalimidopropionyl)-8-aminoquinoline (3ac)

The compound **3ac** was prepared according to the **GP1** and the reaction was stirred for 24 hours in presence of 0.3 mmol (1.5 eq) of 2,4-diiodo-6-nitrophenyl acetate. **3ac** was purified by column chromatography in petroleum ether: dichloromethane: acetone = 7:4:1 and obtained as a white solid (96.8 mg, 74% of 0.2 mmol; 960.4 mg, 92% of 2.0 mmol) with **1a** (8.5 mg, 12% of 0.2 mmol) recovered. ¹H NMR (400 MHz, CDCl₃) δ 10.26 (s, 1H), 8.70 (dd, *J* = 5.1, 3.8 Hz, 1H), 8.58 (dd, *J* = 4.1, 0.9 Hz, 1H), 8.13 (dd, *J* = 8.2, 0.9 Hz, 1H), 8.07 (d, *J* = 1.5 Hz, 1H), 8.01 (d, *J* = 1.5 Hz, 1H), 7.89 (dd, *J* = 5.3, 3.0 Hz, 2H), 7.77 (dd, *J* = 5.3, 3.1 Hz, 2H), 7.57 – 7.49 (m, 2H), 7.39 (dd, *J* = 8.3, 4.2 Hz, 1H), 5.41 (dd, *J* = 9.9, 6.2 Hz, 1H), 3.89 (dd, *J* = 14.5, 6.1 Hz, 1H), 3.77 (dd, *J* = 14.5, 10.1 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.93, 167.43, 165.37, 148.57, 144.97, 143.87, 142.03, 138.49, 138.00, 136.46, 134.77, 133.59, 131.51, 127.97, 127.40, 126.64, 124.09, 122.43, 121.86, 116.97, 94.88, 55.35, 33.75, 21.06; HRMS (EI) *m/z*: 650.0294 (M⁺); calc. for C₂₈H₁₉IN₄O₇: 650.0298. (*S*)-*N*-(**3**-(**4-Methoxy-3-methyl-5-tosyloxy-phenyl)-2-phthalimidopropionyl)-8-aminoquinoline (3ad)**

The compound **3ad** was prepared according to the **GP1** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 5:4.2:0.8. **3ad** was obtained as a white solid (120.0 mg, 94%). ¹H NMR (400 MHz, CDCl₃) δ 10.22 (s, 1H), 8.73 – 8.67 (m, 1H), 8.59 (dd, J = 4.0, 1.2 Hz, 1H), 8.10 (dd, J = 8.2, 0.9 Hz, 1H), 7.84 (dd, J = 5.3, 3.0 Hz, 2H), 7.71 (dd, J = 5.3, 3.1 Hz, 2H), 7.62 (d, J = 8.2 Hz, 2H), 7.49 (d, J = 4.7 Hz, 2H), 7.38 (dd, J = 8.2, 4.2 Hz, 1H), 7.24 (s, 1H), 6.99 (s, 1H), 6.81 (s, 1H), 5.25 (dd, J = 9.9, 6.4 Hz, 1H), 3.69 (dd, J = 14.2, 6.4 Hz, 1H), 3.65 – 3.55 (m, 4H), 2.40 (s, 3H), 2.07 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.95, 166.16, 149.84, 148.45, 145.39, 142.45, 138.37, 136.29, 134.36, 133.73, 133.47, 132.88, 132.29, 131.63, 130.33, 129.67, 128.44,

127.83, 127.23, 123.66, 122.16, 121.83, 121.76, 116.71, 60.68, 56.02, 34.05, 21.79, 16.03; HRMS (EI) m/z: 635.1734 (M⁺); calc. for C₃₅H₂₉N₃O₇S: 635.1726.

