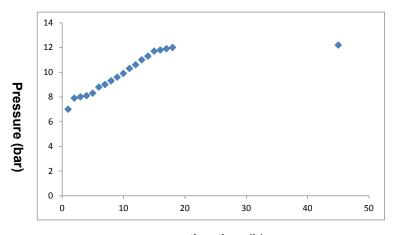
Selective Ruthenium-catalyzed Methylation of 2-Arylethanols using Methanol as C1 feedstock

Yang Li, Haoquan Li, Henrik Junge, and Matthias Beller*

Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert Einstein Str. 29a, 18059 Rostock, Germany

Supporting Information


General information2
Table S1: Experiments using cat. 1, cat. 2, the mixture of cat. 1 and cat. 2
Figure S1: The reaction pressure versus reaction time2
General Procedure for synthesis of compound 3 l3
General Procedure for synthesis of compound 43
General Procedure for synthesis of compound 4a using ¹³ CH ₃ OH6
General Procedure for methylation of 1-butanol6
NMR spectrum7
Reference19

General information: ¹H NMR spectra were recorded on Bruker 300 MHz, ¹³C NMR spectra were recorded on 75 MHz in the solvents indicated; chemical shifts are reported in units (ppm) by assigning CDCl₃ resonance in the ¹H spectrum as 7.26 ppm and CDCl₃ resonance in the ¹³C spectrum as 77.0 ppm. All coupling constants (*J* values) were reported in Hertz (Hz). Column chromatography was performed on silica gel 200-300 mesh. HRMS were performed on Agilent ESI-TOF/MS. 2-(benzothiophen-3-yl)ethanol was prepared according to the reference.¹ If no special indicated, reagents were used as commercial sources and without further purification.

Table S1: Experiments with model substrate using cat. 1, cat. 2, the mixture of cat. 1 and cat. 2 under optimized conditions

Reaction time (h)	Yields with cat. 1 (%)	Yields with cat. 2 (%)	Yields with cat. 1 and 2 (%)
4	5	0	12
7	10	3	18
10	15	3	26
13	21	3	33
17	23	3	36
28 ^a	36	4	58
45 ^b	58	5	75

^a The gas pressure was released at 17 h. ^bThe gas pressure was released at 17 h, 28 h, respectively.

reaction time (h)

Figure S1. The reaction pressure versus reaction time

The reaction with model substrate was performed in optimized reaction conditions without pressure release.

General Procedure for synthesis of 2-(benzothiophen-3-yl)ethanol (3l):

To a suspension of LiAlH₄ (395 mg, 10.39 mmol) in anhydrous THF (50 mL) was added a solution of 2-(benzothiophen-3-yl)acetic acid (1.00 g, 5.20 mmol) in anhydrous THF (10 mL) dropwise in ice water bath. After addition, the reaction temperature was allowed to room temperature and then increased to 60 °C. The stirring was continued for 1 h. After cooling to room temperature, the reaction was quenched with water (0.4 mL), NaOH solution (30%, 0.4 mL). After stirring for a while, anhydrous MgSO₄ (4.0 g) was added. Then the mixture was filtered on celite, washed with EtOAc. The filtrate was evaporated in vacuo, the residue was purified by column chromatography on silica gel with eluting of hexane and ethyl acetate (3 :1) to afford 2-(benzothiophen-3-yl)ethanol (836.4 mg, 90% yield) as a pale yellow oil.

¹H NMR (CDCl₃, 300 M Hz): δ 7.87-7.84 (m, 1H), 7.77-7.74 (m, 1H), 7.41-7.31 (m, 2 H), 7.19 (s, 1H), 3.95-3.90 (m, 2 H), 3.12-3.07 (m, 2H), 1.24 (br, 1 H); ¹³C NMR (75 MHz, CDCl₃) δ = 140.57, 138.90, 132.97, 124.37, 124.04, 122.98, 122.86, 121.65, 61.91, 31.94. MS (EI): m/z, 178.

