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Preparation of complexes. 

[Pt(H4tg-S)(terpy)]ClO4 ([1]ClO4). To an orange solution containing [PtCl(terpy)]Cl·2H2O
 1 (0.20 

g, 0.37 mmol) in 40 mL of water was added a solid sample of KH4tg·H2O
 2 (0.11 g, 0.41 mmol). The 

mixture was stirred at room temperature for 10 min, which gave a red solution. To the red solution 

was added a 1.0 M NaClO4 aqueous solution (5 mL), followed by allowing it to stand at room 

temperature for 4 days. The resulting orange fiber crystals were collected by filtration. Yield: 0.25 g 

(87%). Anal. Calcd for [Pt(H4tg)(terpy)]ClO4·2H2O ([1]ClO4·2H2O = C21H22N3ClO9PtS): C, 33.23; 

H, 3.45; N, 5.54%. Found: C, 33.29; H, 3.37; N, 5.58%. 1H NMR (D2O):  9.11 (2H, d, J = 5.6 Hz), 

8.31 (1H, t, J = 8.2 Hz), 8.26 (2H, td, J = 7.8, 1.5 Hz), 8.13 (2H, d, J = 8.8 Hz), 8.09 (2H, d, J = 7.6 

Hz), 7.71-7.68 (2H, m), 4.42 (1H, d, J = 8.8 Hz), 3.71 (1H, dd, J = 12.1, 1.3 Hz), 3.51 (1H, dd, J = 

12.2, 5.4 Hz), 3.33-3.26 (4H, m). IR (cm1): 625, 1090 ((ClO4
)). Orange needle crystals suitable 

for X-ray analysis were obtained by the recrystallization of the fiber crystals from hot water. 

[Pt(H4tg-S)(terpy)]PF6 ([1]PF6). This complex-salt was obtained as orange fiber crystals by a 

method similar to that for [1]ClO4, using a 1.0 M NH4PF6 aqueous solution instead of a 1.0 M 

NaClO4 aqueous solution. Yield: 0.25 g (85%). Anal. Calcd for [Pt(H4tg)(terpy)]PF6·1.5H2O 

([1]PF6·1.5H2O = C21H25F6N3O6.5PPtS) : C, 31.71; H, 3.17; N, 5.28%. Found: C, 31.57; H, 3.12; N, 

5.34%. IR (cm1): 560, 842 (PF6
)). Orange needle crystals suitable for X-ray analysis were 

obtained by allowing the remaining filtrate to stand at room temperature. 

 

Measurements. 

The electronic absorption spectra were recorded with a JASCO V-660 spectrophotometer at room 

temperature. The IR spectra were recorded on a JASCO FT/IR-4100 infrared spectrometer using KBr 

disks at room temperature. The luminescent spectra were recorded on a JASCO FP-6600 

spectrometer in solid state at room temperature. The light shorter than 370 nm was removed by using 

a glass filter. The emission spectra in the solid state were recorded by scanning 10 times with a rate 
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of 500 nm /min. The solid state emission spectrum was accumulated for 10 times scan The internal 

quantum yields were measured by the absolute method using a spectrofluorometer (Jasco FP-8500) 

with a fluorescence integrating sphere unit (Jasco ILFC-847) at an excitation wavelength of 340 nm 

using a Xe lamp as the light source, and the data were corrected using both deuterium and halogen 

lamps. The elemental analyses (C, H, N) were performed with Yanaco CHN Corder MT-5. The 1H 

NMR spectra were recorded with a JEOL GSX400 spectrometer in D2O. Sodium 

4,4’-dimethyl-4-silapentane-1-sulfonate (DSS) was used as the internal standard. The molar 

conductivities were measured with a HORIBA DS12 conductivity meter. The powder X-ray 

diffraction measurement experiments were performed on a Bruker D2 PHASER. 

 

X-ray crystallography. 

Single-crystal X-ray diffraction measurements for [1]ClO4 were performed on a Rigaku RAXIS 

RAPID imaging plate and Vari-Max with graphite monochromated Mo-K radiation ( = 0.71075 

Å) at 200 K. The measurements for [1]PF6 were performed on a Rigaku R-AXIS VII imaging plate 

and Vari-Max with graphite monochromated Mo-K radiation ( = 0.71075 Å) at 200 K. The 

intensity data were collected by the -scan technique and empirically corrected for absorption. The 

structures of the complexes were solved by direct methods using SHELXS97.3 The structure 

refinements were carried out using full matrix least-squares (SHELXL-97).3 Because of the quite 

thin needle-like shape of [1]ClO4 (0.25 x 0.03 x 0.01 mm3) and [1]PF6 (0.15 x 0.01 x 0.01 mm3), the 

X-ray absorption corrections were not effectively made. Thus, only heavy atoms were refined 

anisotropically (Pt, S, Cl, and O for [1]ClO4 and Pt, S, and P for [1]PF6), and others were refined by 

using isotropic models. Hydrogen atoms were placed at calculated positions. All structural 

parameters are summarized in the Tables S2-S4.  

