Supporting Information

Tertiary α , α -diarylmethylamines derived from diarylketimines and organomagnesium reagents

Alaric Desmarchelier, Pablo Ortiz a and Syuzanna R. Harutyunyan **

^aStratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

E-mail: <u>s.harutyunyan@rug.nl</u>.

General experimental information

Unless otherwise indicated, reagents and substrates were purchased from commercial sources and used as received. Solvents not required to be dry were purchased as technical grade and used as received. Dry solvents were freshly collected from a dry solvent purification system prior to use, or distilled according to usual procedures.¹ Anhydrous 1,4-dioxane was purchased from Sigma Aldrich and used as received. Inert atmosphere experiments were performed with standard Schlenk techniques with dried (P₂O₅) nitrogen gas. Reactions were monitored by TLC (Merck silica gel 60 F254), and ¹H and ³¹P NMR. Purification of the products, when necessary, was performed by column chromatography using Merck 60 Å 230-400 mesh silica gel, or preparative TLC (Merck silica gel 60 GF254, 1.0 mm).

NMR data was collected on Varian VXR400 and 200 spectrometers (¹H at 400.0 and 200.0 MHz, respectively; ¹³C at 100.58 and 50.29 MHz resp.; ³¹P at 161.94 and 80.97 MHz resp.; ¹⁹F at 376.29 and 188.15 MHz resp.), equipped with a 5 mm *z*-gradient broadband probe. Chemical shifts are reported in parts per million (ppm) relative to residual solvent peak (CDCl₃, 1H: 7.26 ppm; ¹³C: 77.16 ppm; ³¹P and ¹⁹F are calibrated externally against H₃PO₄ and CFCl₃, respectively). ¹³C was measured without decoupling from ³¹P. Coupling constants are reported in Hertz. Multiplicity is reported with the usual abbreviations (s: singlet, bs: broad singlet, d: doublet, dd: doublet of doublets, ddd: doublet of doublets, t: triplet, td: triplet of

¹Armarego, W.L.F; Chai, C. Purification of Laboratory Chemicals 7th ed., **2012** (Elsevier), ISBN 9780123821614

doublets, q: quadruplet, dq: doublet of quadruplets, m: multiplet). Exact mass spectra were recorded on a LTQ Orbitrap XL (ESI+) apparatus.

Representative procedure for the preparation of dialkylmagnesium reagents

In a flame-dried and nitrogen-flushed conical glass centrifuge vial, dry toluene (1 mL) and isobutylmagnesium bromide solution (2.0M in Et₂O, 1 mL, 2 mmol) are mixed together under vigorous magnetic stirring at room temperature. Dry 1,4-dioxane (190 μL, 2.2 mmol, 1.1 eq) is then added dropwise, slowly, so that the slurry formed does not interfere with efficient mixing. The resulting white milky suspension is then vigorously stirred overnight at room temperature. The vial is then centrifuged for 1 h at 5000 rpm. An aliquot of the pale yellow or colourless supernatant is then diluted in dry toluene and titrated with a 3.4 M sec-butanol solution in dry toluene, in the presence of 1,10-phenanthroline (a few crystals), until the dark purple solution turns bright yellow. Colour change appears at equimolarity of sBuOH and iBu₂Mg (1:1 alcohol/magnesium ratio). Toluene also ensures bright colours for facile titration, as opposed to TBME. Typically the concentration was found to be 0.95-1.05 M (on 5 batches prepared). The supernatant of the centrifuged reaction mixture is used as such for the 1,2-addition reactions, and can be stored a few days in a sealed nitrogen-flushed vessel without erosion of concentration.

Note: This procedure can also be carried out in dry THF, Et₂O or TBME with the same outcome. However, THF proved deleterious (lower conversion) for our 1,2-addition procedure, and toluene gives the best results both in terms of solubility and conversion for the 1,2-addition reaction.

Representative procedure for the synthesis of the diphenylphosphoryl-protected diarylimines 2

To a solution of hydroxylamine hydrochloride (1.390 g, 20 mmol, 2 eq) in pyridine (40 mL, 0.25 M) is added 2-methylbenzophenone (1.81 mL, 10 mmol, 1 eq), and the resulting mixture is refluxed overnight. Once cooled to room temperature, the crude is concentrated under reduced pressure, then poured in a beaker containing 100 mL of an ice/2N HCl 2:1 mixture. CH₂Cl₂ is added (ca. 40 mL) and the contents are stirred for 20 min. The biphasic solution is then extracted thrice with CH₂Cl₂, the organic layers washed with brine, dried over MgSO₄, filtered and dried under reduced pressure to afford the oxime as a Z/E mixture of isomers in usually

² S. Masumoto, H. Usuda, M. Suzuki, M. Kanai and M. Shibasaki, J. Am. Chem. Soc. 2003, 125, 5634.

quantitative yield. The oxime is used as such without further purification, regardless of conversion, for the preparation of the corresponding *N*-DPP imine.

To a solution of 2-methylbenzophenone oxime (2.113 g, 10 mmol, 1 eq) in CH₂Cl₂ / pentane (1:1, 33 mL, 0.3M) under nitrogen atmosphere is added Et₃N (1.53 mL, 11 mmol, 1.1 eq). The resulting solution is then cooled to -40°C, and pure chlorodiphenylphosphine (2.02 mL, 11 mmol, 1.1 eq) is added dropwise while vigorously stirring the resulting slurry. The reaction mixture is kept at this temperature for 2h, then warmed to room temperature, and stirred for an additional 12 h. The crude mixture is then concentrated under reduced pressure without heating to remove pentane, redissolved with CH₂Cl₂, and washed with water. Following extraction with CH₂Cl₂, the organic layer is dried over MgSO₄ and the solvent removed *in vacuo*. The crude residue is purified by careful column chromatography on silica gel (eluent Pentane / EtOAc 2:1 to 1.5:1) to yield the desired imine as a single diastereoisomer (3.45g, 87%). The off-yellow solid can be recrystallized from Et₂O to give white crystals.