General Procedure for synthesis of compounds 4: To a stainless steel sealed tube (40 mL) was added base (0.25 mmol). Derivatives of 2-phenylethanol (2.5 mmol), anhydrous MeOH (2 mL), Ru-MACHO (0.0025 mmol) and Shvo catalyst (0.00125 mmol) were added in argon atmosphere in sequence. The reaction mixture was stirred at 140 °C for 17 h. After that the sealed tube was cooled to room temperature by water immediately and the pressure of reaction system was released. Then heating and stirring were continued for another 11 h. Another operation of release pressure was repeated. After stirring at 140 °C for 17 h again, the reaction mixture was cooled to room temperature and transferred to a flask. Solvents were evaporated in vacuo and the residue was purified by column chromatography on silica gel with eluting of hexane and ethyl acetate (the ratio is about 4 : 1) to afford compounds 4

According to the general procedure, compound **4a** was obtained in 87% yield (296.2 mg).

¹H NMR (300 M Hz, CDCl₃): δ = 7.34-7.28 (m, 2H), 7.24-7.19 (m, 3H), 3.66-3.64 (m, 2H), 2.95-2.88 (m, 1H), 1.73 (br, 1H), 1.26 (d, *J* = 9.0, 3H); ¹³C NMR (75 MHz, CDCl₃) δ = 143.67, 128.51 (2C), 127.41(2C), 126.55, 68.55, 42.33, 17.51. MS (EI): m/z, 136.

According to the general procedure, compound 4b was obtained in 76% yield (315.8 mg).

¹H NMR (300 M Hz, CDCl₃): δ = 7.15 (d, *J* = 9.0, 2H), 6.87 (d, *J* = 9.0, 2H), 3.79 (s, 3H), 3.65-3.63 (m, 2H), 2.89 (q, *J* = 6.9, 1H), 1.55 (s, 1H), 1.24 (d, *J* = 6.0, 3H); ¹³C NMR (75 MHz, CDCl₃) δ = 158.26, 135.58, 128.33 (2C), 113.97 (2C), 68.73, 55.20, 41.51, 17.68.

HRMS (EI), *m/z*: [M]⁺ calculated for C₁₀H₁₄O₂:166.0988, found 166.0993.

According to the general procedure, compound **4c** was obtained in 73% yield (440.5 mg).

¹H NMR (300 M Hz, CDCl₃): δ = 7.44-7.29 (m, 5H), 7.15 (d, *J* = 9.0, 2H), 6.94 (d, *J* = 9.0, 2H), 5.03 (s, 2H), 3.64-3.62 (m, 2H), 2.94-2.82 (m, 1H), 1.48 (br, 1H), 1.24 (d, *J* = 9.0, 3H); ¹³C NMR (75 MHz, CDCl₃) δ = 157.52, 137.02, 135.86, 128.52 (2C), 128.36 (2C), 127.89, 127.41(2C), 114.91(2C), 69.97, 68.71, 41.52, 17.67. HRMS (EI), *m/z*: [M+H]⁺ calculated for C₁₆H₁₈O₂:242.1301, found 242.1298.

According to the general procedure, compound 4d was obtained in 78% yield (332.7 mg).

¹H NMR (300 M Hz, CDCl₃): δ = 7.29 (d, *J* = 9.0, 2H), 7.16 (d, *J* = 9.0, 2H), 3.66 - 3.64 (m, 2H), 2.94-2.87 (m, 1H), 1.64 (br, 1H), 1.24 (d, *J* = 9.0, 3H); ¹³C NMR (75 MHz, CDCl₃) δ = 142.22, 132.22, 128.78(2C), 128.63(2C), 68.38, 41.77, 17.49. HRMS (EI), *m/z*: [M]⁺ calculated for C₉H₁₁Cl³⁵O:170.0493, found 170.0495; [M]⁺ calculated for C₉H₁₁Cl³⁷O:172.0463, found 172.0467.

According to the general procedure, compound 4e was obtained in 76% yield (292.9 mg).