(S)-N-(3-(3-Hydroxy-4-methoxy-5-methyl-phenyl)-2-phthalimidopropionyl)-8-aminoquinoline (3ae)

The compound **3ae** was prepared according to the **GP1** and purified by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 4:3.5:2.5. **3ae** was obtained as a light yellow solid (75.4 mg, 78% of 0.2 mmol; 3.2410 g, 67% of 10 mmol). ¹H NMR (400 MHz, CDCl₃) δ 10.27 (s, 1H), 8.71 (dd, *J* = 6.2, 2.0 Hz, 1H), 8.59 (d, *J* = 3.6 Hz, 1H), 8.07 (d, *J* = 8.2 Hz, 1H), 7.81 (dd, *J* = 5.0, 3.1 Hz, 2H), 7.67 (dd, *J* = 5.0, 3.1 Hz, 2H), 7.51 – 7.43 (m, 2H), 7.35 (dd, *J* = 8.1, 4.2 Hz, 1H), 6.77 (s, 1H), 6.62 (s, 1H), 5.91 (s, 1H), 5.41 (dd, *J* = 9.8, 6.5 Hz, 1H), 3.74 – 3.60 (m, 5H), 2.13 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.07, 166.60, 149.00, 148.34, 144.46, 138.43, 136.23, 134.20, 133.85, 133.09, 131.70, 131.11, 127.81, 127.24, 123.55, 123.05, 122.06, 121.66, 116.79, 114.03, 60.56, 56.30, 34.45, 15.78; HRMS (EI) *m/z*: 481.1635 (M⁺); calc. for C₂₈H₂₃N₃O₅: 481.1638.

Application:

1. Cleavage of the 8-Aminoquinoline Directing Group

(S)-N-(3-(3,4-Dimethyl-phenyl)-2-phthalimidopropionyl)-8-aminoquinoline (3ab)

HPLC Chiralpack[®] AD-H column (*n*-hexane/isopropanol = 55:45, 0.70mL/min) $t_r = 20.364$ min (major), $t_r = 27.017$ min (minor): 99% ee.

(S)-Methyl-2-phthalimido-3-(3,4-dimethylphenyl)-propionoate (4a)

To a 30-mL resealable Schlenk flask was added 8-aminoquinoline amide (**3ab**, 67.4 mg, 0.15 mmol, overall concentration = 0.1 mol/L), dry methanol (1.5 mL), BF₃·Et₂O (114µL, 0.9 mmol). The flask was then charged with N₂. The mixture was stirred at 100°C for 20 hours under N₂. After cooling to room temperature, the reaction was diluted with dichloromethane (5 mL) and then quenched by Et₃N (0.21 mL, 1.50 mmol). Evaporation of organic solvent and purification by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 9:3:1 gave the corresponding products **4a** (49.5 mg, 96%) as a colorless oil and 8-aminoquinoline (20.6mg, 96%). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.69 (dd, *J* = 5.4, 3.1 Hz, 2H), 6.93 (d, *J* = 7.6 Hz, 2H), 6.88 (d, *J* = 7.6 Hz, 1H), 5.14 (dd, *J* = 11.0, 5.4 Hz, 1H), 3.77 (s, 3H), 3.50 (qd, *J* = 14.4, 8.3 Hz, 2H), 2.13 (s, 3H), 2.11 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.62, 167.64, 136.78, 135.06, 134.16, 131.82, 130.25, 129.88, 126.20, 123.57, 53.54, 52.97, 34.28, 19.71, 19.43. HRMS (ESI) *m*/*z*: 338.1386 (MH ⁺); calc. for C₂₀H₁₉NO₄H ⁺ : 338.1387. HPLC Chiralpack[®] OJ-H column (*n*-hexane/isopropanol = 80:20, 1.0mL/min) t_r = 10.957 min (major), t_r = 15.364 (minor): 96.5% ee.

2. Sequential Reaction for C-C and C-O Coupling

2*S*,3*S*-*N*-(3-(3,4-Dimethylphenyl)-5-ethoxy-5-oxo-2-phthalimidopentanoyl)-8-aminoquinoline (5a)