P,P-diphenyl-*N*-(phenyl(o-tolyl)methylene)phosphinic amide (1e):

Yield: 65%, off-white solid.

¹H NMR (CDCl₃, 400 MHz): δ 7.91 – 7.84 (m, 6H), 7.54 (t, J = 7.4 Hz, 1H), 7.40 (tdd, J = 7.0, 5.4, 1.6 Hz, 8H), 7.30 (t, J = 7.5 Hz, 1H), 7.16 (t, J = 7.4 Hz, 1H), 7.12 (d, J = 7.6 Hz, 1H), 7.01 (d, J = 7.5 Hz, 1H), 1.87 (s, 3H); ³¹P (CDCl₃, 161.94 MHz): δ 16.88; ¹³C NMR (CDCl₃, 50 MHz): δ136.2, 134.6, 133.6, 133.0, 131.9, 131.7, 131.4, 131.4, 130.0, 129.7, 129.2, 128.8, 128.5, 128.3, 127.3, 125.3, 19.9; HRMS: Calc. for C₂₆H₂₃NOP: 396.1512, found: 396.1496.

N-(diphenylmethylene)-*P*,*P*-diphenylphosphinic amide (1a):

Prepared according to the general procedure from benzophenone, yield: 71%, white solid.

¹H NMR (CDCl₃, 400 MHz): δ 7.92 (ddd, J = 11.8, 8.0, 1.4 Hz, 4H), 7.57 – 7.55 (m, 4H), 7.49 (t, J = 7.4 Hz, 2H), 7.45 – 7.36 (m, 10H); ³¹P (CDCl₃, 161.94 MHz): δ 16.31; ¹³C NMR (CDCl₃,

100.58 MHz): δ138.8, 138.7, 135.7, 134.4, 131.7, 131.6, 131.3, 131.2, 131.2, 129.5, 128.3, 128.2, 127.9; HRMS: Calc. for C₂₅H₂₁NOP: 382.1355, found: 382.1354.

N-((4-methoxyphenyl)(phenyl)methylene)-P,P-diphenylphosphinic amide (1b):

Prepared according to the general procedure from 4-methoxybenwophenone, yield: 72%, off-white solid.

¹H NMR (CDCl₃, 400 MHz): δ 7.91 (ddd, J = 11.8, 8.0, 1.4 Hz, 4H), 7.68 (d, J = 8.9 Hz, 2H), 7.46 – 7.33 (m, 11H), 6.90 (d, J = 8.9 Hz, 2H), 3.86 (s, 3H); ³¹P (CDCl₃, 161.94 MHz): δ 16.03; ¹³C NMR (CDCl₃,50 MHz): δ 163.0, 139.1, 138.8, 136.8, 134.2, 132.5, 132.0, 131.9, 131.7, 131.6, 131.2, 130.6, 129.3, 128.5, 128.2, 127.8, 113.5, 55.6; HRMS: Calc. for $C_{26}H_{23}NO_2P$: 412.1461, found: 412.1458.

N-((2-methoxyphenyl)(phenyl)methylene)-*P*,*P*-diphenylphosphinic amide (11):

Prepared according to the general procedure from 2-methoxybenzophenone, yield: 45%, white solid.

¹H NMR (CDCl₃, 400 MHz): δ 7.95 – 7.89 (m, 6H), 7.53 (t, J = 7.4 Hz, 1H), 7.45 – 7.34 (m, 9H), 7.12 (dd, J = 7.4, 1.4 Hz, 1H), 6.96 (t, J = 7.5 Hz, 1H), 6.79 (d, J = 8.4 Hz, 1H), 3.31 (s, 3H); ³¹P (CDCl₃, 161.94 MHz): δ 16.51; ¹³C NMR (CDCl₃, 100.58 MHz): 179.0, 179.0, 156.4, 139.5, 139.3, 135.8, 134.5, 132.7, 132.7, 132.6, 131.8, 131.7, 131.1, 131.1, 130.9, 130.9, 130.8, 129.9, 129.1, 129.0, 128.4, 128.3, 128.1, 127.2, 127.1, 119.9, 110.4, 54.8; HRMS:Calc. for C₂₆H₂₃NO₂P: 412.1461, found: 412.1462

N-((4-chlorophenyl)(phenyl)methylene)-*P*,*P*-diphenylphosphinic amide (1m):

Prepared according to the general procedure from 4-chlorobenzophenone, yield: 36%, white solid.

¹H NMR (CDCl₃, 400 MHz): δ 7.94 – 7.89 (m, 4H), 7.57 – 7.55 (m (app.d.), 2H), 7.53 – 7.34 (m, 13H); ³¹P (CDCl₃, 161.94 MHz): δ 16.56; ¹³C NMR (CDCl₃, 100.58 MHz): δ 180.6, 138.6, 138.4, 137.7, 137.2, 137.0, 135.5, 134.2, 131.8, 131.7, 131.5, 131.4, 131.0, 129.7, 128.5, 128.4, 128.3, 128.2; HRMS: Calc. for C₂₅H₂₀ClNOP: 416.0966, found: 416.0948

N-((4-chlorophenyl)(phenyl)methylene)-*P*,*P*-diphenylphosphinic amide (1n):

Prepared according to the general procedure from 2-(trifluoromethyl)benzophenone, yield: ~10%, decomposes during column chromatography, yellow oil.

