Potential-controlled rotaxane molecular shuttles based on electron-deficient macrocyclic complexes

M. Woźny, J. Pawłowska, K. M. Tomczyk, R. Bilewicz and B. Korybut-Daszkiewicz

SUPPORTING INFORMATION

Synthesis

Acetonitrile (HPLC grade, purchased from POCh) was dried over P_2O_5 and distilled. Dibenzo-24-crown-8 (TCI Chemicals, >98%) was dried and kept over P_2O_5 *in vacuo*. All other solvents and reagents were reagent grade or better and used without purification: 1,4diaminobutane (TCI Chemicals, >98.0%); ammonium hexafluorophosphate (Apollo Scientific, 99.8%); hexafluorophosphoric acid ca. 60% aqueosu solution (ABCR); *n*butylamine (Aldrich, >99%); *N*,*N*-dimethylformamide puriss, absolute, over molecular sieve (Aldrich); phosphorous(V) oxide (ABCR, 98%); *p*-xylylenediamine (TCI Chemicals, >99.0%); silica gel 60 silanized for column chromatography (0.063-0.200 mm, Merck); triethylamine (ABCR, 99%); trifluoromethanesulfonic acid (TCI Chemicals, >98.0%).

Equipment: elemental analyzer PERKIN-ELMER type 240; mass spectrometer MALDI Synapt G2-S (m/z peaks listed according to decreasing peak intensity); nuclear magnetic resonance spectrometers Varian VNMRS 500 and Varian Mercury 400 (chemical shifts reported in reference to solvent residual peak (1.94 ppm (¹H) and 118.26 ppm (¹³C) for acetonitrile)); potentiostat Autolab (ECO Chemie, Netherlands).

Compounds **1Ni**, **1Cu** (a mixed salts of dicationic TAM complex and PF_6^- and $CF_3SO_3^-$ counterions in 1:1 ratio), and complex **2Ni** were synthesized according to known procedures (see M. Woźny et al., *Chem. Sci.*, **2014**, 5, 2836.). The remaining compounds were synthesized as follows:

2Cu: 80.2 mg of complex **1Cu** (0.110 mmol) was dissolved in 3 mL of anhydrous CH₃CN and 1.1 eq. of *n*-butylamine (11.9 μ L) was added. The mixture was left for 15 minutes. Then 1 g of silanized silica gel was added and the suspension was evaporated to dryness. The solid was transferred to the top of silanized silica gel column and eluted with a mixture containing 10 g NH₄PF₆, 550 mL H₂O and 450 mL CH₃CN. The main, orange-red fraction was collected and concentrated. The precipitate formed during evaporation of CH₃CN was filtered, washed with 5 × 3 mL H₂O and dried *in vacuo* over P₂O₅. Yield 41.3 mg (49%). *Anal.* Calc. for C₂₄H₄₂CuN₆·2PF₆ (768.1): C 37.53, H 5.51, N 10.94%; found C 37.50, H 5.31, N 10.75%. TOF MS ES+ (CH₃CN, *m/z*): 238.6 [C₂₄H₄₂CuN₆]²⁺, 476.3 [C₂₄H₄₁CuN₆]⁺. ¹H NMR (400 MHz, CD₃CN) δ 0.87, 1.07, 1.22, 1.52 and 1.65 (5 × br, CH₂CH₂CH₃).

