Electronic Supplementary Information

1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) as a novel and effective solvent

to facilely prepare cyclodextrin-assembled materials

Toshiyuki Kida, Shin-ichiro Sato, Hiroaki Yoshida, Ayumi Teragaki and Mitsuru Akashi*

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Japan

Contents

1.	Materials and methods	S2
2.	¹ H NMR spectra of CDs regenerated from the CD/HFIP solutions	S 3
3.	¹ H-NMR spectral changes observed for CDs in D ₂ O upon addition of HFIP	53-4
4.	¹ H-NMR titration curve for complex formation between β -CD and HFIP in D ₂ O	S 5
5.	Job plot for a complex between β -CD and HFIP in D ₂ O	S 5
6.	Photographs of CD/HFIP solutions and CD crystalline solids obtained from the HFIP solution	ons
		S6
7.	XRD patterns of CD solids obtained by the freeze-drying of CD/HPIC solutions	S7
8.	XRD patterns of the micrometer-sized CD beads formed by electrospinning of HFIP solution	IS
		S7
9.	SEM image of β -CD structures formed by electrospinning of a 10 wt% β -CD/HFIP solution	
		CO

1. Materials and methods

 α -, β - and γ -CD were purchased from Wako Pure Chemical Industries Ltd. (Japan) and dried overnight at 80 °C under a reduced pressure before use. 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), 1,1,1,3,3,3hexafluoro-2-methyl-2-propanol (HFMP) and 2,2,2-trifluoroethanol (TFE) were purchased from Wako Pure Chemical Industries Ltd. (Japan).

The solubilities of CDs in fluorinated alcohols were determined by visually estimating the saturation concentration through the addition of a prescribed amount of CD into a fluorinated alcohol (2 mL) and subsequent stirring for 1 h.

The ¹H-NMR titrations were performed at 25 °C in D₂O. A solution of the CD molecule (0.6 mL, 1.0 mM) was titrated in a NMR tube with increasing amounts of HFIP stock solution (0.5 mL, 150 mM) as follows (in μ L): 0, 2.0, 4.0, 8.0, 40, 60, 80. The titration curve (changes in the chemical shift of the β -CD proton ($\Delta\delta$) against the HFIP/ β -CD concentration ratio) was analyzed by a non-linear least-squares curve fitting method to generate an association constant of the β -CD-HFIP complex. A Job plot was carried out by monitoring the changes in the chemical shift of the β -CD proton ($\Delta\delta$) in a series of solutions with varying β -CD/HFIP ratios but the total concentration of β -CD and HFIP being kept constant (2.0 mM). The relative concentration of the β -CD-HFIP complex estimated from the $\Delta\delta \cdot [\beta$ -CD] value was plotted against ([β -CD]/{[β -CD] + [HFIP]}).

Electrospinning was performed with a Nanofiber Electrospinning Unit (Kato Tech Co., Ltd., Japan). The solution was pumped through a single-use blunt-end 18-gauge cannula at a flow rate of 0.16 mL/min, and the collection distance between the cannula and the rotating drum target (diameter: 10 cm, width: 33 cm) was 10 cm. The drum substrate was covered with aluminum foil and rotated at a rate of 2.0 m/min during the electrospinning of the solutions. A voltage of 25 kV was applied between the cannula and the substrate. The viscosities of the CD/HFIP solutions at different CD concentrations were measured by a viscometer, TOKIMEC TV-20 (Toki Sangyo, Japan).

The morphologies and X-ray diffraction (XRD) patterns of the CD structures obtained via electrospinning were measured by a scanning electron microscope (SEM) (JSF-6701F, JEOL Ltd., Japan) and a Rigaku X-ray diffractometer (Rigaku, Japan), respectively.

2. ¹H NMR spectra of CDs regenerated from the CD/HFIP solutions

Fig. S1 ¹H NMR spectra of (a) α -, (b) β - and (c) γ -CD regenerated by evaporating HFIP from the corresponding HFIP solutions (solvent: D₂O, CD concentration: 1.0×10⁻³ mol/L).

3. ¹H-NMR spectral changes observed for CDs upon addition of HFIP

Fig. S2 ¹H-NMR spectral changes observed for α -CD (1.0×10⁻³ mol/L) upon addition of HFIP in D₂O at 25 °C.

Fig. S3 ¹H-NMR spectral changes observed for β -CD (1.0×10⁻³ mol/L) upon addition of HFIP in D₂O at 25 °C.

Fig. S4 ¹H-NMR spectral changes observed for γ -CD (1.0×10⁻³ mol/L) upon addition of HFIP in D₂O at 25 °C.

4. ¹H-NMR titration curve for complex formation between β -CD and HFIP in D₂O

Fig. S5 ¹H-NMR titration curve for complex formation between β -CD and HFIP in D₂O. [β -CD] = 1.0×10⁻³ mol/L. At 25 °C. The H₃ proton signal of β -CD at 3.98 ppm was used for the titration.

5. Job plot for a complex between β -CD and HFIP in D₂O

Fig. S6 Job plot for a complex between β -CD and HFIP in D₂O at 25 °C.

6. Photographs of CD/HFIP solutions and CD crystalline solids obtained from the HFIP solutions

Fig. S7 Photographs of HFIP solutions of (a) α -, (b) β - and (c) γ -CD (0.1 mol/L).

Fig. S8 Photographs of (a) α -, (b) β - and (c) γ -CD crystalline solids obtained after drying the HFIP solutions on a glass plate at ambient temperature.

7. XRD patterns of CD solids obtained by the freeze-drying of CD/HPIC solutions

Fig. S9 XRD patterns of (a) α -, (b) β - and (c) γ -CD solids obtained by the freeze-drying of HFIP solutions (0.1 mol/L).

8. XRD patterns of the micrometer-sized CD beads formed by electrospinning of HFIP solutions

Fig. S10 XRD patterns of (a) α -, (b) β - and (c) γ -CD beads formed by electrospinning of HFIP solutions (2.5 wt%).

9. SEM image of β -CD structures formed by electrospinning of a 10 wt% β -CD/HFIP solution

Fig. S11 SEM image of β -CD structures formed by electrospinning of a β -CD/HFIP solution (10 wt%).