Highly diastereo- and enantioselective copper-catalyzed propargylic alkylation of acyclic ketone enamines for the construction of two vicinal stereocenters

De-Yang Zhang, Fu-Lin Zhu, Ya-Hui Wang, Xin-Hu
 Hu, Song Chen, Chuan-Jin Hou, and Xiang-Ping $$\rm Hu*$$

Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China xiangping@dicp.ac.cn

Supporting Information

General Information	S2
Preparation of Morpholine-Derived Enamines 2c and 2f	S2
General Procedure for Copper-Catalyzed Propargylic Alkylation of A	Acyclic Ketone
Enamines with Propargylic Esters	S3
Synthesis of Compound 5	S22
References	S23
Crystal Data and Structure Refinement for 3if	S24
¹ H, ¹³ C NMR and ¹ H- ¹ H NOESY Spectra	S28

General Information

All reactions were carried out under a nitrogen atmosphere. Solvents were purified by standard procedure before use. Commercial reagents were used without further purification. Flash chromatography was performed on silica gel (40-63 µm, 60Å). Thin layer chromatography (TLC) was performed on glass plates coated with silica gel 60 with F254 indicator. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a Bruker 400 MHz spectrometer. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CHCl₃ = δ 7.26 or DMSO = δ 2.50). Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker 100 MHz spectrometer. Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent (CDCl₃ = δ 77.23 or DMSO = 39.60). Data are represented as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz), integration. Enantiomeric ratios were determined by chiral HPLC with *n*-hexane and *i*-PrOH as solvents. Optical rotations were recorded on a JASCO P-1020 polarimeter. Methanol was refluxed with magnesium ribbon and distilled under nitrogen atmosphere before use. Propargylic esters 1 were prepared following the method from the literature.¹ Enamines (E)-2a-b, (E)-2d-e, (E)-2g-h were prepared in the purity of E/Z > 95/5 from the corresponding ketones with morpholine in the presence of boron trifluoride etherate according to the literature method.² Enamines (E)-2i $(E/Z > 95/5)^3$, (E)-2i $(E/Z > 95/5)^5$ and 4 (E/Z =90/10^{2,4a} were prepared according to the literature method. Racemic products **3** were prepared using a combination of Cu(OAc)₂:H₂O and racemic (\pm)-L4 as the catalyst.

Preparation of Morpholine-Derived Enamines 2c and 2f

A mixture of acyclic ketone (50 mmol), morpholine (21.8 mL, 250 mmol), boron trifluoride etherate (0.628 mL, 5 mmol) and molecular sieves 4Å (1.0 g) as the dehydrating agent in anhydrous benzene (60 ml) was refluxed for 72 h using a Cope water separator. Then 4Å molecular sieves were removed by the filtration. The filtrate was concentrated under reduced pressure, and the residue was evaporated in vacuo to give the enamine (*E*)-2c or (*E*)-2f.

(E)-4-(1-(3-fluorophenyl)prop-1-en-1-yl)morpholine (2c). Yellow oil. E/Z > 95/5. ¹H NMR (400 MHz,

CDCl₃): δ 7.32–7.27 (m, 1H), 7.12–7.09 (m, 1H), 7.07–7.04 (m, 1H), 7.00–6.95 (m, 1H), 4.72 (q, J = 6.9 Hz, 1H), 3.70–3.67 (m, 4H), 2.69–2.67 (m, 4H), 1.59 (d, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 163.0 (d, J = 245.6 Hz), 149.2 (d, J = 2.0 Hz), 140.2 (d, J = 7.5 Hz), 129.6 (d, J = 8.3 Hz), 125.8 (d, J = 2.8 Hz), 116.8 (d, J = 21.2 Hz), 114.5 (d, J = 21.1 Hz). 101.0, 67.3, 50.2, 13.9. HRMS calc. for C₁₃H₁₆FNO [M+H]⁺: 222.1294, found: 222.1293.

(*E*)-4-(1-(4-bromophenyl)prop-1-en-1-yl)morpholine (2f). Yellow solid, M.p.: 58-60 °C. *E*/*Z* >95/5. ¹H

NMR (400 MHz, CDCl₃): δ 7.47 (d, J = 8.2 Hz, 2H), 7.20 (d, J = 8.2 Hz, 2H), 4.72 (q, J = 6.9 Hz, 1H), 3.69–3.67 (m, 4H), 2.69–2.66 (m, 4H), 1.57 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 149.3, 136.7, 131.7, 131.4, 121.6, 101.0, 67.3, 50.3, 13.9. HRMS calc. for C₁₃H₁₆BrNO [M+H]⁺: 282.0494, found: 282.0496.

General Procedure for Copper-Catalyzed Propargylic Alkylation of Acyclic Ketone Enamines with Propargylic Esters

A solution of $Cu(OTf)_2$ (5.4 mg, 0.015 mmol) and (*S*)-**L5** (7.8 mg, 0.0165 mmol) in 1 mL of anhydrous methanol was placed in an oven-dried Schlenk flask and stirred at 25 °C under a nitrogen atmosphere for 1 h. The reaction mixture was then cooled to -10 °C, and a solution of propargylic esters **1** (0.3 mmol) and acyclic ketone enamines **2** (0.36 mmol) in 2 mL of anhydrous methanol and ^{*i*}Pr₂NEt (63 uL, 0.36 mmol) were added successively. The mixture was stirred at -10 °C for 12 h. The reaction was then quenched by 3 mL of a buffer of NaOAc/AcOH, and extracted with CH₂Cl₂ (5 mL x 3). The combined extracts were dried over anhydrous Na₂SO₄, and concentrated under vaccum. The residue was passed over a short pad of silica using petroleum ether/EtOAc as eluent and then used for diastereoselective analysis by ¹H NMR or GC. After that, the crude mixture was purified by silica gel chromatography to afford products **3**.