¹H NMR (CDCl₃, 400 MHz): δ 7.91 – 7.86 (m, 4H), 7.80 (d, J = 7.5 Hz, 2H), 7.68 – 7.65 (m, 1H), 7.58 – 7.53 (m, 3H), 7.47 – 7.38 (m, 8H), 7.24 – 7.21 (m, 1H); ³¹P (CDCl₃, 161.94 MHz): δ 17.28; ¹⁹F (CDCl₃, 376 MHz): δ -58.26; ¹³C NMR (CDCl₃, 50 MHz): δ 177.9, 177.8, 136.6, 135.9, 133.3, 133.1, 131.8, 131.6, 131.5, 131.4, 131.4, 129.7, 129.3, 128.7, 128.6, 128.6, 128.3, 126.5, 126.4, 126.3; HRMS: Calc. for C₂₆H₁₉F₃NOPNa: 472.1049, found: 472.1078

P,P-diphenyl-*N*-(phenyl(thiophen-2-yl)methylene)phosphinic amide (10):

Prepared according to the general procedure from 2-benzoylthiophene, yield: 66%, off-brown solid.

¹H NMR (CDCl₃, 400 MHz): δ 7.90 (ddd, J = 11.9, 8.0, 1.4 Hz, 4H), 7.68 (dd, J = 5.0, 0.8 Hz, 1H), 7.45 – 7.32 (m, 11H), 7.23 (dd, J = 3.8, 0.9 Hz, 1H), 7.08 (t, J = 4.2 Hz, 1H); ³¹P (CDCl₃, 161.94 MHz): δ 15.72; ¹³C NMR (CDCl₃, 50 MHz): δ 174.8, 174.7, 137.4, 137.2, 136.6, 135.6,

135.6, 134.3, 134.0, 131.8, 131.7, 131.3, 131.3, 130.4, 128.6, 128.5, 128.2, 127.7; HRMS: Calc. for C₂₃H₁₉NOPS: 388.0920, found: 388.0920.

P,P-diphenyl-*N*-(phenyl(pyridin-2-yl)methylene)phosphinic amide (1p):

Prepared according to the general procedure from 2-benzoylpyridine, yield: 44%, off-yellow solid.

¹H NMR (CDCl₃, 400 MHz): δ 8.61 (d, J = 4.8 Hz, 1H), 7.94 (ddd, J = 12.0, 7.9, 1.5 Hz, 4H), 7.81 – 7.74 (m, 3H), 7.61 (d, J = 7.8 Hz, 1H), 7.53 (t, J = 7.4 Hz, 1H), 7.48 – 7.38 (m, 8H), 7.36 (ddd, J = 7.5, 4.8, 0.9 Hz, 1H); ³¹P (CDCl₃, 161.94 MHz): δ 17.91; ¹³C NMR (CDCl₃, 50 MHz): δ179.1, 178.9, 156.2, 155.9, 149.0, 138.3, 137.9, 136.0, 135.9, 133.3, 132.6, 131.9, 131.7, 131.5, 131.4, 130.3, 128.6, 128.4, 128.3, 124.6, 124.2; HRMS: Calc. for C₂₄H₂₀N₂OP: 383.1308, found: 383.1312

Prepared from the parent ketone ³ according to the general procedure, yield: 62%, off- yellow solid.

¹H NMR (CDCl₃, 400 MHz): δ 8.02 (dd, J = 3.1, 0.8 Hz, 1H), 7.97 – 7.91 (m, 4H), 7.66 (d, J = 3.1 Hz, 1H), 7.61 (bs, 1H), 7.59 (d, J = 1.4 Hz, 1H), 7.50 – 7.35 (m, 9H), ³¹P (CDCl₃, 161.94 MHz): δ 16.60; ¹³C NMR (CDCl₃, 100.58 MHz): δ 172.4, 172.3, 170.0, 169.7, 145.5, 135.0, 134.9, 134.8, 133.5, 131.7, 131.6, 131.3, 129.7, 128.5, 128.3, 127.5, 125.6, HRMS: Calc. for C₂₂H₁₈N₂OPS: 389.0868, found: 389.0872.

³Phenyl(thiazol-2-yl)methanone was prepared following a literature procedure: A.Dondoni, G.Fantin, M.Fogagnolo, A. Medici *J. Org. Chem.* 1988, **3** 1748–1761.

Representative procedure for the 1,2-addition of diorganomagnesium reagents to diarylimines

In a flame-dried, nitrogen flushed Schlenk P,P-diphenyl-N-(phenyl(otube, tolyl)methylene)phosphinic amide 1d (40 mg, 0.1 mmol, 1 eq) is dissolved in dry toluene (1 mL, 0.1M) at room temperature. Dibutylmagnesium solution (1.0M in Et₂O/heptane, 120 µL, 1.2 eq) is then added in one portion. The reaction medium immediately becomes orange-brown, and quickly loses colour back to pale yellow. After stirring for 10-30 minutes at room temperature to ensure completion, the reaction is quenched with saturated aqueous NH₄Cl, extracted with EtOAc, the organic layers dried over MgSO₄, and concentrated in vacuo. Thorough reevaporation with chloroform followed by overnight drying under high vacuum yields the desired product as a colourless gum without further purification required.

For some entries, purification was performed by column chromatography on silica gel (eluent pentane/EtOAc 2:1 to 1:1), as indicated in their respective descriptions below.

<u>Important note:</u> When performed with *aryl- or alkylmagnesium bromide reagents*, the following modifications were applied: 2 equivalents (0.2 mmol) of the Grignard reagent were used, and the reaction was stirred for 1h or the indicated time (1-16h).

P,P-diphenyl-*N*-(1-phenyl-1-(o-tolyl)pentyl)phosphinic amide (2e):

Prepared according to the general procedure with Bu_2Mg (1.2eq) from imine **1e**, and purified by column chromatography. Yield: 93%, colourless gum.

