Electronic Supplementary Information

Amide and N-oxide functionalization of T-shaped ligand for isoreticular MOFs with giant enhancement in CO₂ capture and separation

Ying Xiong, Yan-Zhong Fan, Rui Yang, Sha Chen, Mei Pan, Ji-Jun Jiang*, and Cheng-Yong Su*

MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials (LIFM), School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.

Table of contents

- 1. General Procedures, Materials, and Instrumentation
- 2. Synthesis of Ligands and Complexes
- 3. Single-crystal Analyses
- 4. TG, IR and PXRD Characterization
- 5. Sorption Property and Selectivity Calculation
- 6. Sorption Simulation
- 7. References

1. Materials and physical measurements

All chemicals were obtained from commercial sources and directly utilized without further purification. Solid-state IR spectra were recorded using Nicolet/Nexus-670 FT-IR spectrometer in the region of 4000–400 cm⁻¹ using KBr pellets. Mass spectra (MS) were recorded on a JEOL accuTOF CS JMS-T100CS mass spectrometer. Elemental analyses were performed by Perkin-Elmer 240 elemental analyzer. Powder X-ray diffraction (XRD) measurements were performed on a Bruker D8 ADVANCE diffractometer at 40 kV and 40 mA with a Cu target tube and a graphite monochromator. Gas adsorption isotherms for pressures in the range of 0-1.0 bar were obtained by a volumetric method using a quantachrome autosorb-iQ2-MP gas adsorption analyzer. Gas adsorption measurements were measured with a Varian Mercury Plus 300 MHz spectrometer.Thermogravimetric analysis (TGA) was performed on a NETZSCH TG209 system in nitrogen and under 1 atm of pressure at a heating rate of 10 °C min⁻¹.

2. Synthesis of ligands and complexes

5-(Isonicotinoylamino)isophthalic acid(H₂INIA)

The **H**₂**INIA**ligand was prepared according to the literature.¹ Yield: 60%. ¹H-NMR (300 MHz, D_6 -DMSO, 25°C): $\delta = 10.80(s, 1H)$, 8.79-8.77(d, 2H, J=6.0 Hz), 8.64 (s, 2H), 8.22(s, 1H), 7.89-7.87(d, 2H, J=6.0).

5-(Isonicotinoylamino N-oxide)isophthalic acid(H₂INOIA)

The **H**₂**INOIA** ligand was prepared according to the literature¹by changing the isonicotinic acid withisonicotinic acid N-oxide.Yield: 75.5%. ¹H NMR (300 MHz, D_6 -DMSO, 25°C): δ =10.69(s, 1H), 8.62 (s, 2H), 8.38-8.36 (d, 2H, J=6.0 Hz), 8.20(s, 1H), 8.00-7.98(d, 2H, J=6.0 Hz).

Synthesis of [Cu(INIA)] 2.5DMF 2H₂O (LIFM-10(Cu))

A mixture of 0.2 mmol of $Cu(NO_3)_2$ and 0.1 mmol of H_2INIA was dissolved in 8 mL of DMF,and heated at 60 °C for 5 min to result in blue floccules. Then the system was added 2 drops of HNO₃to give green clear solvent. The solvent was transferred to a 15 mL Teflon-lined stainless steel vessel and heated at 80 °C for 60h, then cooled to 30 °C at a rate of 10 °C/100 min. The green powder formed were collected by filtration and washed by DMF for

several times. Yield:80.4 %. IR (KBr, cm⁻¹): 3436(s), 1673(m), 1617(s),1585(m), 1564(s), 1416(m), 1383(s), 1286(s), 779(w), 722(w). Elemental analysis (% calc/found): C: 45.58/45.33, H: 5.25/5.37, N: 11.13/11.18.