(2*S*,3*S*)-2-Methyl-1,3-diphenylpent-4-yn-1-one (*anti*-3aa). White solid was obtained after purification with column chromatography on silica gel (petroleum ether/Et₂O, 150:1 to 110:1). M.p.: 62-64 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.02–8.00 (m, 2H), 7.60–7.55 (m, 1H), 7.50–7.46 (m, 2H), 7.39–7.32 (m, 4H), 7.29–7.25 (m, 1H), 4.01 (dd, *J* = 9.6, 2.4 Hz, 1H), 3.92–3.84 (m, 1H), 2.12 (d, *J* = 2.4 Hz, 1H), 0.99 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 202.7, 139.0, 137.0, 133.3, 128.9, 128.8, 128.7,

 $128.7, 127.6, 85.4, 71.5, 47.8, 40.4, 16.4. \text{ HRMS calc. for } C_{18}H_{16}O \left[M+H\right]^+: 249.1279, \text{ found: } 249.1281.$

(2S,3R)-2-Methyl-1,3-diphenylpent-4-yn-1-one (syn-3aa). 94% yield, syn/anti >95/5. White solid was

obtained after purification with column chromatography on silica gel (petroleum ether/Et₂O, 150:1 to 110:1). M.p.: 63-65 °C. >99% ee was determined by chiral HPLC (Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 70/30, 0.8 mL/min, 230 nm, 40 °C): t_R (minor) = 7.5 min, t_R (major) = 9.9 min. $[\alpha]_D^{30}$ = 91.6 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.77–7.75 (m, 2H), 7.51–7.47 (m, 1H), 7.39–7.35 (m, 4H), 7.25–7.21 (m, 2H), 7.16–7.12 (m, 1H), 4.20 (dd, *J* = 8.5, 2.5 Hz, 1H), 3.86–3.79 (m,

1H), 2.34 (d, J = 2.5 Hz, 1H), 1.41 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 202.2, 140.0, 136.7, 133.2, 128.8, 128.7, 128.3, 128.3, 127.3, 84.2, 72.9, 47.7, 40.7, 16.3. HRMS calc. for C₁₈H₁₆O [M+H]⁺: 249.1279, found: 249.1277.

(2S,3R)-3-(2-Chlorophenyl)-2-methyl-1-phenylpent-4-yn-1-one (syn-3ba). 86% yield, syn/anti >95/5.Colorless oil was obtained after purification with column chromatography on silica

Colorless oil was obtained after purification with column chromatography on silica gel (petroleum ether/Et₂O, 150:1 to 110:1). 99% ee was determined by chiral HPLC (Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 230 nm, 40 °C): t_R (minor) = 13.0 min, t_R (major) = 17.4 min. $[\alpha]_D^{29} = -12.0$ (*c* 0.97, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.95–7.92 (m, 2H), 7.60 (dd, J = 7.6, 1.6 Hz, 1H), 7.56–7.52 (m, 1H), 7.46–7.42 (m, 2H), 7.34 (dd, J = 7.8, 1.4 Hz, 1H), 7.25–7.15 (m, 2H), 4.66 (dd,

J = 6.0, 2.5 Hz, 1H), 4.01–3.94 (m, 1H), 2.33 (d, J = 2.5 Hz, 1H), 1.28 (d, J = 7.0 Hz, 3H). ¹³C NMR (100

(2S,3R)-3-(3-Chlorophenyl)-2-methyl-1-phenylpent-4-yn-1-one (syn-3ca). 94% yield, syn/anti = 94/6.

Colorless oil was obtained after purification with column chromatography on silica gel (petroleum ether/Et₂O, 150:1 to 110:1). 99% ee was determined by chiral HPLC (Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 230 nm, 40 °C): t_R (minor) = 9.6 min, t_R (major) = 11.6 min. $[\alpha]_D^{29}$ = 87.8 (*c* 1.03, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.79–7.76 (m, 2H), 7.52–7.48 (m, 1H), 7.41–7.37 (m, 3H), 7.25–7.22 (m, 1H), 7.16–7.10 (m, 2H), 4.17 (dd, *J* = 8.7, 2.5 Hz, 1H), 3.83–3.76 (m, 1H), 2.37 (d, *J* = 2.5 Hz, 1H), 1.41 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 201.7,

142.1, 136.5, 134.5, 133.3, 129.9, 128.9, 128.4, 128.3, 127.6, 126.6, 83.5, 73.4, 47.6, 40.2, 16.5. HRMS calc. for $C_{18}H_{15}CIO [M+H]^+$: 283.0890, found: 283.0888.

(2S,3R)-3-(4-Chlorophenyl)-2-methyl-1-phenylpent-4-yn-1-one (syn-3da). 93% yield, syn/anti >95/5.