3Ni: To 581.0 mg of complex 1Ni (0.801 mmol) dissolved in 5 mL of anhydrous CH₃CN, a solution of 1 eq. of trifluoromethanesulfonic acid (70.9 μ L) and 1 eq. of putrescine (80.5 mg) in 3 mL of CH₃CN was added. Each of the mixtures was stirred for 5 minutes, followed by the addition of 2 g of silanized silica gel. The suspension was evaporated to dryness and solids transferred to the top of the silanized silica gel column. A solution of 2 g NH₄PF₆ and 15 µL of 60% HPF_{6aq} in 100 mL of H₂O was passed through, followed by 300 mL of distilled water. The title compound was eluted with 10% CH₃CN in H₂O, and collected as the first yellowcolored, broad band. The eluate was evaporated to dryness and resulting solid was further dried in vacuo, over P₂O₅. Yield: 324.6 mg (43%). Anal. Calc. for C₂₄H₄₄N₇Ni·3PF₆·H₂O (**3Ni**·H₂O) (942.3): C 30.59, H 4.92, N 10.41%; found C 30.43, H 4.84, N 10.28%. TOF MS ES⁺ (CH₃CN, m/z): 486.2 [C₂₄H₄₂N₇Ni]⁺. ¹H NMR (500 MHz, CD₃CN) δ 0.97 (comp. 2 × 3 H, CH₃); 1.34, 1.42 (2 × m, 2 × 2 H, CH₂CH₃); 1.69 (comp. 8 H, CH₂ β to N); 2.98 (t, J = 7.3 Hz, 2 H, CH₂NH₃⁺); 3.47-3.62 (comp, 14 H, NCH₂); 5.60-7.20 (br, 4 H, NH₃⁺, NH); 7.53 (s, 2 H), 7.66 (br, 3 H), 8.11 (br, 1 H) (CH=N, =CHN). ¹³C NMR (125 MHz, CD₃CN) δ 13.8, 13.8 (CH₃); 20.1, 20.4 (<u>C</u>H₂CH₃); 24.3, 27.0, 29.2, 31.3 (CH₂ β to N); 40.6 (CH₂NH₃⁺); 50.7, 52.6, 59.3, 60.1, 61.3 (NCH₂); 103.9, 104.4 (<u>C</u>=CHN); 155.3, 160.7 (CH=N); 162.4, 164.1 (=CHN).

3'Ni: To 460.7 mg of complex **1Ni** (0.635 mmol) dissolved in 4 mL of anhydrous CH₃CN, a solution of 1 eq. of trifluoromethanesulfonic acid (56.2 µL) and 1 eq. of *p*-xylylenediamine (86.5 mg) in 3 mL of degassed and warm DMF was added. The mixture was stirred for 5 min, and then treated analogously to the procedure described for complex **3Ni**. Yield: 213.8 mg (34%). *Anal*. Calc. for C₂₈H₄₄N₇Ni·3PF₆·H₂O (990.3): C 33.96, H 4.68, N 9.90%; found C 33.87, H 4.50, N 9.83%. TOF MS ES⁺ (CH₃CN, *m/z*): 536.3 [C₂₈H₄₄N₇Ni]⁺, 268.7 [C₂₈H₄₅N₇Ni]²⁺. ¹H NMR (400 MHz, CD₃CN) δ 0.97 (comp, 2 × 3 H, CH₃); 1.34, 1.42 (2 × m, 2 × 2 H, CH₂CH₃); 1.65-1.78 (comp, 2 × 2 H, CH₂ β to N); 3.50-3.63 (comp, 12 H, NCH₂CH₂N and NCH₂(CH₂)₂CH₃); 4.15 (q, *J* = 6.0 Hz, 2 H, ArCH₂NH₃⁺); 4.69 (d, *J* = 6.0 Hz, 2 H, ArCH₂NH₃⁺); 5.66 (br, 3 H, NH₃⁺); 7.45 (comp, 4 H, H_{Ar}); 7.49, 7.53, 7.56, 7.67 br, 7.78, 7.81, 8.07 (6 H, =CHN and CH=N); 8.54 (br, 1 H, NH). ¹³C NMR (100 MHz, CD₃CN) δ 13.8 (CH₃); 20.1, 20.5 (CH₂CH₃); 29.2, 31.3 (CH₂ β to N); 44.3 (CH₂NH₃⁺); 52.6, 54.4, 59.4, 60.3, 61.4 (NCH₂); 103.9, 104.8 (C=CHN); 129.6, 130.8 (C_{sp2}H in benzene ring); 133.2, 138.1 (C_{sp2}C in benzene ring); 155.4, 161.0 (CH=N); 162.5, 164.1 (=CHN).