Synthesis [Cu(INOIA)]·2DMF·3H₂O (LIFM-11(Cu))

A mixture of 0.2 mmol of Cu(NO₃)₂ and 0.1 mmol of H₂INOIA was dissolved in 8 mL of DMF, and heated in a 15 mL Teflon-lined stainless steel vessel at 80 °C for 60h, then cooled to 30 °C at a rate of 10 °C/100 min. The green powder formed were collected by filtration and washed by DMF for several times.Yield:78.3%. IR (KBr, cm⁻¹): 3436(m), 1713(m), 1672(m), 1636(m),1585(m), 1563(m), 1489(w), 1434(m), 1374(s), 1292(w), 1228(m), 1095(w), 865(w), 774(w), 729(w), 589(w), 487(w). Elemental analysis (% calc/found): C: 42.04/42.59, H: 5.16/5.00, N: 11.38/9.93.Single crystals of LIFM-11(Cu) were grown as following: 0.2 mmol of Cu(NO₃)₂ and 0.1 mmol of H₂INOIA was added to DMF (5 mL) to lead to green precipitation. Dissolving the precipitant with one drop of HNO₃(16 mmol/L), then transfered the green liquid to test tube and kept it still. Green single crystals produced after two weeks. Yield: 25.3%.

3. Crystal structure determination

Single crystals of LIFM-10(Cu) and LIFM-11(Cu) were carefully picked and coated in paratone oil, attached to a glass silk inserted in a stainless steel stick, then quickly transferred to the Agilent Gemini S Ultra CCD Diffractometerwith the Enhance X-ray Source of Cu radiation ($\lambda = 1.54178$ Å) using the ω - ϕ scan technique. Structural solution and refinement against F^2 were carried out using the SHELXL programs.² Hydrogen atoms were placed in geometrically calculated positions and included in therefinement process using riding model with isotropic thermal parameters: $U_{iso}(H) = 1.2U_{eq}(-CH)$. For all structures the contribution of heavily disordered solvent molecules was treated by the Squeeze procedure implemented in Platon.³The pyridine ring and amido group within framework displayed orientationdisorder, therefore, they were located and refined with restraints (DFIX, FLAT, ISOR and SIMU) to have satisfactory displacement parameters. Crystal and refinementparameters are listed in table S1. CCDC 1012810-1012811.

Compound	LIFM-10(Cu)	LIFM-11(Cu)
Formula	$C_{14}H_8N_2O_5Cu$	C ₁₄ H ₈ N ₂ O ₆ Cu
Formula weight	347.76	363.76
<i>T</i> (K)	150.15	150.15
Crystal system	Trigonal	Trigonal
Space group	R3	R3
<i>a</i> (Å)	18.9171(15)	18.569(3)
<i>b</i> (Å)	18.9171(15)	18.569(3)
<i>c</i> (Å)	37.995(5)	40.907(8)
α (°)	90.00	90.00
β (°)	90.00	90.00
γ (°)	120.00	120.00
$V(\text{\AA}^3)$	11775(2)	12215(3)
Ζ	18	18
$D_{\rm calc}({\rm g/cm}^3)$	0.883	0.890
μ/mm^{-1}	1.315	1.312
R _{int}	0.0477	0.0741
R_1	0.0895	0.0761
wR_2	0.2516	0.2375
S	1.039	0.999

 Table S1. Crystallographic data for LIFM-10(Cu) and LIFM-11(Cu)