Colorless oil was obtained after purification with column chromatography on silica gel (petroleum ether/Et₂O, 150:1 to 110:1). 99% ee was determined by chiral HPLC (Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 230 nm, 40 $^{\circ}$ C): t_R (minor) = 10.5 min, t_R (major) = 13.6 min. $[\alpha]_D^{30}$ = 85.7 (c 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, J = 7.5 Hz, 2H), 7.51 (t, J = 7.3 Hz, 1H), 7.39 (t, J = 7.6 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H), 7.20 (d, J = 8.4 Hz, 2H), 4.18

(dd, J = 8.9, 2.2 Hz, 1H), 3.83-3.76 (m, 1H), 2.36 (d, J = 2.4 Hz, 1H), 1.42 (d, J = 6.9 Hz, 3H).¹³C NMR (100 MHz, CDCl₃): 201.9, 138.7, 136.5, 133.4, 133.1, 129.7, 128.9, 128.8, 128.3, 83.9, 73.1, 47.8, 40.0, 16.7. HRMS calc. for C₁₈H₁₅ClO [M+H]⁺: 283.0890, found: 283.0885.

(2S,3R)-3-(4-Fluorophenyl)-2-methyl-1-phenylpent-4-yn-1-one (syn-3ea). 95% yield, syn/anti >95/5.

Colorless oil was obtained after purification with column chromatography on silica gel (petroleum ether/Et₂O, 150:1 to 110:1). >99% ee was determined by chiral HPLC (Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 230 nm, 40 °C): t_R (minor) = 10.5 min, t_R (major) = 14.5 min. $[\alpha]_D^{28}$ = 93.0 (*c* 1.02, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.77–7.75 (m, 2H), 7.52–7.48 (m, 1H), 7.40–7.33

(m, 4H), 6.93–6.89 (m, 2H), 4.18 (dd, J = 9.0, 2.3 Hz, 1H), 3.84–3.76 (m, 4H), 2.36 (d, J = 2.5 Hz, 1H), 1.43 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 202.1, 162.0 (d, J = 245.7 Hz), 136.7, 135.86 (d, J = 3.2 Hz), 133.3, 129.9 (d, J = 8.1 Hz), 128.8, 128.2, 115.5 (d, J = 21.5 Hz), 84.2, 73.0, 47.9, 40.0, 16.7. HRMS calc. for C₁₈H₁₅FO [M+H]⁺: 267.1185, found: 267.1180.

(2S,3R)-3-(4-Bromophenyl)-2-methyl-1-phenylpent-4-yn-1-one (syn-3fa). 92% yield, syn/anti = 95/5.

Colorless oil was obtained after purification with column chromatography on silica gel (petroleum ether/Et₂O, 150:1 to 110:1). >99% ee was determined by chiral HPLC (Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 230 nm, 40 °C): t_R (minor) = 10.9 min, t_R (major) = 14.0 min. $[\alpha]_D^{28}$ = 72.7 (*c* 0.96, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.77–7.75 (m, 2H), 7.52–7.48 (m, 1H), 7.40–7.34

(m, 4H), 7.26–7.24 (m, 2H), 4.16 (dd, J = 8.9, 2.5 Hz, 1H), 3.82–3.75 (m, 1H), 2.35 (d, J = 2.5 Hz, 1H), 1.41 (d, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 201.8, 139.2, 136.4, 133.4, 131.7, 130.1, 128.9, 128.3, 121.2, 83.8, 73.2, 47.6, 40.0, 16.7. HRMS calc. for C₁₈H₁₅BrO [M+H]⁺: 327.0385, found: 327.0376.

(2*S*,3*R*)-2-Methyl-1-phenyl-3-(4-(trifluoromethyl)phenyl)pent-4-yn-1-one (*syn*-3ga). 93% yield, syn/anti = 94/6. Colorless oil was obtained after purification with column chromatography on silica gel (petroleum ether/Et₂O, 150:1 to 110:1). 99% ee was determined by chiral HPLC (Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 98/2, 0.5 mL/min, 230 nm, 40 °C): t_R (minor) = 14.7 min, t_R (major) = 17.4 min. $[\alpha]_D^{29} = 66.5$ (*c* 0.95, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, *J* = 7.7 Hz, 2H),

7.53–7.48 (m, 5H), 7.39 (t, J = 7.7 Hz, 2H), 4.27 (dd, J = 8.9, 2.0 Hz, 1H), 3.88–3.80 (m, 1H), 2.38 (d, J = 2.3 Hz, 1H), 1.46 (d, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 201.6, 144.2, 136.4, 133.5, 129.6 (q, J = 32.5 Hz), 128.9, 128.8, 128.3, 125.7 (q, J = 3.8 Hz), 124.3 (q, J = 270.5 Hz), 83.5, 73.4, 47.64, 40.4, 16.8. HRMS calc. for C₁₉H₁₅F₃O [M+H]⁺: 317.1153, found: 317.1150.

(2S,3R)-2-Methyl-1-phenyl-3-(p-tolyl)pent-4-yn-1-one (syn-3ha). 93% yield, syn/anti >95/5. White

solid was obtained after purification with column chromatography on silica gel (petroleum ether/Et₂O, 150:1 to 110:1). M.p.: 82–84 °C. 99% ee was determined by chiral HPLC (Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 230 nm, 40 °C): t_R (minor) = 11.9 min, t_R (major) = 15.9 min. $[\alpha]_D^{30}$ = 86.5 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.78–7.76 (m, 2H), 7.49–7.46 (m, 1H),

7.39–7.35 (m, 2H), 7.26–7.24 (m, 2H), 7.03 (d, J = 8.0 Hz, 2H), 4.17 (d, J = 8.4 Hz, 1H), 3.84–3.77 (m, 1H), 2.32 (dd, J = 2.5, 1.0 Hz, 1H), 2.23 (s, 3H), 1.39 (dd, J = 6.9, 0.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 202.2, 137.1, 136.8, 136.7, 133.1, 129.4, 128.7, 128.3, 128.1, 84.4, 72.7, 47.7, 40.2, 21.1, 16.3. HRMS calc. for C₁₉H₁₈O [M+H]⁺: 263.1436, found: 263.1430.