4CuNi: 32.0 mg of monohydrate **3Ni**·H₂O (0.034 mmol) was dehydrated by triple dissolution/evaporation (3×5 mL of anhydrous CH₃CN). The remaining solid, **3Ni**, was then dissolved in 0.7 mL of CH₃CN and poured into the solution of 1 eq. of **1Cu** (24.9 mg) in 0.3 mL of CH₃CN, followed by the addition of a solution of 2 eq. of triethylamine (9.5 µL) in 0.5 mL of CH₃CN. The mixture was stirred for 30 minutes and a solution of 100 mg NH₄PF₆ in 20 mL H₂O was added. CH₃CN was evaporated, precipitate filtered and dissolved again in 5 mL of CH₃CN. Then, 0.5 g of silanized silica gel 60 (Merck) was added, the suspension was evaporated to dryness, solids transferred to the top of the silanized silica gel column, and eluted with a mixture of 1 g NH₄PF₆ : 100 mL H₂O : 150 mL CH₃CN. The first and main, orange-colored fraction was collected. The precipitate formed during evaporation of CH₃CN was filtered, washed with 2 × 5 mL of H₂O, 3 mL of CH₃OH, 3 mL Et₂O, and dried *in vacuo*

over P₂O₅. Yield 32.1 mg (64%). Anal. Calc. for C₄₄H₇₄CuN₁₂Ni 4PF₆ (1473.2): C 35.87, H 5.06, N 11.41%; found C 36.07, H 4.88, N 11.17%. TOF MS ES+ (CH₃CN, m/z): 222.9 $[C_{44}H_{73}CuN_{12}Ni]^{3+}$, $[C_{44}H_{74}CuN_{12}Ni]^{4+}$ 296.8 444.7 $[C_{44}H_{72}CuN_{12}Ni]^{2+}$ 517.7 [C₄₄H₇₃CuN₁₂Ni·PF₆]²⁺, 590.6 [C₄₄H₇₄CuN₁₂Ni·2PF₆]²⁺. ¹H NMR (500 MHz, CD₃CN) δ 0.88, 1.08 (2 × br, CH₃ in Cu unit); 0.97 (comp, 2 × 3 H, CH₃ in Ni unit); 1.19, 1.27 (2 × br, 2 × 2 H, CH₂CH₃ in Cu); 1.34, 1.42 ($2 \times m$, 2×2 H, CH₂CH₃ in Ni); 1.58 br, 1.65 br, 1.71 m (CH₂) β to N); 3.43, 3.57 (2 × br, 14 H, NCH₂); 7.53 s, 7.63 br, 7.67 br, 7.99 br, 9.00-10.00 br (CH=N, =CHN, NH) (for ¹H NMR, see below). ¹³C NMR (125 MHz, CD₃CN) δ 13.5, 15.0 (CH₃ in Cu unit); 13.81, 13.84 (CH₃ in Ni unit); 20.1, 20.4 (<u>CH₂CH₃ in Ni unit</u>); 20.3 (CH₂CH₃ in Cu unit); 27.0 (CH₂ β to N in the linker, on the side of Ni unit); 29.2, 31.3 (CH₂ β to N in NBu₂, in Ni unit); 50.7, 52.5 (NCH₂CH₂N in Ni); 59.3 br, 60.2 br, 61.3 (NCH₂ in the linker and NBu₂, in Ni unit); 103.9, 104.3 (C=CHN in Ni unit); 155.1 br, 160.7 br (CH=N in Ni unit); 162.4, 163.9 (=CHN in Ni unit).