¹H NMR (CDCl₃, 400 MHz): δ 7.76 (dd, J = 11.6, 7.3 Hz, 2H), 7.58 (d, J = 7.5 Hz, 2H), 7.55 (d, J = 7.5 Hz, 1H), 7.44 – 7.40 (m, 1H), 7.37 – 7.31 (m, 3H), 7.24 – 7.18 (m, 4H), 7.16 – 7.08 (m, 5H), 6.89 (d, J = 6.9 Hz, 1H), 3.92 (d, J = 4.5 Hz, 1H), 2.71 – 2.63 (m, 1H), 2.51 – 2.44 (m, 1H), 1.71 (s, 3H), 1.19 (dt, J = 14.5, 7.2 Hz, 2H), 1.01 – 0.93 (m, 2H), 0.75 (t, J = 7.3 Hz, 3H); ³¹P (CDCl₃, 161.94 MHz): δ 18.41; ¹³C NMR (CDCl₃, 50 MHz): δ145.7, 145.6, 143.3, 143.2, 136.8, 136.0, 135.1, 133.5, 132.7, 132.6, 131.9, 131.7, 131.6, 131.4, 131.4, 131.1, 131.0, 128.6, 128.3, 128.2, 128.0, 127.9, 127.4, 127.3, 127.0, 126.7, 125.4, 66.3, 66.28, 40.8, 27.1, 23.0, 22.3, 14.1; HRMS:Calc. for C₃₀H₃₂NOPNa: 476.2114, found: 476.2144.

N-(3-methyl-1-phenyl-1-(o-tolyl)butyl)-*P*,*P*-diphenylphosphinic amide (2f):

Prepared according to the general procedure with iBu₂Mg (1.2eq), stirring overnight, from imine **1e**, and purified by column chromatography. Yield: 90%, colourless gum.

¹H NMR (CDCl₃, 400 MHz): δ 7.73 (dd, J = 11.5, 7.4 Hz, 2H), 7.67 (d, J = 7.7 Hz, 1H), 7.57 (dd, J = 11.8, 7.6 Hz, 2H), 7.37 (dd, J = 13.5, 6.4 Hz, 1H), 7.32 (d, J = 6.9 Hz, 3H), 7.25 – 7.19 (m, 4H), 7.17 (d, J = 7.7 Hz, 1H), 7.12 (t, J = 7.3 Hz, 1H), 7.05 (bs, 3H), 6.89 (d, J = 7.2 Hz, 1H), 3.97 (d, J = 4.0 Hz, 1H), 2.62 (ddd, J = 18.0, 13.8, 4.8 Hz, 2H), 1.70 (s, 3H), 1.54 – 1.48 (m, 1H), 0.69 (d, J = 6.6 Hz, 3H), 0.51 (d, J = 6.6 Hz, 3H); ³¹P (CDCl₃, 161.94 MHz): δ 18.06; ¹³C NMR (CDCl₃, 100.58 MHz): δ144.8, 143.5, 143.4, 136.9, 134.9, 134.2, 134.1, 132.7, 131.7, 131.6, 131.5, 131.2, 131.2, 131.0, 130.95, 128.4, 128.2, 128.1, 128.0, 127.9, 127.7, 127.4, 127.3, 126.9, 125.4, 66.4, 49.3, 29.8, 24.7, 24.2, 22.4; HRMS:Calc. for C₃₀H₃₃NOP: 454.2294, found: 454.2276.

N-(2-methyl-1-phenyl-1-(o-tolyl)propyl)-P,P-diphenylphosphinic amide (2g):

Prepared according to the general procedure with iPr₂Mg (2.0 eq, 78% conversion) from imine **1e** and purified by column chromatography. Yield: 77%, colourless gum.

¹H NMR (CDCl₃, 400 MHz): δ 7.88 (dd, J = 11.0, 7.5 Hz, 2H), 7.71 (d, J = 8.1 Hz, 1H), 7.53 – 7.43 (m, 3H), 7.32 – 7.27 (m, 3H), 7.24 – 7.16 (m, 4H), 7.04 (t, J = 6.7 Hz, 4H), 6.86 (t, J = 7.3 Hz, 1H), 6.45 (d, J = 7.5 Hz, 1H), 4.03 (d, J = 4.0 Hz, 1H), 3.75 (dt, J = 13.1, 6.6 Hz, 1H), 1.43 (s, 3H), 1.01 (d, J = 6.4 Hz, 3H), 0.82 (d, J = 6.6 Hz, 3H); ³¹P (CDCl₃, 161.94 MHz): δ 18.86; ¹³C NMR (CDCl₃, 100.58 MHz): δ142.2, 142.1, 139.5, 139.0, 136.1, 134.9, 133.4, 132.6, 132.1, 131.73, 131.7, 131.5, 131.4, 131.1, 131.1, 130.3, 130.3, 129.5, 128.8, 128.7, 127.6, 127.5, 127.4, 127.3, 126.5, 124.7, 68.9, 34.7, 23.3, 20.5, 18.0; HRMS:Calc. for C₂₉H₃₁NOP: 440.2138, found: 440.2110.

P,P-diphenyl-*N*-(1-phenyl-1-(o-tolyl)propyl)phosphinic amide (2h):

Prepared according to the general procedure with Et₂Mg (1.2eq) from imine **1e**, without chromatographic purification. Yield: quantitative, colourless gum.

¹H NMR (CDCl₃, 400 MHz): δ 7.79 – 7.74 (m, 2H), 7.44 – 7.40 (m, 3H), 7.38 – 7.30 (m, 4H), 7.23-7.07 (m, 9H), 6.89 (d, J = 6.8 Hz, 1H), 3.93 (d, J = 4.8 Hz, 1H), 2.77 (dq, J = 14.6, 7.3 Hz, 1H), 2.54 (dq, J = 14.0, 7.1 Hz, 1H), 1.71 (s, 3H), 0.69 (t, J = 7.2 Hz, 3H); ³¹P (CDCl₃, 161.94 MHz): δ 18.73; ¹³C NMR (CDCl₃, 50 MHz): δ 145.4, 145.3, 142.9, 142.8, 137.0, 136.0, 134.98, 133.5, 132.7, 132.4, 131.9, 131.7, 131.5, 131.5, 131.4, 131.38, 131.3, 131.1, 131.00, 128.6, 128.3, 128.2, 128.0, 127.4, 127.41, 127.1, 126.7, 125.4, 66.6, 33.8, 22.4, 9.5; HRMS: Calc. for C₂₈H₂₈NOPNa: 448.1801, found: 448.1831.