(2S,3R)-3-(4-Methoxyphenyl)-2-methyl-1-phenylpent-4-yn-1-one (syn-3ia). 87% yield, syn/anti >95/5.

White solid was obtained after purification with column chromatography on silica gel (petroleum ether/EtOAc, 100:1 to 60:1). M.p.: 72–74 °C. 98% ee was determined by chiral HPLC (Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 70/30, 0.8 mL/min, 230 nm, 40 °C): t_R (minor) = 10.7 min, t_R (major) = 15.1 min. $[\alpha]_D^{29}$ = 101.4 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.79–7.77 (m, 2H),

7.51–7.47 (m, 1H), 7.40–7.36 (m, 2H), 7.31–7.28 (m, 2H), 6.78–6.76 (m, 2H), 4.16 (dd, J = 8.7, 2.4 Hz, 1H), 3.84–3.77 (m, 1H), 3.72 (s, 3H), 2.34 (d, J = 2.5 Hz, 1H), 1.41 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 202.3, 158.8, 136.8, 133.1, 132.1, 129.3, 128.7, 128.3, 114.1, 84.5, 72.6, 55.4, 47.8, 39.8, 16.4. HRMS calc. for C₁₉H₁₈O₂ [M+Na]⁺: 301.1204, found: 301.1202.

(2S,3R)-2-Methyl-3-(naphthalen-2-yl)-1-phenylpent-4-yn-1-one (syn-3ja). 90% yield, syn/anti = 94/6.

Colorless oil was obtained after purification with column chromatography on silica gel (petroleum ether/EtOAc, 150:1 to 100:1). 99% ee was determined by chiral HPLC (Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, 230 nm, 40 °C): t_R (minor) = 12.3 min, t_R (major) = 21.1 min. $[\alpha]_D^{30}$ = 58.2 (*c* 1.04, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.85 (s, 1H), 7.81–7.75 (m, 5H),

7.56–7.54 (m, 1H), 7.48–7.40 (m, 3H), 7.37–7.34 (m, 2H), 4.42 (d, J = 8.4 Hz, 1H), 4.00–3.93 (m, 1H), 2.43 (d, J = 2.0 Hz, 1H), 1.48 (dd, J = 6.9, 0.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 202.0, 137.4, 136.6, 133.5, 133.2, 132.7, 128.8, 128.5, 128.3, 128.1, 127.7, 127.3, 126.3, 126.1, 126.0, 84.1, 73.2, 47.6, 40.6, 16.4. HRMS calc. for C₂₂H₁₈O [M+H]⁺: 299.1436, found: 299.1430.

(2*S*,3*R*)-2-Methyl-1-phenyl-3-(pyridin-3-yl)pent-4-yn-1-one (*syn*-3ka). 74% yield, *syn/anti* = 92/8. Colorless oil was obtained after purification with column chromatography on silica gel (petroleum ether/EtOAc, 10:1 to 2:1). 97% ee was determined by chiral HPLC (Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 230 nm, 40 °C): t_R (minor) = 17.2 min, t_R (major) = 22.9 min. $[\alpha]_D^{29} = 75.1$ (*c* 0.93, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 8.64 (s, 1H), 8.39 (d, *J* = 4.3 Hz, 1H), 7.78–7.76 (m, 2H), 7.70-7.68 (m, 1H), 7.51–7.48 (m, 1H), 7.38 (t, *J* = 7.7 Hz, 2H), 7.14 (dd, *J* = 7.8, 4.8 Hz, 1H), 4.20

(dd, J = 9.0, 2.5 Hz, 1H), 3.86–3.78 (m, 1H), 2.37 (d, J = 2.5 Hz, 1H), 1.45 (d, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 201.5, 149.8, 148.6, 136.3, 136.0, 135.8, 133.5, 128.9, 128.3, 123.5, 83.2, 73.4, 47.6,

38.2, 16.8. HRMS calc. for C₁₇H₁₅NO [M+H]⁺: 250.1232, found: 250.1230.

(2S,3R)-2-Methyl-1-phenyl-3-(thiophen-2-yl)pent-4-yn-1-one (syn-3la). 96% yield, syn/anti >95/5. Pale

yellow oil was obtained after purification with column chromatography on silica gel (petroleum ether/Et₂O, 150:1 to 110:1). 97% ee was determined by chiral HPLC (Chiralcel OD-H, *n*-hexane/*i*-PrOH = 98/2, 0.5 mL/min, 230 nm, 40 °C): t_R (minor) = 14.3 min, t_R (major) = 15.5 min. $[\alpha]_D^{28} = 95.8$ (*c* 0.95, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.86–7.84 (m, 2H), 7.55–7.51 (m, 1H), 7.44–7.40 (m, 2H), 7.09 (dd,

J = 5.1, 1.0 Hz, 1H), 6.96 (d, J = 3.4 Hz, 1H), 6.82 (dd, J = 5.1, 3.6 Hz, 1H), 4.54 (dd, J = 8.7, 2.4 Hz, 1H), 3.92–3.85 (m, 1H), 2.41 (d, J = 2.5 Hz, 1H), 1.44 (d, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 201.9, 143.1, 136.5, 133.3, 128.9, 128.4, 126.8, 126.0, 124.5, 83.4, 73.0, 48.3, 35.7, 16.6. HRMS calc. for C₁₆H₁₄OS [M+H]⁺: 255.0844, found: 255.0841.