 

Computational details. 
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The electronic structures were calculated by using Gaussian09 software.4 The density functional 

theory (DFT) and the time-dependent DFT (TD-DFT) calculations were performed by using the 

B3LYP function with Lanl2dz basis sets on Pt atom, 6-31G* basis sets on N, S atoms, and 6-31G 

basis sets on C, H, O atoms.5 All of the geometries were taken directly from the single-crystal 

structure coordinates; a single-point calculation was performed on each asymmetric unit. 
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(c) 

 

Fig. S1. 1H NMR spectra of (a) [1]ClO4 and (b) [1]PF6 in D2O. (*) indicates the signal from H2O. (c) 

Drawing of the structure of [1]+. 
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Fig. S2. IR spectra of (a) [1]ClO4 and (b) [1]PF6. 
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(a) 

 

 

(b) 

 

 

 

Fig. S3. Electronic absorption spectrum of (a) [1]ClO4 and (b) [1]PF6 in H2O. 
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Fig. S4. Powder X-ray diffraction spectra of [1]ClO4 (a) simulated based on the single-crystal X-ray 

analytical data, (b) before grinding and (c) after grinding. Powder X-ray diffraction spectra of [1]PF6 

(d) simulated based on the single-crystal X-ray analytical data, (e) before grinding and (f) after 

grinding.  
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Fig. S5. (a) Top and (b) side views of the 1D chain structure and (c) the 3D packing structure in 

[1]ClO4·2H2O. Orange and blue dotted lines indicate the – and hydrogen bonding interactions, 

respectively. H atoms are omitted for clarity. Pt: light green, S: yellow, Cl: pale blue, O: pink N: blue, 

C: gray. 

 

 

Fig. S6. (a) Top and (b) side views of the 1D chain structure and (c) the 3D packing structure in 

[1]PF6·1.5H2O. Orange and blue dotted lines indicate the – and hydrogen bonding interactions, 

respectively. H atoms are omitted for clarity. Pt: light green, S: yellow, P: orange, F: olive green, O: 

pink N: blue, C: gray. 
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(a)     (b) 

 
(c)     (d) 

 

Fig. S7. Emission and excitation spectra of (a) [1]ClO4 and (b) [1]PF6 in the solid state at room 

temperature before grinding (black line) and after grinding (red line). Emission and excitation spectra 

of (c) [1]ClO4 and (d) [1]PF6 in H2O/EtOH at 77 K. Excitation wavelength is 340 nm. 
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[Pt(H4tg-S)(terpy)]ClO4 

 

[Pt(H4tg-S)(terpy)]PF6 

 

Fig. S8. The contour plots of molecular orbitals of the complex cations in [1]ClO4 and [1]PF6. The 

surfaces are drawn at 0.05 a.u. level.  
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Fig. S9. Diffuse reflection spectra of [1]ClO4 (left) and [1]PF6 (right) in the solid state before 

grinding (solid line) and after grinding (dashed line).  

 

 

Fig. S10. Emission spectra of [1]ClO4 in the solid state before grinding (black line), after grinding 

(red line), and after recrystallization (blue line). Excitation wavelength is 340 nm. 
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Table S1. Electronic absorption spectral data of [1]ClO4 in water. 

max / nm ( / 103 cm-1 M-1) 

456.6 (0.8802) 

341.8 (11.06) 

328.2 (9.663) 

311.0 (9.267) 

279.0 (18.81) 

242.4 (26.69) 
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Table S2. Crystallographic data of complexes. 

 [1]ClO4·2H2O [1]PF6·1.5H2O 

Chemical formula C21H26ClN3O11PtS C21H25F6N3O6.5PPtS 

Formula weight (M) 759.05 795.56 

Crystal system Monoclinic Triclinic 

Space group P21 P1 

a / Å 4.9262(11) 7.9715(3) 

b / Å 38.578(9) 13.0562(4) 

c / Å 13.082(4) 14.1600(5) 

 /˚ 90 63.162(5) 

 /˚ 94.038(8) 89.461(7) 

 /˚ 90 77.050(6) 

V / Å3 2479.9(10) 1274.4(1) 

Z 4 2 

T / K 200(2) 200(2) 

