Supporting Information

Discotic Liquid Crystals as Novel Corrosion-Resistant Coatings

Hsiu-Hui Chen,^{a*} Kung-Chin Chang,^b Chien-Ming Chu,^b Hsu-Heng Hung,^b Min-

Hsiang Hsu, ^b Yu-Chun Hung, ^a Chien-Shiang Wang,^a Jui-Ming Yeh ^b

^a Department of Chemistry, National Kaohsiung Normal University (NKNU), Yanchao Township, Kaohsiung County, Taiwan 82444, Republic of China

^b Department of Chemistry, Chung-Yuan Christian University (CYCU), Chung Li, Taoyuan County, Taiwan 32023, Republic of China

Corresponding author. Tel.: +886-7-7172930#7122; Fax: +886-7-6051083

E-mail address: t3836@nknu.edu.tw

General methods

Experimental

All commercially available chemicals were used without further purification and solvents were carefully dried and distilled prior to use. All glassware was previously heat-dried under vacuum with a hot air gun before use. Reactions were performed under an inert atmosphere. Column chromatography was performed on Geduran Silica 60 (40-63 μ m, Merck). ¹H NMR spectra were recorded at 400 MHz on Bruker spectrometers in CDCl₃ experimental and ¹³C NMR spectra were recorded at 100 MHz on the same spectrometer.

Synthesis of HBC-C12

All compounds were synthesized according to the same procedure reported for the preparation of **HBC-C12**.¹⁻³

¹H NMR (CDCl₃+CS₂, 400 MHz): $\delta = 8.36$ (s, 12H; *-ArH-*), 3.01-2.97 (m, 12H, *-CH*₂-), 2.00-1.96 (m, 12H; *-CH*₂-), 1.63-1.25 (m, 108H; *-CH*₂-), 0.89-0.86 (t, 18H; *-CH*₃). ¹³C NMR (CDCl₃+CS₂, 100 MHz): $\delta = 139.3$, 129.2, 122.7, 120.6, 118.9, 37.2, 32.5, 32.0, 30.0, 22.7, 14.1.

Scheme S1. Synthesis of **HBC-C12**. (a) Pd(dppf)Cl₂, C₁₂H₂₅MgBr, THF, reflux, 98%; (b) Br₂, CHCl₃, rt, 64%; (c) *t*-BuOH, *t*-BuOK, reflux, 87%; (d) Co(CO)₈, 1,4-dioxane, reflux, 66%; (e) FeCl₃, CH₃NO₂/CHCl₂, rt, 91%.

Scheme S1. The synthesis methods of HBC-C12.

Fig. S4 powder X-ray diffractogram of **HBC-C12** in the columnar phase on cooling at (a) 200 °C and (b) rt.

Fig. S5 Optical micrograph of **HBC-C12** at 120 °C sandwiched between glass slides showing pseudo focal conic texture between cross polarisers.

Fig. S6 The cross-cut test for DLC-coating on iron plate

References

- 1 S. Bance, H. J. Barber and A. M. Woolman, J. Chem. Soc., 1943, 1.
- 2 A. Fechtenkötter, N. Tchebotareva, M. Watson and K. Müllen, *Tetrahedron*, 2001, **57**, 3769-3783.
- 3 S. Ito, M. Wehmeier, J. D. Brand, C. Kübel, R. Epsch, J. P. Rabe and K. Müllen, *Chem. Eur. J.*, 2000, **6**, 4327-4342.