(2S,3R)-2,3-Dimethyl-1-phenylpent-4-yn-1-one (syn-3ma). 27% yield, syn/anti = 89/11. Colorless oil

was obtained after purification with column chromatography on silica gel (petroleum ether/Et₂O, 150:1 to 110:1). 98% ee was determined by chiral HPLC (Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 98/2, 0.5 ml/min, 230 nm, 40 °C): t_R (major) = 13.1 min, t_R (minor) = 16.1 min. $[\alpha]_D^{29} = 72.0$ (*c* 0.85, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.76–7.94 (m, 2H), 7.59–7.56 (m, 1H), 7.49–7.46 (m, 2H), 3.49–3.41 (m, 1H), 3.03–2.95 (m, 1H),

2.15 (d, J = 2.4 Hz, 1H), 1.35 (d, J = 7.0 Hz, 3H), 1.17 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 202.9, 136.9, 133.4, 128.9, 128.5, 87.0, 70.5, 46.1, 29.3, 20.0, 16.9. HRMS calc. for C₁₃H₁₄O [M+H]⁺: 187.1123, found: 187.1118.

(2S,3R)-1-(2-Fluorophenyl)-2-methyl-3-phenylpent-4-yn-1-one (syn-3ab). 92% yield, syn/anti >95/5.

Colorless oil was obtained after purification with column chromatography on silica gel (petroleum ether/Et₂O, 150:1 to 110:1). >99% ee was determined by chiral HPLC (Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 230 nm, 40 °C): t_R (minor) = 13.8 min, t_R (major) = 23.8 min. $[\alpha]_D^{30} = 60.0$ (*c* 1.03, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.57 (td, J = 7.6, 1.7 Hz, 1H), 7.47–7.38 (m, 3H), 7.28–7.24

(m, 2H), 7.20–7.05 (m, 3H), 4.22 (d, J = 6.4 Hz, 1H), 3.72 (p, J = 6.9 Hz, 1H), 2.31 (d, J = 2.5 Hz, 1H), 1.32 (d, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 200.7 (d, J = 3.8 Hz), 161.0 (d, J = 252.7 Hz), 139.5, 134.3 (d, J = 8.9 Hz), 131.1 (d, J = 2.8 Hz), 128.6, 128.3, 127.3, 126.1 (d, J = 13.4 Hz), 124.8 (d, J = 3.3 Hz), 116.6 (d, J = 23.7 Hz), 83.2, 73.2 , 52.3 (d, J = 6.3 Hz), 40.3, 13.9. HRMS calc. for C₁₈H₁₅FO [M+H]⁺: 267.1185, found: 267.1181.

(2S,3R)-1-(3-Fluorophenyl)-2-methyl-3-phenylpent-4-yn-1-one (syn-3ac). 94% yield, syn/anti = 95/5.

Colorless oil was obtained after purification with column chromatography on silica gel (petroleum ether/Et₂O, 150:1 to 110:1). >99% ee was determined by chiral HPLC (Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 230 nm, 40 °C): t_R (minor) = 10.3 min, t_R (major) = 17.7 min. $[\alpha]_D^{29}$ = 81.8 (*c* 0.94, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.52 (d, *J* = 7.7 Hz, 1H), 7.44–7.41 (m, 1H), 7.36–7.31

(m, 3H), 7.25–7.21 (m, 2H), 7.20–7.13 (m, 2H), 4.16 (dd, J = 8.6, 2.4 Hz, 1H), 3.79–3.72 (m, 1H), 2.35 (d,

J = 2.5 Hz, 1H), 1.41 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 201.0 (d, J = 2.0 Hz), 163.0 (d, J = 248.1 Hz), 139.8, 138.9 (d, J = 6.1 Hz), 130.4 (d, J = 7.6 Hz), 128.8, 128.2, 127.4, 123.9 (d, J = 3.0 Hz), 120.2 (d, J = 21.5 Hz), 115.1 (d, J = 22.4 Hz), 83.9, 73.0, 48.0, 40.8, 16.3. HRMS calc. for C₁₈H₁₅FO [M+H]⁺: 267.1185, found: 267.1180.

Colorless oil was obtained after purification with column chromatography on silica gel (petroleum ether/Et₂O, 150:1 to 110:1). >99% ee was determined by chiral HPLC (Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 230 nm, 40 $^{\circ}$ C): t_R (minor) = 11.7 min, t_R (major) = 17.8 min. [α]_D²⁹ = 108.9 (*c* 0.97, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.80–7.76 (m, 2H), 7.36 (d, *J* = 7.4 Hz, 2H),

7.25–7.21 (m, 2H), 7.16–7.13 (m, 1H), 7.05–7.01 (m, 2H), 4.16 (dd, J = 8.8, 2.4 Hz, 1H), 3.82–3.75 (m, 1H), 2.36 (d, J = 2.4 Hz, 1H), 1.42 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 200.7, 165.8 (d, J = 254.9 Hz), 139.9, 133.2 (d, J = 3.0 Hz), 130.9 (d, J = 9.3 Hz), 128.7, 128.2, 127.4, 115.8 (d, J = 21.9 Hz), 84.1, 72.9, 47.7, 40.8, 16.5. HRMS calc. for C₁₈H₁₅FO [M+H]⁺: 267.1185, found: 267.1183.

(2S,3R)-1-(4-Chlorophenyl)-2-methyl-3-phenylpent-4-yn-1-one (syn-3ae). 94% yield, syn/anti >95/5.