P,P-diphenyl-*N*-(1-phenyl-1-(0-tolyl)but-3-en-1-yl)phosphinic amide (2i):

Prepared according to the general procedure with AllylMgBr (2.0 eq) from imine **1e**, without chromatographic purification. Yield: quantitative, colourless gum.

¹H NMR (CDCl₃, 400 MHz): δ 7.81 – 7.73 (m, 3H), 7.58 (dd, J = 12.1, 7.3 Hz, 2H), 7.41 – 7.36 (m, 1H), 7.34 – 7.29 (m, 3H), 7.24 – 7.18 (m, 3H), 7.17 – 7.14 (m, 2H), 7.10 – 7.03 (m, 4H), 6.76 (d, J= 7.4 Hz, 1H), 5.35 – 5.20 (m, 2H), 5.02 (dd, J = 8.8, 3.5 Hz, 1H), 4.00 (s, 1H), 3.65 (dd, J = 12.7, 5.4 Hz, 1H), 3.33 (dd, J = 12.8, 6.3 Hz, 1H), 1.64 (s, 3H); ³¹P (CDCl₃, 161.94 MHz): δ 18.65; ¹³C NMR (CDCl₃, 100.58 MHz): δ143.4, 142.1, 137.1, 135.1, 134.5, 134.1, 133.9, 133.2, 132.5, 131.6, 131.5, 131.5, 131.4, 131.3, 131.2, 130.9, 130.86, 128.3, 128.2, 128.0, 127.9, 127.8, 127.7, 127.66, 127.64, 126.9, 125.4, 120.6, 65.2, 46.4 (d, J = 1.5 Hz), 22.4; HRMS:Calc. for C₂₉H₂₉NOP: 438.1981, found: 438.1964.

N-(diphenyl(o-tolyl)methyl)-*P*,*P*-diphenylphosphinic amide (2j):

Prepared according to the general procedure with PhMgBr (2.0 eq, overnight; 81% conversion) from imine **1e**, and purified by column chromatography. Yield: 79%, colourless gum.

¹H NMR (CDCl₃, 400 MHz): δ 7.76 (d, J = 7.9 Hz, 1H), 7.71 (dd, J = 11.9, 7.2 Hz, 4H), 7.42 (dd, J = 7.0, 2.6 Hz, 4H), 7.39 – 7.35 (m, 2H), 7.32 – 7.27 (m, 4H), 7.21 (dd, J = 15.8, 8.5 Hz, 2H), 7.13 – 7.11 (m, 6H), 6.98 (d, J = 6.8 Hz, 1H), 4.16 (d, J = 6.0 Hz, 1H), 1.61 (s, 3H); ³¹P (CDCl₃, 161.94 MHz): δ 17.69; ¹³C NMR (CDCl₃, 100.58 MHz): δ 143.9, 143.6, 143.5, 137.7, 135.5, 134.3, 132.5, 131.6, 131.6, 131.1, 131.08, 129.9, 129.3, 128.3, 128.2, 127.8, 127.2, 125.6, 71.8, 23.4; HRMS: Calc. for C₃₂H₂₉NOP: 474.1981, found: 474.1952.

P,P-diphenyl-*N*-(phenyl(o-tolyl)(p-tolyl)methyl)phosphinic amide (2k):

Prepared according to the general procedure with p-TolMgBr (2.0 eq, overnight) from imine **1e**, without chromatographic purification. Yield: quantitative, pale yellow gum.

¹H NMR (CDCl₃, 400 MHz): 7.77 (d, J = 7.9 Hz, 1H), 7.68 (dd, J = 11.7, 7.5 Hz, 4H), 7.42 – 7.38 (m, 2H), 7.34 (d, J = 7.3 Hz, 2H), 7.30-7.24 (m, 7H), 7.21 – 7.13 (m, 1H), 7.11 – 7.07 (m, 3H), 6.96 (d, J = 7.1 Hz, 1H), 6.88 (d, J = 8.1 Hz, 2H), 4.13 (d, J = 6.2 Hz, 1H), 2.21 (s, 3H), 1.59 (s, 3H). ³¹P (CDCl₃, 161.94 MHz): δ 17.54; ¹³C NMR (CDCl₃, 100.58 MHz): δ 13C NMR (101 MHz, cdcl₃) δ = 144.10, 144.07, 143.74, 143.71, 140.55, 140.51, 137.71, 136.91, 135.64, 135.62, 134.35, 134.33, 132.55, 131.75, 131.70, 131.66, 131.61, 131.13, 131.11, 131.07, 131.04, 129.95, 129.61, 129.27, 128.50, 128.31, 128.19, 127.78, 127.72, 127.21, 126.98, 125.66, 115.65, 71.67, 23.49, 21.06. HRMS: Calc. for C₃₃H₃₁NOP: 488.21378, found: 488.21284.

N-(1,1-diphenylpentyl)-*P*,*P*-diphenylphosphinic amide (2c):

Prepared according to the general procedure with Bu_2Mg (1.2eq) from imine **1a**, without chromatographic purification. Yield: 96%, colourless gum.

¹H NMR (CDCl₃, 400 MHz): δ 7.70 – 7.65 (m, 4H), 7.37 (dd, J = 10.9, 3.8 Hz, 2H), 7.32 – 7.27 (m, 8H), 7.18 – 7.10 (m, 6H), 3.72 (d, J = 5.3 Hz, 1H), 2.58 – 2.53 (m, 2H), 1.24 (dd, J = 13.1, 5.6 Hz, 2H), 1.07 – 0.99 (m, 2H), 0.77 (t, J = 7.3 Hz, 3H); ³¹P (CDCl₃, 161.94 MHz): δ 18.43; ¹³C NMR (CDCl₃, 50 MHz): δ 145.8, 145.7, 135.8, 133.2, 131.8, 131.6, 131.2, 131.2, 128.6, 128.4, 128.2, 128.1, 127.8, 126.9, 66.3, 40.4, 27.0, 23.0, 14.1; HRMS:Calc. for C₂₉H₃₀NOPNa: 462.1957, found: 462.1988

N-(1-(4-methoxyphenyl)-1-phenylpentyl)-P,P-diphenylphosphinic amide (2d):

Prepared according to the general procedure with Bu₂Mg (1.2eq, 94% conversion) from imine **1b**, and purified by column chromatography. Yield: 62% (unstable on silica gel), colourless gum.