To a 30-mL resealable Schlenk flask was added **3ab** (89.9 mg, 0.2 mmol), Pd(OAc)₂ (4.5 mg, 0.02 mmol, 10 mol%), BrCH₂CO₂Et (33 µL, 0.3 mmol, 2.0 eq), Ag₂CO₃ (66.2 mg, 0.24 mmol, 1.2 eq), $(BnO)_2PO_2H$ (16.7 mg, 0.06 mmol, 30 mol%), and ^tBuOH + DCE (1.2 mL + 0.3 mL). The Schlenk flask was charged with 1 atm of N₂. The mixture was stirred at 90°C for 12 hours. After cooling to room temperature, the reaction was diluted with dichloromethane (15 mL), then filtered through a pad of Celite and washed by dichloromethane (10 mL). The filtrate was washed by water (15 mL), and the aqueous phase was extracted with dichloromethane (2×10 mL). The combined organic phase was then washed by brine (20 mL), and dried over anhydrous MgSO₄. Evaporation of organic solvent and purification by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 5:4:1 gave the corresponding product. **5a** was obtained as a white solid (81.8mg, 76% with diastereoselectivity(d.r.) > 20:1 estimated by ¹H NMR). ¹H NMR (400 MHz, CDCl₃) δ 10.67 (s, 1H), 8.84 – 8.67 (m, 2H), 8.08 (dd, J = 8.3, 1.7 Hz, 1H), 7.68 (dd, J = 5.5, 3.0 Hz, 2H), 7.56 (dd, J = 5.5, 3.0 Hz, 2H), 7.51 – 7.44 (m, 2H), 7.38 (dd, J = 8.3, 4.2 Hz, 1H), 7.00 (d, J = 9.6 Hz, 2H), 6.88 (d, J = 7.6 Hz, 1H), 5.40 (d, J = 11.8 Hz, 1H), 4.69 (ddd, J = 11.7, 10.3, 4.1 Hz, 1H), 4.05 – 3.84 (m, 2H), 3.13 (dd, J = 15.4, 4.1 Hz, 1H), 2.85 (dd, J = 15.4, 10.1 Hz, 1H), 2.06 (s, 3H), 2.01 (s, 3H), 1.07 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.11, 167.67, 166.42, 148.58, 138.67, 136.41, 136.25, 136.17, 135.40, 134.20, 134.05, 131.30, 129.66, 129.45, 127.89, 127.16, 125.37, 123.37, 122.24, 121.69, 117.14, 60.44, 59.50, 40.33, 39.44, 19.62, 19.29, 14.05; HRMS (EI) m/z: 535.2113 (M⁺); calc. for C₂₆H₂₃N₃O₇: 535.2107.

2*S*,3*S*-*N*-(5-Cyclohexyl-3-(3,4-dimethylphenyl)-2-phthalimidopentanoyl)-8-aminoquinoline (5b)

To a 30-mL resealable Schlenk flask was added **3ab** (89.9 mg, 0.2 mmol), Pd(OAc)₂ (4.5 mg, 0.02 mmol, 10 mol%), CyCH₂CH₂I (95.2 mg, 0.4 mmol, 2.0 eq), Ag₂CO₃ (82.7 mg, 0.3 mmol, 1.5 eq), p-ClC₆H₄SO₂NH₂ (11.5 mg, 0.06 mmol, 30 mol%), NaOCN (26.1 mg, 0.4 mmol, 2.0 eq), and 1,4-dioxane (2.0 mL). The Schlenk flask was charged with 1 atm of N₂. The mixture was stirred at 80°C for 20 hours. After cooling to room temperature, the reaction was diluted with dichloromethane (15 mL), then filtered through a pad of Celite and washed by dichloromethane (10 mL). The filtrate was washed by water (15 mL), and the aqueous phase was extracted with dichloromethane (2×10 mL). The combined organic phase was then washed by brine (20 mL), and dried over anhydrous MgSO₄. Evaporation of organic solvent and purification by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 7:2:1 gave the corresponding product. **5b** was obtained as a light yellow oil (46.0 mg, 41% with diastereoselectivity(d.r.) > 20:1 estimated by ¹H NMR) with **3ab** (45.2 mg, 50%) recovered. ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 10.77 (s, 1H), 8.90 (dd, J = 4.2, 1.6 \text{ Hz}, 1H),$ 8.81 (dd, J = 5.8, 3.2 Hz, 1H), 8.14 (dd, J = 8.3, 1.6 Hz, 1H), 7.69 (dd, J = 5.4, 3.1 Hz, 2H), 7.58 (dd, J = 5.4, 3.1 Hz, 3.1 J = 5.5, 3.0 Hz, 2H, 7.54 – 7.49 (m, 2H), 7.45 (dd, J = 8.3, 4.2 Hz, 1H), 6.98 – 6.91 (m, 2H), 6.89 (d, J = 7.5 Hz, 1H), 5.17 (d, J = 11.8 Hz, 1H), 4.08 (td, J = 11.6, 3.2 Hz, 1H), 2.08 (s, 3H), 2.05 (s, 3H), 2.03 - 1.96 (m, 1H), 1.80 - 1.71 (m, 1H), 1.63 - 1.43 (m, 6H), 1.20 - 1.08 (m, 3H), 1.04 - 0.92 (m, 3H), 0.79 - 0.59 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.95, 167.05, 148.72, 138.94, 137.50, 136.37, 136.28, 134.90, 134.56, 133.98, 131.50, 130.42, 129.65, 129.57, 128.06, 127.79, 127.37, 125.55, 123.39, 122.16, 121.74, 117.31, 61.92, 44.21, 37.52, 35.01, 33.73, 32.81, 31.27, 26.74, 26.49, 26.33, 19.75, 19.40; HRMS (EI) m/z: 559.2829 (M⁺); calc. for C₂₆H₂₃N₃O₇: 559.2835.