Colorless oil was obtained after purification with column chromatography on silica gel (petroleum ether/Et₂O, 150:1 to 110:1). >99% ee was determined by chiral HPLC (Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 230 nm, 40 °C): t_R (minor) = 11.0 min, t_R (major) = 18.5 min. [α]_D²⁹ = 80.1 (*c* 0.92, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.69–7.67 (m, 2H), 7.36–7.33 (m, 4H), 7.25–7.21

(m, 2H), 7.17–7.13 (m, 1H), 4.15 (dd, J = 8.7, 2.5 Hz, 1H), 3.80–3.73 (m, 1H), 2.35 (d, J = 2.5 Hz, 1H), 1.40 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 201.1, 139.8, 139.7, 135.1, 129.7, 129.1, 128.7, 128.2, 127.4, 84.0, 73.0, 47.8, 40.8, 16.4. HRMS calc. for C₁₈H₁₅ClO [M+H]⁺: 283.0890, found: 283.0884.

(2S,3R)-1-(4-Bromophenyl)-2-methyl-3-phenylpent-4-yn-1-one (syn-3af). 89% yield, syn/anti = 94/6.

White solid was obtained after purification with column chromatography on silica gel (petroleum ether/Et₂O, 150:1 to 110:1). M.p.: 77–79 °C. 98% ee was determined by chiral HPLC (Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 230 nm, 40 °C): t_R (minor) = 11.3 min, t_R (major) = 18.2 min. $[\alpha]_D^{29}$ = 64.5 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, *J* = 8.5 Hz, 2H),

7.51 (d, J = 8.5 Hz, 2H), 7.35 (d, J = 7.4 Hz, 2H), 7.23 (t, J = 7.5 Hz, 2H), 7.15 (t, J = 7.3 Hz, 1H), 4.15 (dd, J = 8.7, 2.1 Hz, 1H), 3.80–3.72 (m, 1H), 2.35 (d, J = 2.4 Hz, 1H), 1.40 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 201.3, 139.8, 135.5, 132.1, 129.8, 128.8, 128.4, 128.2, 127.4, 84.0, 73.0, 47.8, 40.8, 16.4. HRMS calc. for C₁₈H₁₅BrO [M+H]⁺: 327.0385, found: 327.0376.

(2S,3R)-2-Methyl-3-phenyl-1-(p-tolyl)pent-4-yn-1-one (syn-3ag). 93% yield, syn/anti = 93/7. White

solid was obtained after purification with column chromatography on silica gel (petroleum ether/Et₂O, 150:1 to 110:1). M.p.: 61–62 °C. >99% ee was determined by chiral HPLC (Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 230 nm, 40 °C): t_R (minor) = 10.5 min, t_R (major) = 17.4 min. $[\alpha]_D^{30}$ = 95.4 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.68–7.66 (m, 2H), 7.38–7.36 (m, 2H),

7.25–7.12 (m, 5H), 4.19 (dd, J = 8.6, 2.4 Hz, 1H), 3.84–3.76 (m, 1H), 2.36 (s, 3H), 2.33 (d, J = 2.5 Hz, 1H), 1.40 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 201.8, 144.0, 140.2, 134.2, 129.5, 128.7, 128.5, 128.3, 127.3, 84.4, 72.8, 47.5, 40.7, 21.8, 16.4. HRMS calc. for C₁₉H₁₈O [M+H]⁺: 263.1436, found: 263.1443.

White solid was obtained after purification with column chromatography on silica gel (petroleum ether/EtOAc, 80:1 to 30:1). M.p.: 56–58 °C. 98% ee was determined by chiral HPLC (Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 90/10, 0.8 mL/min, 230 nm, 40 °C): t_R (minor) = 13.6 min, t_R (major) = 20.8 min. $[\alpha]_D^{30}$ = 78.6 (*c* 0.98, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.78–7.76 (m, 2H), 7.37

(d, J = 7.3 Hz, 2H), 7.24–7.21 (t, J = 7.5 Hz, 2H), 7.15–7.12 (m, 1H), 6.85–6.83 (m, 2H), 4.19 (dd, J = 8.7, 2.3 Hz, 1H), 3.85–3.76 (m, 4H), 2.35 (d, J = 2.5 Hz, 1H), 1.42 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 200.6, 163.6, 140.2, 130.6, 129.6, 128.6, 128.2, 127.2, 113.9, 84.5, 72.7, 55.6, 47.2, 40.7, 16.6. HRMS calc. for C₁₉H₁₈O₂ [M+H]⁺: 279.1385, found: 279.1385.

(2S,3R)-2-Ethyl-1,3-diphenylpent-4-yn-1-one (syn-3ai). 92% yield, syn/anti >95/5. White solid was

obtained after purification with column chromatography on silica gel (petroleum ether/Et₂O, 150:1 to 130:1). M.p.: 90–92 °C. >99% ee was determined by chiral HPLC (Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 230 nm, 40 °C): t_R (minor) = 9.7 min, t_R (major) = 15.7 min. $[\alpha]_D^{29}$ = 75.3 (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.70–7.68 (m, 2H), 7.47–7.43 (m, 1H), 7.35–7.31 (m, 4H),

7.21–7.17 (m, 2H), 7.11–7.08 (m, 1H), 4.14 (dd, J = 9.7, 2.5 Hz, 1H), 3.83–3.78 (m, 1H), 2.34 (d, J = 2.5 Hz, 1H), 2.15–1.99 (m, 2H), 0.87 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 202.5, 139.9, 138.2, 133.0, 128.6, 128.6, 128.4, 128.1, 127.3, 84.7, 72.6, 54.1, 40.0, 24.8, 11.4. HRMS calc. for C₁₉H₁₈O [M+H]⁺: 263.1436, found: 263.1432.