4'CuNi: 21.4 mg of 3'Ni H₂O (0.022 mmol) was dehydrated as above, dissolved in 0.5 mL of CH₃CN and poured into the solution of 1 eq. of 1Cu (16.1 mg) in 0.3 mL of CH₃CN, followed by the addition of a solution of 2 eq. of triethylamine (6.1 μ L) in 0.3 mL of CH₃CN. The mixture was stirred for 30 minutes and then treated analogously to the procedure described for complex 4CuNi. Yield 20.4 mg (61%). Anal. Calc. for C₄₈H₇₄CuN₁₂Ni·4PF₆ (1521.3): C 37.90, H 4.90, N 11.05%; found C 37.73, H 4.82, N 10.91%. TOF MS ES+ $[C_{48}H_{74}CuN_{12}Ni]^{4+}$, $[C_{48}H_{73}CuN_{12}Ni]^{3+}$, (CH₃CN, m/z): 234.9 312.8 614.7 [C₄₈H₇₄CuN₁₂Ni·2PF₆]²⁺, 468.7 [C₄₈H₇₂CuN₁₂Ni]²⁺. ¹H NMR (500 MHz, CD₃CN) δ 0.88, 1.08 (2 × br, CH₃ in Cu unit); 0.97 (comp, CH₃ in Ni unit); 1.18 (br, CH₂CH₃ in Cu unit); 1.34 and 1.42 (2 × m, CH₂CH₃ in Ni); 1.56-1.77 (comp, CH₂ β to N); 3.45-3.68 (comp, NCH₂); 4.64 (s, 4 H, CH₂Ar); 7.15-7.39 (comp, br with 7.28 and 7.34 ppm, H_{Ar} of *p*-xylyl linker); 7.53 s, 7.67 br, 7.78 s (CH=N, =CHN, NH) (for ¹H NMR spectra, see below). ¹³C NMR (125 MHz, CD₃CN) δ 13.5, 15.0 (CH₃ in Cu unit); 13.83, 13.85 (CH₃ in Ni unit); 20.1, 20.4 (\underline{CH}_2CH_3 in Ni unit); 20.3 (\underline{CH}_2CH_3 in Cu unit); 29.2, 31.3 ($\underline{CH}_2\beta$ to N in NBu₂, in Ni unit); 52.6, 54.5, 60.4 br, 61.3 (NCH₂); 103.9, 104.7 (C=CHN in Ni unit); 129.3, 129.4 (C_{sp2}H in

benzene ring); 136.7 ($\underline{C}_{sp2}C$ in benzene ring); CH=N in Ni unit unobserved; 162.5, 164.0 (=CHN in Ni unit).

5CuNi: 34.3 mL of anhydrous CH₃CN was added to the mixture of 195.9 mg of 1Cu (0.268 mmol), 1 eq. of 3Ni (252.8 mg before dehydration) and 20 eq. of dibenzo-24-crown-8 (2.404 g). The suspension was degassed and filled with argon, then heated gently until all crown ether dissolved. After cooling to room temperature, a solution of 1 eq. of triethylamine (37.4 µL) in 1 mL of CH₃CN was added dropwise over the period of 3 h. From time to time the flask was gently heated in order to dissolve DB24C8, which crystallizes from the supersaturated solution. The solution was stirred overnight, followed by filtering off the DB24C8 precipitate. The filtrate was evaporated to dryness and solids were washed by shaking with 5 \times 15 mL of anhydrous benzene to extract remnants of DB24C8. Then, the orange-colored oil remaining in the flask was dried in vacuo, dissolved in 5 mL CH₃CN and poured to the solution of 1 g of NH₄PF₆ in 50 mL of H₂O. The immediately formed precipitate was filtered, washed with 15 mL of H₂O, dissolved in 8 mL CH₃CN, and adsorbed on 1 g of silanized silica gel. The solid was transferred to the top of silanized silica gel column. Distilled water (A) and a solution of 15 gL⁻¹ of NH₄PF₆ in CH₃CN (B) were prepared. The product was isolated by means of gradient elution with 20, 30, 40 and 50% of B in A+B mixture. The main and last orange-colored fraction was collected. The precipitate formed during evaporation of CH₃CN was filtered, washed with 5 \times 10 mL H₂O, 3 mL CH₃OH and 3 mL Et₂O, and dried in vacuo over P₂O₅. Yield 139.1 mg (27%). Anal. Calc. for C₆₈H₁₀₆CuN₁₂NiO₈·4PF₆ (1921.7): C 42.50, H 5.56, N 8.75%; found C 42.53, H 5.62, N $[C_{68}H_{106}CuN_{12}NiO_8]^{4+}$ 8.64%. TOF MS ES+ $(CH_3CN,$ *m/z*): 335.0 446.3 [C₆₈H₁₀₅CuN₁₂NiO₈]³⁺, 741.9 [C₆₈H₁₀₅CuN₁₂NiO₈·PF₆]²⁺. ¹H NMR (500 MHz, CD₃CN) δ 0.89 br t, 0.97 comp, 1.08 br (CH_3); 1.15-1.50 a set of signals with visible maxima at 1.21, 1.28, 1.42 (CH₂CH₃); 1.50-1.85 with maxima at 1.70 and 1.71 (CH₂ β to N); 2.85-3.65 with