2*S*,3*S*-*N*-(3-(4-Chlorophenyl)-3-(3,4-dimethylphenyl)-2-phthalimidopropanoyl)-8-aminoquinoli ne (5c)

To a 30-mL resealable Schlenk flask was added **3ab** (80.3 mg, 0.2 mmol), Pd(OAc)₂ (4.5 mg, 0.02 mmol, 10 mol%), p-ClC₆H₄I (71.5 mg, 0.3 mmol, 1.5 eq), AgOAc (50.1 mg, 0.3 mmol, 1.5 eq), and ^tBuOH + DCE (1.2 mL + 0.3 mL). The Schlenk flask was charged with 1 atm of N₂. The mixture was stirred at 90°C for 12 hours. After cooling to room temperature, the reaction was diluted with dichloromethane (15 mL), then filtered through a pad of Celite and washed by dichloromethane (10 mL). The filtrate was washed by water (15 mL), and the aqueous phase was extracted with dichloromethane $(2 \times 10 \text{ mL})$. The combined organic phase was then washed by brine (20 mL), and dried over anhydrous MgSO₄. Evaporation of organic solvent and purification by column chromatography in petroleum ether: dichloromethane: ethyl acetate = 6:3:1 gave the corresponding product. 5c was obtained as a white solid (101.2 mg, 90% with diastereoselectivity(d.r.) > 20:1 estimated by ¹H NMR). ¹H NMR (400 MHz, CDCl₃) δ 10.12 (s, 1H), 8.69 (dd, J = 4.2, 1.5 Hz, 1H), 8.62 (dd, J = 6.0, 2.9 Hz, 1H), 8.03 (d, J = 8.3 Hz, 1H), 7.72 (dd, J = 5.3, 3.1 Hz, 2H), 7.61 – 7.49 (m, 4H), 7.44 – 7.37 (m, 2H), 7.36 (dd, *J* = 8.2, 4.1 Hz, 1H), 7.26 – 7.20 (m, 2H), 7.13 – 7.05 (m, 2H), 6.95 -6.88 (m, 1H), 5.92 (d, J = 12.4 Hz, 1H), 5.58 (d, J = 12.4 Hz, 1H), 2.08 (s, 3H), 2.03 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.93, 165.61, 148.26, 139.78, 138.42, 137.76, 136.99, 136.10, 135.41, 134.06, 133.98, 133.07, 131.50, 130.03, 129.57, 129.40, 129.19, 127.77, 127.13, 124.70, 123.50, 122.10, 121.65, 116.93, 58.79, 49.34, 19.79, 19.29; HRMS (EI) m/z: 559.1659 (M⁺); calc. for C₂₆H₂₃N₃O₇: 559.1663.