(2S,3R)-4-Methyl-5-phenylhept-6-yn-3-one (syn-3aj).^[6] 60% yield, syn/anti = 81/19. Colorless oil was

obtained after purification with column chromatography on silica gel (petroleum ether/Et₂O, 150:1 to 110:1). 99% ee was determined by chiral HPLC (Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 98/2, 0.5 mL/min, 215 nm, 40 °C): t_R (minor) = 16.6 min, t_R (major) = 25.3 min. [α]_D²⁸ = 94.2 (*c* 0.88, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.33–7.26 (m, 4H), 7.24–7.20 (m, 1H), 4.00 (dd, *J* = 8.4, 2.5 Hz, 1H), 2.90–2.83 (m, 1H),

2.40–2.32 (m, 1H), 2.30 (d, J = 2.5 Hz, 1H), 2.06–1.95 (m, 1H), 1.26 (d, J = 7.0 Hz, 3H), 0.85 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 212.9, 139.8, 128.7, 128.2, 127.4, 83.9, 72.7, 52.7, 40.5, 36.1, 14.9, 7.5. HRMS calc. for C₁₄H₁₆O [M+H]⁺: 201.1279, found: 201.1273.

White solid was obtained after purification with column chromatography on silica gel (petroleum ether/EtOAc, 120:1 to 80:1). M.p.: 76–78 °C. 98% ee was determined by chiral HPLC (Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 230 nm, 40 °C): t_R (minor) = 20.5 min, t_R (major) = 31.9 min. $[\alpha]_D^{30} = 52.7$ (*c* 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ

7.62–7.60 (m, 2H), 7.52–7.50 (m, 2H), 7.26–7.24 (m, 2H), 6.76–6.74 (m, 2H), 4.09 (dd, J = 8.8, 2.3 Hz, 1H), 3.76–3.69 (m, 4H), 2.33 (d, J = 2.4 Hz, 1H), 1.39 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 201.5, 158.9, 135.5, 132.1, 131.9, 129.8, 129.2, 128.4, 114.1, 84.4, 72.8, 55.4, 47.9, 40.0, 16.5. HRMS calc. for C₁₉H₁₇BrO₂ [M+Na]⁺: 379.0310, found: 379.0307.

Synthesis of Compound 5

Under an N₂ atmosphere, to an oven-dried Schlenk flask charged with (2*S*,3*R*)-**3aa** (37.2 mg, 0.150 mmol, >99% ee) and anhydrous CH₂Cl₂ (2.0 mL), was added TMSCHN₂ (2M in hexanes) (0.135 mL, 0.270 mmol, 1.8 equiv) and Cp*Ru(COD)Cl (5.7 mg, 0.015 mmol, 0.1 equiv) at room temperature. The mixture was stirred at room temperature for 3 h and then concentrated under reduced pressure. The crude obtained was directly purified with column chromatography on silica gel (petroleum ether/EtOAc, 400:1 to 300:1), affording trimethyl{(*Z*)-2-[(2*S*,3*R*)-4-methyl-3,5-diphenyl-2,3-dihydrofuran-2-yl]vinyl}silane (**5**) as a colorless oil (38 mg, 76% yield). >99% ee was determined by chiral HPLC (Chiralcel 2*OJ-H, *n*-hexane/*i*-PrOH = 99/1, 0.5 mL/min, 230 nm, 40 °C): t_R (minor) = 27.7 min, t_R (major) = 29.7 min. [α]_D²⁹ = -160.1 (*c* 0.83, CH₂Cl₂). ¹H NMR (400 MHz, DMSO-d⁶): δ 7.60–7.57 (m, 2H), 7.46–7.42 (m, 2H), 7.38–7.30 (m, 3H), 7.24–7.20 (m, 1H), 7.09–7.07 (m, 2H), 5.84 (dd, *J* = 14.4, 8.8 Hz, 1H), 5.53 (d, *J* = 14.4 Hz, 1H), 5.28 (t, *J* = 9.1 Hz, 1H), 4.08 (d, *J* = 9.4 Hz, 1H), 1.75 (s, 3H), 0.14 (s, 9H). ¹³C NMR (100 MHz, DMSO-d⁶): δ 148.8, 144.5, 138.3, 133.1, 131.2, 128.9, 128.4, 128.4, 128.2, 127.0, 126.9, 110.1, 82.3, 58.8, 11.8, 0.3. HRMS calc. for C₂₂H₂₆OSi [M+H]⁺: 335.1831, found: 335.1824.

References

- 1. P. Fang and X.-L. Hou, Org. Lett., 2009, 11, 4612.
- K. Funabiki, K. Matsunaga, H. Gonda, H. Yamamoto, T. Arima, Y. Kubota and M. Matsui, J. Org. Chem., 2011, 76, 285.
- 3. W.-J. Zhao, M. Yan, D. Huang and S.-J. Ji, Tetrahedron, 2005, 61, 5585.
- (a) R. Stradi, D. Pocar and C. Cassio, J. Chem. Soc., Perkin Trans. I, 1974, 2671; (b) N. Kawai and T. Shioiri, Chem. Pharm. Bull., 1983, 31, 2564.
- 5. T. Izawa, Y. Terao and K. Suzuki, Tetrahedron: Asymmetry, 1997, 8, 2645.
- 6. Y. Nishibayashi, I. Wakiji, Y. Ishii, S. Uemura and M. Hidai, J. Am. Chem. Soc., 2001, 123, 3393.