maxima at 2.95, 3.06, 3.32, 3.43, 3.50 and 3.56 (NCH₂); 3.65-4.30 with maxima at 3.78 and 4.10 (OCH₂); 6.60-7.35 with maxima at 6.84 and 7.06 (H_{Ar}); 7.35-8.90 with maxima at 7.46, 7.52, 7.60, 7.66, 8.02, 8.58, 8.72, and 8.90-10.50 br (CH=N, =CHN, NH) (for ¹H NMR spectra, see below). ¹³C NMR (125 MHz, CD₃CN) δ 13.5, 13.8, 13.9 and 15.0 (CH₃); 20.10, 20.12, 20.3, 20.4 (<u>CH₂CH₃</u>); 27.1, 27.5 (CH₂ β to N in the linker); 29.2, 31.3, 31.4 (CH₂ β to N in NBu₂); 49.0, 50.4, 51.1, 52.5, 52.6, 58.7 br, 59.7 br, 60.1 br, 61.3, 68.5 br, 69.3, 70.3 br, 71.2 br, 71.5 br (NCH₂ and OCH₂); 103.8, 104.3 (<u>C</u>=CHN); 112.9 (C *ortho* to O); 121.5, 122.4 (C *meta* to O); 149.1 br (C_{sp2}-O); 154.4 br, 159.3 br (CH=N); 162.1, 162.4, 163.9, 166.2 (=CHN).

5'CuNi: 19.3 mL of anhydrous CH₃CN was added to the mixture of 110.7 mg of 1Cu (0.151 mmol), 1 eq. of 3'Ni (149.9 mg before dehydration) and 20 eq. of dibenzo-24-crown-8 (1.354 g). The suspension was degassed and filled with argon, then heated gently until all crown ether dissolved. After cooling to room temperature, a solution of 1 eq. of triethylamine (21.1 µL) in 1 mL of CH₃CN was added dropwise over the period of 3 h. Then the synthesis and isolation was performed analogously to the procedure described for rotaxane 5CuNi. Yield 74.4 mg (25%). Anal. Calc. for C₇₂H₁₀₆CuN₁₂NiO₈·4PF₆ (1969.8): C 43.90, H 5.42, N 8.53%; found C 43.67, H 5.38, N 8.46%. TOF MS ES+ (CH₃CN, *m/z*): 346.9 [C₇₂H₁₀₆CuN₁₂NiO₈]⁴⁺, 462.2 [C₇₂H₁₀₅CuN₁₂NiO₈]³⁺, 765.8 [C₇₂H₁₀₅CuN₁₂NiO₈·PF₆]²⁺, 692.8 [C₇₂H₁₀₄CuN₁₂NiO₈]²⁺, 838.8 [C₇₂H₁₀₆CuN₁₂NiO₈·2PF₆]²⁺. ¹H NMR (500 MHz, CD₃CN) δ 0.89 br, 0.93-1.03 comp, 1.08 br (CH₃); 1.15-1.50 a set of signals with visible maxima at 1.21, 1.28, 1.36, 1.43 (CH_2CH_3) ; 1.60-1.80 with maximum at 1.72 (CH₂ β to N); 2.90-3.60 with maxima at 2.95, 3.25, 3.28, 3.36, 3.43, and 3.57 (NCH₂); 3.60-4.20 with maxima at 3.63, 3.84 and 4.11 (OCH₂); 4.66 and 4.89 ($2 \times$ br, CH₂Ar); 6.63 (s, 1 H, one of NCH₂CH₂N protons in Ni unit); 6.86 (br, H_{Ar} of DB24C8 ring); 7.20-7.40 with maxima at 7.29 and 7.35 (H_{Ar} of the p-xylyl linker); 7.40-9.05 with maxima at 7.46, 7.53, 7.55, 7.63, 7.66, 7.80, 8.05, 8.31, 8.34, 8.49 and