¹H NMR (CDCl₃, 400 MHz): δ 7.68 (ddd, J = 24.2, 11.7, 7.4 Hz, 4H), 7.41 – 7.27 (m, 8H), 7.21 (t, J = 7.3 Hz, 2H), 7.15 (dd, J = 7.7, 5.7 Hz, 3H), 6.59 (d, J = 8.8 Hz, 2H), 3.73 (s, 3H), 3.70 (d, J = 4.7 Hz, 1H), 2.63 (td, J = 12.5, 4.7 Hz, 1H), 2.45 (td, J = 13.1, 4.2 Hz, 1H), 1.14-1.04 (m, 2H), 1.01-0.92 (m, 1H), 0.90-0.82 (m, 1H), 0.78 (t, J = 7.3 Hz, 3H); ³¹P (CDCl₃, 161.94 MHz): δ 18.56; ¹³C NMR (CDCl₃, 100.58 MHz): δ 158.4, 146.4, 138.3, 137.1, 131.9, 131.8, 131.7, 131.6, 131.3, 131.2, 131.1, 130.0, 128.4, 128.3, 128.3, 128.2, 128.1, 127.9, 127.8, 126.8, 112.9, 65.9, 55.3, 41.0, 27.0, 23.0, 14.1; HRMS: Calc. for C₃₀H₃₃NO₂P: 470.2243, found: 470.2225

N-(1-(2-methoxyphenyl)-1-phenylpentyl)-*P*,*P*-diphenylphosphinic amide (21):

Prepared according to the general procedure with Bu₂Mg (1.2eq) from imine **11**, and purified by column chromatography. Yield: 87%, colourless gum.

¹H NMR (CDCl₃, 400 MHz): δ 7.85 (dd, J = 11.5, 7.0 Hz, 2H), 7.50 – 7.38 (m, 5H), 7.31 (dd, J = 17.5, 10.3 Hz, 5H), 7.25 – 7.15 (m, 7H), 7.14-7.10 (m, 1H), 6.86 (dd, J = 13.2, 7.7 Hz, 2H), 5.00 (d, J = 8.7 Hz, 1H), 3.34 (s, 3H), 2.48 (td, J = 12.9, 3.2 Hz, 1H), 2.19 – 2.10 (m, 1H), 1.07 (dd, J = 13.1, 6.1 Hz, 2H), 0.90 – 0.81 (m, 2H), 0.68 (t, J = 7.1 Hz, 3H); ³¹P (CDCl₃, 161.94 MHz): δ 18.36; ¹³C NMR (CDCl₃, 100.58 MHz): δ 157.4, 147.9, 132.0, 131.9, 131.5, 131.5, 131.4, 130.9, 130.9, 128.54, 128.5, 128.4, 128.1, 128.0, 127.5, 127.1, 126.04, 126.0, 120.7, 113.1, 65.2, 55.6, 38.9, 38.89, 27.3, 23.0, 14.0; HRMS: Calc. for C₃₀H₃₃NO₂P: 470.2243, found: 470.2225

N-(1-(4-chlorophenyl)-1-phenylpentyl)-*P*,*P*-diphenylphosphinic amide (2m):

Prepared according to the general procedure with Bu₂Mg (1.2eq) from imine **1m**, without chromatographic purification. Yield: 97%, colourless gum.

¹H NMR (CDCl₃, 400 MHz): δ 7.71 (dd, J = 11.9, 7.2 Hz, 2H), 7.62 (dd, J = 12.0, 7.2 Hz, 2H), 7.43 – 7.28 (m, 7H), 7.24 – 7.14 (m, 6H), 7.02 (d, J = 8.6 Hz, 2H), 3.69 (d, J = 4.8 Hz, 1H), 2.63 (td, J = 12.9, 4.3 Hz, 1H), 2.45 (td, J = 12.7, 4.3 Hz, 1H), 1.25 (dd, J = 13.5, 9.4 Hz, 2H), 1.10 – 1.04 (m, 1H), 0.99 – 0.91 (m, 1H), 0.78 (t, J = 7.3 Hz, 3H); ³¹P (CDCl₃, 161.94 MHz): δ 18.57; ¹³C NMR (CDCl₃, 100.58 MHz): δ145.6, 145.6, 143.7, 143.6, 135.1, 134.7, 133.9, 133.5, 132.9, 131.89, 131.7, 131.6, 131.5, 131.4, 131.22, 131.2, 130.2, 128.5, 128.4, 128.3, 128.2, 128.1, 127.7, 127.67, 127.1, 65.9, 40.7, 26.9, 23.0, 14.1; HRMS:Calc. for C₂₉H₃₀ClNOP: 474.1748, found: 474.1729

P,P-diphenyl-*N*-(1-phenyl-1-(2-(trifluoromethyl)phenyl)pentyl)phosphinic amide (2n):

Prepared according to the general procedure with Bu_2Mg (1.2eq) from imine **2n**, without chromatographic purification. Yield: quantitative, colourless gum.