R(int) 0.1765 0.0593 

Dcalcd / g cm-3 2.033 2.073  

 (Mo K), mm-1 51.97 57.184 

Max /˚ 27.48 27.50 

Miller index ranges –6 ≤ h ≤ 6 

–49 ≤ k ≤ 49 

–16 ≤ l ≤ 16 

–10 ≤ h ≤ 10 

–16 ≤ k ≤ 16 

–17 ≤ l ≤ 18 

Reflections collected 22898 14747 

Refinement method Full-matrix least-square on F2 Full-matrix least-square on F2 

Data / restraints / Parameters 11010 / 7 / 447 9887 / 3 / 349 

Flack 0.0018(16) 0.003(13) 

R1 (I>2(I))a 0.1332 0.0748 

wR2
b 0.2876 0.1897 

Goodness-of-fit on F2 1.123 1.140 

Treatment of hydrogen atoms constr constr 

CCDC number 1005469 1005470 

a R1 = |(|Fo|-|Fc|)| / (|Fo|).  b wR2 = [w(Fo2-Fc2)2 / w(Fo2)2]1/2. 
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Table S3. Selected bond distances and angles of [1]ClO4·2H2O. 

Bond distances (Å) 

Pt(1)-N(1) 2.11(3) Pt(2)-N(4) 1.97(2) 

Pt(1)-N(2) 1.89(2) Pt(2)-N(5) 2.08(3) 

Pt(1)-N(3) 2.08(3) Pt(2)-N(6) 2.03(3) 

Pt(1)-S(1) 2.326(7) Pt(2)-S(2) 2.304(9) 

    

Bond angles (˚) 

N(1)-Pt(1)-N(2) 84.2(10) N(4)-Pt(2)-N(5) 79.6(11) 

N(1)-Pt(1)-N(3) 163.4(10) N(4)-Pt(2)-N(6) 161.3(11) 

N(2)-Pt(1)-N(3) 79.2(10) N(5)-Pt(2)-N(6) 81.8(11) 

N(1)-Pt(1)-S(1) 97.5(7) N(4)-Pt(2)-S(2) 101.5(8) 

N(2)-Pt(1)-S(1) 178.0(7) N(5)-Pt(2)-S(2) 173.6(7) 

N(3)-Pt(1)-S(1) 99.0(8) N(6)-Pt(2)-S(2) 97.1(9) 

C(1)-S(1)-Pt(1) 103.1(9) C(22)-S(2)-Pt(2) 102.3(10) 
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Table S4. Selected bond distances and angles of [1]PF6·1.5H2O. 

Bond distances (Å) 

Pt(1)-N(1) 1.998(14) Pt(2)-N(4) 2.013(19) 

Pt(1)-N(2) 1.98(3) Pt(2)-N(5) 1.986(16) 

Pt(1)-N(3) 2.032(14) Pt(2)-N(6) 2.017(16) 

Pt(1)-S(1) 2.294(7) Pt(2)-S(2) 2.281(4) 

    

Bond angles (˚) 

N(1)-Pt(1)- N(2) 81.3(7) N(4)-Pt(2)-N(5) 82.9(7) 

N(1)-Pt(1)- N(3) 163.3(8) N(4)-Pt(2)-N(6) 161.7(6) 

N(2)-Pt(1)-N(3) 81.9(8) N(5)-Pt(2)-N(6) 78.9(7) 

N(1)-Pt(1)-S(1) 96.9(6) N(4)-Pt(2)-S(2) 93.5(4) 

N(2)-Pt(1)-S(1) 176.2(5) N(5)-Pt(2)-S(2) 176.2(6) 

N(3)-Pt(1)-S(1) 99.8(6) N(6)-Pt(2)-S(2) 104.6(5) 

C(1)-S(1)-Pt(1) 108.1(7) C(22)-S(2)-Pt(2) 112.5(5) 
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Table S5. Energy, oscillator strength and major contribution of calculated transitions for [1]ClO4 and 

[1]PF6. 

 

 

 

 

Excited state Energy / eV ( / nm) Oscillator strength Major contributions 

[1]ClO4 

1 2.2226 (557.84) 0.0027 HOMO –> LUMO (99%) 

2 2.7688 (447.79) 0.0009 HOMO –> LUMO+1 (99%) 

3 3.0456 (407.10) 0.0034 HOMO-1 –> LUMO (80%) 

HOMO-2 –> LUMO (13%) 

4 3.3131 (374.23) 0.0103 HOMO-2 –> LUMO (55%) 

HOMO-3 –> LUMO (30%) 

[1]PF6 
   

1 2.3866 (519.51) 0.0547 HOMO –> LUMO (99%) 

2 2.8682 (432.28) 0.0251 HOMO –> LUMO+1 (99%) 

3 3.0892 (401.35) 0.0033 HOMO-1 –> LUMO (31%) 

HOMO-2 –> LUMO (58%) 

4 3.3060 (375.03) 0.0170 HOMO-3 –> LUMO (81%) 