LIFM-10(Cu)					
Cu1-N1A	2.194(9)	Cu1-O2#2	1.954(4)		
Cu1-N1B	2.182(16)	Cu1-O3#1	1.943(4)		
Cu1-O4#4	1.976(4)	Cu1-O5#3	1.967(4)		
N(1B)-Cu(1)-N(1A)	9.5(7)	O(2)#2-Cu(1)-N(1A)	92.2(3)		
O(4)#4-Cu(1)-N(1A)	86.6(3)	O(3)#1-Cu(1)-N(1A)	100.7(3)		
O(5)#3-Cu(1)-N(1A)	105.8(3)	O(4)#4-Cu(1)-N(1B)	91.9(5)		
O(2)#2-Cu(1)-N(1B)	84.4(6)	O(2)#2-Cu(1)-N(1B)	84.4(6)		
O(5)#3-Cu(1)-O(4)#4	167.57(17)	O(2)#2-Cu(1)-O(4)#4	89.5(2)		
O(3)#1-Cu(1)-N(1B)	108.7(6)	O(3)#1-Cu(1)-O(2)#2	166.85(17)		
O(3)#1-Cu(1)-O(5)#3	89.39(19)	O(3)#1-Cu(1)-O(4)#4	89.1(2)		
O(2)#2-Cu(1)-O(5)#3	89.21(19)				
Symmetry code for LI	FM-10(Cu), #1, -y+4/	3,x-y+2/3,z-1/3; #2, y-1/3	s,-x+y+1/3,-z+1/3;		
#3, -x+y+1/3,-x+2/3,z-	1/3; #4 x-y+2/3,x+1/3	,-z+1/3.			
LIFM-11(Cu)					
Cu(1)-O(5)#1	1.971(3)	Cu(1)-O(3)#3	1.975(3)		
Cu(1)-O(4)#2	1.973(3)	Cu(1)-O(6)#4	1.978(3)		
Cu(1)-O(1)	2.119(3)				
O(5)#1-Cu(1)-O(4)#2	90.39(16)	O(5)#1-Cu(1)-O(6)#4	168.63(13)		
O(5)#1-Cu(1)-O(3)#3	88.64(17)	O(4)#2-Cu(1)-O(6)#4	88.67(15)		
O(4)#2-Cu(1)-O(3)#3	168.63(13)	O(3)#3-Cu(1)-O(6)#4	90.05(16)		
O(4)#2-Cu(1)-O(1)	95.33(14)	O(5)#1-Cu(1)-O(1)	95.51(15)		
O(3)#3-Cu(1)-O(1)	96.04(15)	O(6)#4-Cu(1)-O(1)	95.86(14)		

Table S2. Selected bond lengths (Å) and angles (°) for LIFM-10(Cu) and LIFM-11(Cu)

Symmetry code for **LIFM-11(Cu)**, #1, x-y-1/3,x-2/3,-z+1/3; #2, -y+1/3,x-y-1/3,z-1/3; #3, y+2/3,-x+y+1/3,-z+1/3; #4, -x+y+4/3,-x+2/3,z-1/3.

Figure S1.Metal binding modes of pyridyl donor and pyridyl N-oxide donor (left) showing preferential interactions with CO₂, and their coordination behaviors in **LIFM-10(Cu)** and **LIFM-11(Cu)** (right).

Figure S2.Top and side view of the 3D framework of ScD_{0.33}topology in LIFM-10(Cu) and LIFM-11(Cu) showing hourglass-shapedporous channels.Balls in different colorsshow the 6-nuclear Cu-cage and 12-nuclear Cu-cage inside the channels.

4. TG, IR and PXRD Characterization

Figure S3.FT-IR spectrums of LIFM-10(Cu) and LIFM-11(Cu).

Figure S4. TGA curves of **LIFM-10(Cu)** and **LIFM-11(Cu)**. For **LIFM-10**: 38.66 % (Cal. 38.50 %) weight loss is expected for 2.5 DMF and 2 H₂O molecules;for**LIFM-11**: 35.54 % (Cal. 35.72 %) weight loss is expected for**LIFM-11(Cu)** DMF and 3 H₂O molecules.

Figure S5. TGA curves of activatedLIFM-10(Cu) and LIFM-11(Cu).

Figure S7. Variable-Temperaturedependent PXRD patterns of LIFM-11(Cu).

Figure S8. PXRD patterns of LIFM-10(Cu): simulated from single-crystal data, as-synthesized sample and activated sample.

Figure S9. PXRD patterns of LIFM-11(Cu): simulated from single-crystal data, as-synthesized sample and activated sample.

5. Sorption Property and Selectivity Calculation

Figure S10.N₂ (77K) sorption isotherms of **LIFM-10(Cu)** and **LIFM-11(Cu)**. Solid symbols: adsorption, open symbols: desorption.