Crystal Data and Structure Refinement for (2S,3R)-3if

Crystals of **3if** suitable for X-ray analysis were obtained, and subsequent structure elucidation and refinement resulted in an unambiguous absolute structure determination, with the Flack parameter (absolute structure parameter) 0.024 (11) (Table 1) for the model shown in the following figure. The chemical structure of **3if** is non-centrosymmetric with a Br-atom heavier than silicon, then it is expected that Friedel pairs will be used in the refinement and that the absolute structure will be determined. The Flack parameter value should be 0.0 for the correct absolute structure and +1.0 for the inverted enantiomer.¹ Therefore the absolute stereochemistry of chiral centers C2 and C3 can be established as *S* and *R* respectively.

Ref: 1. H. D. Flack, G. Bernardinelli, Acta Crystallogr., A55 (1999) 908-915.

Table 1. Crystal data and struc	ture refinement for (2 <i>S</i> ,3 <i>R</i>)-3if.	
Identification code	sa3346	
Empirical formula	C19 H17 Br O2	
Formula weight	357.23	
Temperature	173.1500 K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 5.5798(14) Å	α=90°.
	b = 15.675(4) Å	β= 90°.
	c = 19.082(5) Å	$\gamma = 90^{\circ}$
Volume	1669.1(8) Å ³	
Ζ	4	
Density (calculated)	1.422 Mg/m ³	

Absorption coefficient	2.467 mm ⁻¹
F(000)	728
Crystal size	0.34 x 0.13 x 0.06 mm ³
Theta range for data collection	3.364 to 27.475°.
Index ranges	-6<=h<=7, -20<=k<=20, -24<=l<=24
Reflections collected	10540
Independent reflections	3797 [R(int) = 0.0572]
Completeness to theta = 26.000°	99.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.0000 and 0.5550
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3797 / 0 / 201
Goodness-of-fit on F ²	1.121
Final R indices [I>2sigma(I)]	R1 = 0.0483, w $R2 = 0.1008$
R indices (all data)	R1 = 0.0542, WR2 = 0.1048
Absolute structure parameter	0.024(11)
Extinction coefficient	n/a
Largest diff. peak and hole	0.469 and -0.341 e.Å ⁻³

Table 2. Bond lengths [Å] and angles $[\circ]$ for (2*S*,3*R*)-3if.

Br1-C7	1.898(4)
O1-C3	1.210(6)
O2-C16	1.366(6)
O2-C19	1.410(7)
C1-C2	1.550(6)
C1-C11	1.481(7)
C1-C13	1.518(6)
C2-C3	1.518(7)
C2-C10	1.534(6)
C3-C4	1.500(6)
C4-C5	1.396(6)
C4-C9	1.389(7)
C5-C6	1.378(7)
C6-C7	1.388(7)
C7-C8	1.378(6)
C8-C9	1.388(6)
C11-C12	1.183(7)
C13-C14	1.400(6)

C13-C18	1.378(6)
C14-C15	1.380(6)
C15-C16	1.389(6)
C16-C17	1.380(6)
C17-C18	1.398(6)
C16-O2-C19	117.7(4)
C11-C1-C2	109.4(4)
C11-C1-C13	110.9(4)
C13-C1-C2	112.8(3)
C3-C2-C1	110.9(4)
C3-C2-C10	107.1(4)
C10-C2-C1	111.4(4)
O1-C3-C2	121.3(4)
O1-C3-C4	120.4(4)
C4-C3-C2	118.1(4)
C5-C4-C3	118.5(4)
C9-C4-C3	122.8(4)
C9-C4-C5	118.7(4)
C6-C5-C4	120.9(5)
C5-C6-C7	118.9(4)
C6-C7-Br1	119.7(3)
C8-C7-Br1	118.6(4)
C8-C7-C6	121.7(4)
C7-C8-C9	118.7(4)
C8-C9-C4	121.1(4)
C12-C11-C1	178.3(5)
C14-C13-C1	121.0(4)
C18-C13-C1	121.0(4)
C18-C13-C14	118.0(4)
C15-C14-C13	120.9(4)
C14-C15-C16	120.3(4)
O2-C16-C15	115.5(4)
O2-C16-C17	124.8(4)
C17-C16-C15	119.8(4)
C16-C17-C18	119.4(4)
C13-C18-C17	121.7(4)

Table 3. Torsion angles [°] for (2*S*,3*R*)-3*if*.

177.6(3)
31.9(7)
-147.6(5)
179.8(4)
38.8(6)
-147.4(4)
-180.0(4)
-180.0(4)
52.3(6)
-128.5(4)
-142.0(4)
38.5(6)
-179.9(5)
178.8(4)
0.2(7)
-0.7(7)
-178.5(4)
1.0(7)
-2.0(7)
1.8(7)
-0.4(7)
-82.8(6)
91.0(5)
-179.8(4)
-60.7(5)
-70.8(5)
108.5(5)
56.3(5)
175.5(4)
-0.6(7)
-0.7(6)
-179.8(4)
0.3(7)
-0.2(6)
0.5(7)
0.8(6)
-174.2(4)
5.8(7)

ZDY-1-80A2(CDC13) PROTON CDC13 {D:\NMR400\02T2} nmr 12

ZDY-1-90A(CDCL3) PROTON CDC13 {D:\NMR400\02T2} nmr 13

ZDY-2-6G(CDC13) PROTON CDC13 {D:\NMR400\02T2} rmr 6

ZDY-2-6H(CDC13)

ZDY-2-14A (CDC13)