8.96 (CH=N, =CHN, NH) (for ¹H NMR spectra, see below). ¹³C NMR (125 MHz, CD₃CN) δ 13.5, 13.8, 13.9 and 15.0 (CH₃); 20.1, 20.3, 20.5 (<u>C</u>H₂CH₃); 29.2, 31.3, 31.4 (CH₂ β to N); 52.5, 54.2, 58.5, 59.5, 61.3, 68.3, 70.8, 71.0 (NCH₂ and OCH₂); 103.8, 104.5 (<u>C</u>=CHN); 112.6 (C "*ortho*" to O in benzene ring of DB24C8); 121.8 (C "*meta*" to O in benzene ring of DB24C8); 128.9 and 129.7 (C_{sp2}H in benzene ring of the *p*-xylyl linker); 138.1 (<u>C_{sp2}C</u> in benzene ring of the *p*-xylyl linker); 148.9 (C_{sp2}–O); 154.7 and 158.6 (CH=N); 162.0 and 167.1 (=CHN).

Electroanalytical measurements

Square wave voltammetry (SWV) and cyclic voltammetry (CV) experiments were carried out using the Autolab potentiostat (ECO Chemie, Netherlands) in a three electrode arrangement, with a silver/silver chloride (Ag/AgCl) electrode as the reference, platinum foil as the counter and the glassy carbon electrode (GCE, BAS, 3 mm diameter) as the working electrode. The reference electrode were separated from the working solution by an electrolytic bridge filled with 0.1 M tetrabutylammonium hexafluorophosphate/acetonitryl (TBAHFP/AN) solution. The reference potential electrode was calibrated by using the ferrocene oxidation process in the same TBAHFP/AN solution. 0.1 M TBAHFP/AN was used as the supporting electrolyte solution. Argon was used to deaerate the solution and an argon blanket was maintained over the solution during all experiments. All experiments were carried out at 25 °C. The GC electrode was polished mechanically with 1.0, 0.3 and 0.05 μ m alumina powder on a Buehler polishing cloth to a mirror-like surface. Finally, it was rinsed with acetonitrile and sonificated in pure acetonitrile.

Fig. 1 Square wave voltammograms (SWV) of rotaxane 5'CuNi (CH₃CN, $\Delta E = 5$ mV, 25 mV amplitude, E [V] vs. Ag/AgCl).

Fig. 2 Cyclic voltammogram (CV) of 4'CuNi (CH₃CN, $v = 50 \text{ mVs}^{-1}$, E [V] vs. Ag/AgCl).

Fig. 3 Cyclic voltammogram (CV) of rotaxane 5'CuNi (CH₃CN, v = 50 mVs⁻¹, E [V] vs. Ag/AgCl).

Fig. 4 Cyclic voltammogram (CV) of 4CuNi (CH₃CN, v = 50 mVs⁻¹, E [V] vs. Ag/AgCl).

Fig. 5 Cyclic voltammogram (CV) of 5CuNi (CH₃CN, v = 50 mVs⁻¹, E [V] vs. Ag/AgCl).

Fig. 6 Normal/reversed pulse voltammograms and their derivatives (NPV/RPV) of **4CuNi** (CH₃CN, $t_p = 70$ ms, $t_w = 2$ s, E [V] *vs.* Ag/AgCl).

Fig. 7 Normal/reversed pulse voltammograms and their derivatives (NPV/RPV) of 4'CuNi (CH₃CN, $t_p = 70ms$, $t_w = 2s$, E [V] vs. Ag/AgCl).

Fig. 8 Square wave voltammograms (SWV) of compound **2Ni** (CH₃CN, $\Delta E = 5$ mV, 25 mV amplitude, *E* [V] *vs.* Ag/AgCl).

Fig. 9 Square wave voltammograms (SWV) of compound 2Cu (CH₃CN, $\Delta E = 5$ mV, 25 mV amplitude, *E* [V] *vs.* Ag/AgCl).