¹H NMR (CDCl₃, 400 MHz): δ 7.84 (dd, J = 11.8, 7.3 Hz, 2H), 7.61 (dd, J = 6.8, 2.4 Hz, 2H), 7.50 (dd, J = 12.1, 7.5 Hz, 2H), 7.45 (d, J = 6.9 Hz, 1H), 7.41 (dd, J = 7.5, 2.9 Hz, 2H), 7.37 (dd, J = 7.5, 1.3 Hz, 1H), 7.32 (dd, J = 16.0, 7.1 Hz, 2H), 7.21-7.14 (m, 7H), 4.25 (d, J = 3.7 Hz, 1H), 2.72 (td, J = 12.9, 4.1 Hz, 1H), 2.49 – 2.41 (m, 1H), 1.14 (dt, J = 14.2, 7.2 Hz, 2H), 0.92 – 0.80 (m, 2H), 0.72 (t, J = 7.2 Hz, 3H); ³¹P (CDCl₃, 161.94 MHz): δ 18.46; ¹⁹F (CDCl₃, 376 MHz): δ -52.89; ¹³C NMR (CDCl₃, 50 MHz): δ 145.5, 144.5, 135.9, 135.0, 133.3, 132.4, 131.8, 131.7, 131.62, 131.6, 131.4, 131.29, 131.27, 131.2, 131.0, 129.7, 129.5, 129.4, 129.3, 129.2, 128.7, 128.6, 128.4, 128.3, 128.0, 127.6, 127.5, 127.3, 126.9, 126.6, 121.9, 66.1 (d, J = 2Hz), 42.3, 29.8, 27.5, 22.8, 14.1; HRMS:Calc. for C₃₀H₂₉F₃NOPNa: 530.1831, found: 530.1862

P,P-diphenyl-*N*-(1-phenyl-1-(thiophen-2-yl)pentyl)phosphinic amide (20):

Prepared according to the general procedure with Bu₂Mg (1.2eq) from imine **10**, without chromatographic purification. Yield: 99%, colourless gum.

¹H NMR (CDCl₃, 400 MHz): δ 7.75 (dt, J = 11.5, 8.0 Hz, 4H), 7.45 (d, J = 7.9 Hz, 2H), 7.41 – 7.36 (m, 2H), 7.31 (td, J = 7.1, 1.8 Hz, 4H), 7.23 – 7.15 (m, 3H), 7.05 (d, J = 5.1 Hz, 1H), 6.90 (d, J = 3.5 Hz, 1H), 6.76 – 6.74 (m, 1H), 3.77 (d, J = 4.7 Hz, 1H), 2.71 – 2.63 (m, 1H), 2.55 – 2.47 (m, 1H), 1.30 – 1.25 (m, 2H), 1.14 – 1.07 (m, 2H), 0.80 (t, J = 7.1 Hz, 3H); ³¹P (CDCl₃, 161.94 MHz): δ 18.26; ¹³C NMR (CDCl₃, 100.58 MHz): δ 145.1, 134.7, 133.8, 133.77, 131.9, 131.8, 131.7, 131.6, 131.32, 131.3, 131.24, 131.2, 128.4, 128.3, 128.2, 127.9, 127.7, 127.5, 126.8, 126.5, 124.8, 64.5, 42.2, 27.0, 22.9, 14.1; HRMS: Calc. for C₂₇H₂₉NOPS: 446.1702, found: 446.1682

P,P-diphenyl-*N*-(1-phenyl-1-(pyridin-2-yl)pentyl)phosphinic amide (2p):

Prepared according to the general procedure with Bu_2Mg (1.2eq) from imine **1p**, and purified by column chromatography. Yield: 38%, colourless gum.

¹H NMR (CDCl₃, 400 MHz): δ 8.51 (d, J = 4.7 Hz, 1H), 7.83 (dd, J = 11.9, 6.8 Hz, 1H), 7.55 (t, J = 7.5 Hz, 1H), 7.51 – 7.44 (m, 1H), 7.41 (td, J = 7.2, 3.1 Hz, 1H), 7.22 (dd, J = 7.5, 1.1 Hz, 1H), 7.16 (dd, J = 6.9, 5.1 Hz, 1H), 7.10 (ddd, J = 7.6, 5.6, 2.9 Hz, 2H), 6.98 – 6.95 (m, 1H), 6.88 (d, J = 8.0 Hz, 1H), 6.75 (d, J = 10.5 Hz, 1H), 2.88 – 2.79 (m, 1H), 2.31 – 2.22 (m, 1H), 1.66 (bs, 1H), 1.60 (bs, 1H), 0.82 (t, J = 7.4 Hz, 2H); ³¹P (CDCl₃, 161.94 MHz): δ 18.42; ¹³C NMR (CDCl₃, 100.58 MHz): δ 163.6, 146.4, 137.2, 134.3, 133.0, 132.9, 132.4, 132.3, 132.2, 131.9, 131.7, 131.6, 131.4, 131.38, 130.5, 128.5, 128.4, 128.3, 127.8, 127.7, 127.65, 126.9, 122.2, 121.9, 65.0, 40.0, 26.1, 23.1, 14.2; HRMS: Calc. for C₂₈H₃₀N₂OP: 441.2090, found: 441.2071

P,P-diphenyl-*N*-(1-phenyl-1-(thiazol-2-yl)pentyl)phosphinicamide (2q):

Prepared according to the general procedure with Bu_2Mg (1.2eq) from imine $\mathbf{1q}$, without chromatographic purification. Yield: quantitative, orange gum.