Figure S11.CO₂ (273, 298 and 308 K) sorption isotherms of **LIFM-10(Cu)**. Solid symbols: adsorption, open symbols: desorption.

Figure S12.CO₂ (273, 298 and 308 K) sorption isotherms of **LIFM-11(Cu)**. Solid symbols: adsorption, open symbols: desorption.

Calculations of adsorption isosteric heats

The isosteric heats of CO₂ adsorption for LIFM-10(Cu) and LIFM-11(Cu) were calculated from the sorption data measured at 273, 298, 308 K by the virial fitting method. A virial-type expression (eq. 1) which is composed of parameters a_i and b_i is used. In eq. 1, *P* is the pressure in torr, *N* is the adsorbed amount in mmol·g⁻¹, *T* is the temperature in Kelvin, a_i and b_i are the virial coefficients which are independent of temperature, and *m* and *n* are the numbers of coefficients required to adequately describe the isotherms.

$$\ln P = \ln N + \frac{1}{T} \sum_{i=0}^{m} a_i N^i + \sum_{i=0}^{n} b_i N^i \qquad \text{eq. 1}$$

The values of the virial coefficients a_0 through a_m were then applied to calculate the

isosteric heat of adsorption (eq 2). In eq. 2, Q_{st} is the coverage-dependent isosteric heat of adsorption and *R* is the universal gas constant.⁴

$$Q_{st} = -R \sum_{i=0}^{m} a_i N^i \qquad \text{eq. 2}$$

Figure S13. Virial fitting (lines) of the CO₂ adsorption isotherms (points) of **LIFM-10(Cu)** measured at 273 K, 298 K, and 308 K

Figure S14. Virial fitting (lines) of the CO₂ adsorption isotherms (points) of **LIFM-11(Cu)** measured at 273 K, 298 K, and 308 K.

Compound	<i>Q</i> st (kJ	Functionality type	Reference
(common name)	/mol)		
Cu-BTTri-mmen	96	amines	5
Cu-BTTri-en	90	amines	6
Zn(DCTP)(DABCO)	77	amines	7
MIL-100(Cr)	62	Open metal sites	8
TBA@bio-MOF-1	55	amines	9
LIFM-11(Cu)	53	Amide and N-oxide	This work
NH ₂ -MIL-53(Al)	50	amines	10
CAU-1	48	amines	11
Mg-MOF-74, CPO-27-Mg	47	Open metal sites	12
bio-MOF-11	45	amines	13
MIL-101(Cr)	44	Open metal sites	8
Ni-MOF-74	42	Open metal sites	14
LIFM-10(Cu)	29	Amide	This work

Table S3Zero-Coverage isosteric heat of CO_2 adsorption of MOFs

Calculations of adsorption selectivity

Ideal adsorbed solution theory(IAST) developed by Myers and Prausnitz¹⁵ was used to estimate the selectivities of CO₂/N₂ (15:85), CO₂/CO (50:50) and CO₂/CH₄ (50:50) mixture compositions from their respective single-component isotherms. The CO₂, N₂ and CH₄ isotherms were fitted to the single-site Langmuir equation and the CO isotherms to the dual-sites Langmuir equation. Selectivities were then calculated according to eq. 3, where x_i is the mole fraction of component *i* in the adsorbed phase and y_i is the mole fraction of component *i* in the bulk.

$$S = \frac{x_i y_i}{x_j y_i} \qquad \text{eq. 3}$$

Adsorption selectivities can also be calculated by a virial fitting method based on the following equation:

$$\ln N/P = A_0 + A_1 N + A_2 N^2 + A_3 N^3 + \dots \qquad \text{eq. 4}$$

In eq. 4, *P* is pressure, *N* is amount adsorbed and A_0 , A_1 etc. present virial coefficients. A_0 is related to adsorbate–adsorbent interactions, and A_1 describes adsorbate–adsorbate interactions. The Henry's Law constant (K_H) is equal to exp(A_0).