Chiral HPLC Data

DL-/L-1a

Chiral stationary phase: Chiralpack[®] AD-H, *n*-hexane/isopropanol = 55:45, 0.70mL/min Signal: VWD1 A, Wavelength = 220 nm

	Retention Time (min)	Area (mAU*s)	Area %	Height (mAU)	Height %
	16.944	18375.3	50.55	615.896	53.54
	19.388	17974.4	49.45	534.457	46.46
	Totals	36349.7	100.00	1150.353	100.00
Area%	% report for L-1a:				
	Retention Time (min)	Area (mAU*s)	Area %	Height (mAU)	Height %
	17.410	66352.8	100.00	2165.161	100.00
	Totals	36349.7	100.00	1150.353	100.00

DL-/L-3a

Chiral stationary phase: Chiralpack[®] AD, *n*-hexane/isopropanol = 55:45, 1.25mL/min Signal: VWD1 A, Wavelength = 220 nm

Area% report for DL-3a:

	Retention Time (min)	Area (mAU*s)	Area %	Height (mAU)	Height %
	23.811	6177.7	50.01	76.754	55.52
	29.991	6175.7	49.99	61.492	44.48
	Totals	12353.4	100.00	138.246	100.00
Area%	% report for L-3a:				
	Retention Time (min)	Area (mAU*s)	Area %	Height (mAU)	Height %
	23.832	26632.4	99.54	353.663	99.66
	30.005	124.3	0.46	1.210	0.34
	Totals	26756.7	100.00	354.873	100.00

DL-/L-3b

Chiral stationary phase: Chiralpack[®] AD-H, *n*-hexane/isopropanol = 55:45, 0.70mL/min Signal: VWD1 A, Wavelength = 220 nm

Area% report for DL-3b:

	Retention Time (min)	Area (mAU*s)	Area %	Height (mAU)	Height %
	23.473	11097.9	49.94	252.102	59.75
	34.154	11124.1	50.06	169.822	40.25
	Totals	22222.0	100.00	421.924	100.00
Area%	% report for L-3b:				
	Retention Time (min)	Area (mAU*s)	Area %	Height (mAU)	Height %
	23.556	53648.0	99.43	1207.898	99.57
	34.406	309.7	0.57	5.213	0.43
	Totals	53957.7	100.00	1213.111	100.00

DL-/L-3r

Chiral stationary phase: Chiralpack[®] AD, *n*-hexane/isopropanol = 55:45, 1.25mL/min Signal: VWD1 A, Wavelength = 220 nm

Area% report for DL-3r:

	Retention Time (min)	Area (mAU*s)	Area %	Height (mAU)	Height %
	16.663	6658.7	49.87	113.435	54.61
	21.795	6693.5	50.13	94.298	45.39
	Totals	13352.2	100.00	207.733	100.00
Area%	% report for L-3r:				
	Retention Time (min)	Area (mAU*s)	Area %	Height (mAU)	Height %
	15.898	99548.2	99.36	1904.991	99.45
	20.833	640.2	0.64	10.489	0.55
	Totals	100188.4	100.00	1915.481	100.00

DL-/L-3ab

Chiral stationary phase: Chiralpack[®] AD-H, *n*-hexane/isopropanol = 55:45, 0.70mL/min Signal: VWD1 A, Wavelength = 220 nm

incu /o report for DE cubi

	Retention Time (min)	Area (mAU*s)	Area %	Height (mAU)	Height %
	20.364	1088.39	51.13	30.278	57.01
	27.017	1040.22	48.87	22.832	42.99
	Totals	2128.61	100.00	53.11	100.00
Area%	% report for L-3ab:				
-	Retention Time (min)	Area (mAU*s)	Area %	Height (mAU)	Height %
-	20.086	30438.9	99.47	847.23	99.51
	26.691	162.6	0.53	4.17	0.49
_	Totals	30601.5	100.00	851.40	100.00

DL-/L-4a

Chiral stationary phase: Chiralpack[®] OJ-H, *n*-hexane/isopropanol = 80:20, 1.0mL/min Signal: VWD1 A, Wavelength = 220 nm

References

1. Chen, K.; Hu, F.; Zhang, S.Q.; Shi, B.F. Chem. Sci., 2013, 4, 3906.

100 90 80 f1 (ppm)

fl (ppm)

f1 (ppm)

f1 (ppm)

fl (ppm)

f1 (ppm)

fl (ppm)

fl (ppm)

fl (ppm)

100 90 80 f1 (ppm)

100 90 fl (ppm) 90

100 90 fl (ppm)

f1 (ppm)

90 f1 (ppm)