¹H NMR (CDCl₃, 400 MHz): δ 7.82 – 7.75 (m, 2H), 7.65 (d, J = 3.3 Hz, 1H), 7.62 – 7.56 (m, 2H), 7.44 (dd, J = 10.2, 4.4 Hz, 1H), 7.41 – 7.35 (m, 2H), 7.31 (d, J = 7.3 Hz, 1H), 7.29 (d, J = 3.2 Hz, 1H), 7.25 – 7.17 (m, 4H), 7.06 – 7.03 (m, 3H), 5.25 (d, J = 8.5 Hz, 1H), 2.83 (td, J = 12.9, 4.2 Hz, 1H), 2.39 (td, J = 13.0, 4.1 Hz, 1H), 1.62 – 1.51 (m, 1H), 1.39 – 1.29 (m, 1H), 0.92 (ddd, J = 16.5, 12.7, 6.8 Hz, 2H), 0.82 (t, J = 7.3 Hz, 3H). ³¹P (CDCl₃, 161.94 MHz): δ 18.61; ¹³C NMR (CDCl₃, 100.58 MHz): δ 177.8, 177.76, 144.0, 143.97, 140.9, 135.3, 134.1, 134.0, 132.8, 132.1, 132.0, 131.6, 131.6, 131.56, 131.5, 131.0, 130.9, 128.5, 128.4, 128.0, 127.9,

127.86, 127.8, 127.6, 120.3, 65.8, 41.2, 26.4, 22.9, 14.1. HRMS: Calc. for $C_{26}H_{28}N_2OPS$: 447.1655, found: 447.1642

P,P-diphenyl-*N*-(1-phenyl-1-(thiazol-2-yl)but-3-en-1-yl)phosphinic amide (2r):

Prepared according to the general procedure with AllylMgBr (2.0 eq) from imine **1q**, without chromatographic purification. Yield: quantitative, orange gum.

¹H NMR (CDCl₃, 400 MHz): δ 7.81 – 7.75 (m, 2H), 7.66 (d, J = 3.3 Hz, 1H), 7.63 – 7.57 (m, 2H), 7.45 (dd, J = 10.4, 4.3 Hz, 1H), 7.38 (ddd, J = 7.0, 5.4, 2.5 Hz, 2H), 7.33 – 7.18 (m, 6H), 7.07 – 7.00 (m, 3H), 5.69 (ddt, J = 17.1, 10.1, 7.1 Hz, 1H), 5.23 (dd, J = 17.0, 1.6 Hz, 1H), 5.09 (dd, J = 10.2, 1.9 Hz, 1H), 5.00 (d, J = 7.4 Hz, 1H), 3.72 (dd, J = 13.4, 7.3 Hz, 1H), 3.32 (dd, J = 13.5, 6.7 Hz, 1H), ³¹P (CDCl₃, 161.94 MHz): δ 19.07; ¹³C NMR (CDCl₃, 100.58 MHz): δ 176.8, 142.1, 141.4, 135.1, 134.0, 133.9, 133.1, 132.7, 132.1, 132.0, 131.6, 131.57, 131.5, 131.4, 131.0, 130.9, 128.5, 128.4, 128.0, 127.9, 127.8, 127.76, 120.4, 120.3, 65.4, 46.5, HRMS: Calc. for C₂₅H₂₄N₂OPS: 431.1342, found: 431.1329

P,P-diphenyl-*N*-(phenyl(thiazol-2-yl)(thiophen-2-yl)methyl)phosphinic amide (2s):

Prepared according to the general procedure with 2-thienylMgBr (2.0 eq, overnight) from imine **1q**, without chromatographic purification. Yield: quantitative, brown gum.

¹H NMR (CDCl₃, 400 MHz): δ 7.75 – 7.69 (m, 5H), 7.39 – 7.26 (m, 10H), 7.23 (dd, J = 3.7, 1.1 Hz, 1H), 7.11 (dd, J = 5.1, 1.1 Hz, 1H), 7.05 (d, J = 7.5 Hz, 2H), 6.82 (dd, J = 5.1, 3.7 Hz, 1H), 5.51 (d, J = 7.5 Hz, 1H). ³¹P (CDCl₃, 161.94 MHz): δ 18.70; ¹³C NMR (CDCl₃, 100.58 MHz): δ 177.68, 177.61, 148.98, 148.96, 142.19, 142.16, 142.03, 131.87, 131.77, 131.76, 131.66, 131.34, 131.32, 131.24, 131.22, 129.60, 129.29, 128.53, 128.33, 128.28, 128.20, 128.15, 127.63, 126.97, 126.19, 120.91, 67.31. HRMS: Calc. for C₂₆H₂₂N₂OPS₂: 473.09057 found: 473.08985.

N-(cyclopentyl(phenyl)(thiazol-2-yl)methyl)-*P*,*P*-diphenylphosphinic amide (2t):

Prepared according to the general procedure with (cyclopentyl)₂Mg (2.0 eq, 3h) from imine **1q**, and purified by column chromatography. Yield: 60%, orange gum.

¹H NMR (CDCl₃, 400 MHz): δ 7.77 – 7.73 (m, 1H), 7.72 (d, J = 3.3 Hz, 1H), 7.47 (dd, J = 12.5, 7.6 Hz, 2H), 7.42 (d, J = 7.2 Hz, 1H), 7.36 (td, J = 7.4, 7.3, 3.3 Hz, 3H), 7.30 (d, J = 3.3 Hz, 1H), 7.22 (dd, J = 7.5, 1.3 Hz, 1H), 7.17 (dd, J = 8.1, 1.3 Hz, 2H), 7.12 (td, J = 7.5, 3.4 Hz, 2H), 6.95 – 6.88 (m, 3H), 5.34 (d, J = 9.0 Hz, 1H), 3.92 – 3.77 (m, 1H), 2.15 – 2.06 (m, 1H), 1.91 – 1.78 (m, 1H), 1.71 – 1.60 (m, 1H), 1.53 – 1.41 (m, 2H), 1.38 – 1.31 (m, 1H), 1.18 – 1.07 (m, 2H), 0. ³¹P (CDCl₃, 161.94 MHz): δ 18.58; ¹³C NMR (CDCl₃, 100.58 MHz): δ 175.18, 175.09, 141.15, 141.13, 140.79, 132.17, 132.08, 131.56, 131.53, 131.32, 131.23, 130.73, 130.70, 130.21, 128.60, 128.47, 127.92, 127.86, 127.74, 127.30, 120.16, 69.56, 48.60, 29.44, 28.49, 26.44, 26.07. HRMS: Calc. for C₂₇H₂₈N₂OPS: 459.16545, found: 459.16499.