The Henry's Law selectivity for gas component *i* over *j* is calculated based on eq. 5^{16}

$$S_{ii} = K_{Hi}/K_{Hi}$$
 eq. 5

Figure S15. The virial graphs for adsorption of CO₂ on LIFM-10(Cu).

Figure S16. The virial graphs for adsorption of CH₄ on LIFM-10(Cu).

Figure S17. The virial graphs for adsorption of CO on LIFM-10(Cu).

Figure S18. The virial graphs for adsorption of N₂ on LIFM-10(Cu).

Figure S19. The virial graphs for adsorption of CO₂ on LIFM-11(Cu).

Figure S20. The virial graphs for adsorption of CH₄ on LIFM-11(Cu).

Figure S21. The virial graphs for adsorption of CO on LIFM-11(Cu).

Figure S22. The virial graphs for adsorption of N₂ on LIFM-11(Cu).

Table S4Virial graph analyses data for LIFM-10(Cu) and its CO_2/CH_4 , CO_2/CO and CO_2/N_2 separation selectivities at 298 K

Adso rbate	T/K	$K_{\rm H}$ /mol g ⁻¹ torr ⁻¹ ×10 ⁻³	$a_0/\ln(\text{mol g}^{-1} \text{ torr}^{-1})$	b ₀ /ln(mol g ⁻¹ torr ⁻¹)	S _{ij}
CO_2	298	0.0518	-9.868±0.003	-0.619±0.020	
CH_4	298	0.0104	-11.472±0.001	-0.127±0.004	4.98
СО	298	0.00890	-11.629±0.010	-30.842±1.864	5.82
N_2	298	0.00283	-12.774±0.009	-0.642±0.087	18.30

^{*a*}The Henry's law selectivity for gas component CO₂ over *i* is calculated based on the equation $S_{ij} = K_{\rm H}({\rm CO}_2)/K_{\rm H}(i)$.

Table S5Virialgraph analyses data forLIFM-11(Cu) and its CO_2/CH_4 , CO_2/CO and CO_2/N_2 separation selectivities at 298 K

Adso rbate	T/K	$K_{\rm H}$ /mol g ⁻¹ torr ⁻¹ ×10 ⁻³	$a_0/ln(mol g^{-1} torr^{-1})$	b ₀ /ln(mol g ⁻¹ torr ⁻¹)	\mathbf{S}_{ij}
CO_2	298	0.177	-8.638±0.007	-0.984±0.019	
CH_4	298	0.0102	-11.491±0.005	-0.215±0.011	17.35
СО	298	0.0342	-10.284±0.021	-227.412±11.445	5.18
N_2	298	0.00275	-12.803±0.008	-7.594±0.413	64.36

^{*a*}The Henry's law selectivity for gas component CO₂ over *i* is calculated based on the equation S_{ij} =

 $K_{\rm H}({\rm CO}_2)/{\rm K}_{\rm H}(i).$

6. Sorption Simulation

DFT-ESP charge

Two MOFs got from single-crystal data were intercepted to discrete paddle-wheel clusters, calculating their ESP (electrostatics potential) charges.¹⁷The density functional theory (DFT) method was employed using the B3LYP hybrid functional.¹⁸ Clusters were calculated with a basis set consisting of LANL2DZ basis set¹⁹ for Cu, while the 6-31+G* basis set for C, H, O and N. All the calculation was performed with Gaussian 09²⁰ package. The ESP charges were signed beside the atoms of ligands in Fig S23.

Figure S23. ESP charges and structure of ligands (LIFM-10(Cu) and LIFM-11(Cu))

Annealing simulation method

Simulated annealing techniques²¹ were used to search the adsorption sites by Monte Carlo method. Each simulation is composed of 10 cycles and each cycle consists of 3×10^6 steps. In each cycle, the system was heated up to 627 K and then slowly cooled down to 298 K. The information of thermo-stable geometry structure would be gained as the unstable sites were eliminated by the high temperature.

Figure S24. Inside view of voids in LIFM-10(Cu)(left)with pyridylamino and carboxylate groups and LIFM-11(Cu)(right) with N-oxide groups on the pore surface.

Figure S26. Preferred CO_2 adsorption site studies by annealing simulation method of LIFM-10(Cu). Two main possible positions around the carboxylate groups and benzene rings are obtained.

Figure S27. Preferred CO_2 adsorption site studies by annealing simulation method of LIFM-11(Cu), showing different directions of mainly preferred position of CO_2 .

Figure S28. PXRD patterns for LIFM-10(Cu) immersed in water.

Figure S29. PXRD patterns for LIFM-11(Cu) immersed in water.

7. Reference

- J. J. Ferreiro, J. G. de la Campa, A. E. Lozano, J. de Abajo, *Journal of Polymer Science Part A: Polymer Chemistry*, 2005, **43** (21), 5300-5311.
- 2 G. M. Sheldrick, SHELX 97, Program for Crystal Structure Solution and Refinement, Göttingen University, 1997.
- 3 (a) V. Blatov, A. *IUCr Comp. Comm. Newslett.*, 2006, 7, 4-38. (b) V. A. Blatova, D. M. Proserpio, *ActaCrystallogr*, 2009, A65, 202–212.
- 4 L. Czepirski, J. Jagiello, Chem. Eng. Sci., 1989, 44, 797-801.
- 5 A. L. Myers, J. M. Prausnitz, AIChE Journal, 1965, 11, 121-127.
- 6 J. Jagiello, T. J. Bandosz, K. Putyera, J. A. Schwarz, J. Chem. Eng. Data, 1995, 40, 1288-1292.
- 7 T. M. McDonald, D. M. D'Alessandro, R. Krishna, J. R. Long, *Chem. Sci.*, **2011**, **2**, 2022-2028.
- A. Demessence, D. M. D'Alessandro, M. L. Foo, J. R. Long, J. Am. Chem. Soc., 2009, 131, 8784-8786.
- 9 J. M. Gu, T.H. Kwon, J. H. Park, S. Huh, Dalton Trans., 2010, 39, 5608-5610.
- 10 P. L. Llewellyn, S. Bourrelly, C. Serre, A. Vimont, M. Daturi, L. Hamon, G. D. Weireld, J.-S. Chang, D.-Y. Hong, Y. K. Hwang, S. H. Jhung, G. Ferey, *Langmuir*, 2008, 24, 7245-7250.
- 11 J. An, N. L. Rosi, J. Am. Chem. Soc., 2010, 132, 5578-5579.
- 12 B. Arstad, H. Fjellv_ag, K. O. Kongshaug, O. Swang, R. Blom, *Adsorption*, 2008, 14, 755-762.
- 13 X. Si, C. Jiao, F. Li, J. Zhang, S. Wang, S. Liu, Z. Li, L. Sun, F. Xu, Z. Gabelica, C. S Chick, *Energy Environ. Sci.*, 2011, 4, 4522-4527.
- 14 S. R. Caskey, A. G. Wong-Foy, A. J.Matzger, J. Am. Chem. Soc., 2008, 130, 10870-10871.
- 15 J. An, S. J. Geib, N. Rosi, J. Am. Chem. Soc., 2009, 131, 8376-8377.
- 16 P. D. C. Dietzel, R. E. Johnsen, H. Fjellvag, S. Bordiga, E. Groppo, S. Chavan, R.Blom, *Chem. Commun.*, 2008, 5125-5127.

- 17 L. E. Chirlian, M. M. Francl, J. Chem. Phys., 1985, 82, 3235-3264.
- (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652. (b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B., 1981, 23, 5048-5079. (c) B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett., 1989, 157, 200-206.
- 19 W. R. Wadt, P. J. Hay, J. CHem. Phys., 1985, 82, 299-310.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr. J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, *Gaussian, Inc., Wallingford CT*, 2009.
- 21 S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, *Science*, 1983, 220, 671-680.