¹H NMR (300 M Hz, CDCl₃): δ = 7.19-7.14 (m, 2H), 7.01-6.96 (m, 2H), 3.61-3.58 (m, 2H), 2.94-2.82 (m, 1H), 2.14 (br, 1H), 1.22 (d, *J* = 6.0, 3H); ¹³C NMR (75 MHz, CDCl₃) δ = 161.48 (d, *J* = 243.0), 139.41 (d, *J* = 3.0), 128.73 (d, *J* = 7.5, 2C), 115.16 (d, *J* = 21.0, 2C), 68.38 , 41.53 , 17.61. HRMS (EI), *m/z*: [M]⁺ calculated for C₉H₁₁OF:154.0788, found 154.0785.

According to the general procedure, compound 4f was obtained in 59% yield (302.7 mg).

¹H NMR (300 M Hz, CDCl₃): δ = 7.59-7.56 (m, 2H), 7.37-7.33 (m, 2H), 3.73-3.69 (m, 2H), 3.04-2.97 (m, 1H), 1.55 (br, 1H), 1.29 (d, *J* = 6.0, 3H);¹³C NMR (75 MHz, CDCl₃) δ = 148.03, 128.91 (q, *J* = 32.4), 127.81 (2C), 125.45 (q, *J* = 3.8, 2C), 124.22 (q, *J* = 270.0), 68.24, 42.29, 17.39. HRMS (EI), *m/z*: [M]⁺ calculated for C₁₀H₁₁OF₃:204,0757, found 204,0755.

According to the general procedure, the reaction was continued for another 17 h after 45 h heating and pressure release, compound **4g** was obtained in 84% yield (392.3 mg).

¹H NMR (300 MHz, CDCl₃) δ = 8.14-8.10 (m, 1H), 7.86-7.83 (m, 1H), 7.73-7.70 (m, 1H), 7.53-7.36 (m, 4H), 3.91-3.73 (m, 3H), 1.72 (br, 1H), 1.40 (d, *J* = 6.0, 3H); ¹³C NMR (75 MHz, CDCl₃) δ = 139.51, 133.93, 131.88, 128.92, 126.98, 125.96, 125.47 (2C), 123.00, 122.97, 67.99, 36.29, 17.77. HRMS (EI), *m/z*: [M]⁺ calculated for C₁₃H₁₄O:186.1039, found 186.1040.

According to the general procedure, the reaction was continued for another 17 h after 45 h heating and pressure release, compound **4h** was obtained in 76% yield (285.3 mg).

¹H NMR (300 MHz, CDCl₃) δ = 7.20-7.08 (m, 4H), 3.75-3.62 (m, 2H), 3.29-2.18 (m, 1H), 2.35 (s, 3H), 1.64 (br, 1H), 1.23 (d, *J* = 6.0, 3H);¹³C NMR (75 MHz, CDCl₃) δ = 141.75, 136.33, 130.46, 126.27, 126.17, 125.37, 67.91, 37.12, 19.56, 17.46. HRMS (EI), *m/z*: [M]⁺ calculated for C₁₀H₁₄O:150.1039, found 150.1040.

According to the general procedure, compound 4i was obtained in 73% yield (252.1 mg).

¹H NMR (300 MHz, CDCl₃) δ = 8.47-8.45 (m, 1H), 7.64-7.59 (m, 1H), 7.19-7.10 (m, 2H); 4.23 (br, 1H), 3.89-3.82 (m, 2H), 3.10-3.00 (m, 1H), 1.30 (d, *J* = 9.0, 3H);¹³C NMR (75 MHz, CDCl₃) δ = 164.79, 148.51, 136.74, 122.13, 121.44, 67.04, 41.99, 17.07. HRMS (EI), *m/z*: [M-H]⁺ calculated for C₈H₁₀ON:136.0757, found 136.0760.

According to the general procedure, compound 4j was obtained in 66% yield (289.1 mg).

¹H NMR (300 MHz, CDCl₃) δ = 8.16 (br, 1H), 7.63 (d, *J* = 9.0, 1H), 7.28 (d, *J* = 9.0, 1H), 7.20-7.07(m, 2H), 6.89 (d, *J* = 3.0, 1H), 3.82-3.70 (m, 2H), 3.28-3.19 (m, 1H), 1.79 (br, 1H), 1.35 (d, *J* = 6.0, 3H); ¹³C NMR (75 MHz, CDCl₃) δ = 136.42, 126.55, 121.85, 121.30, 119.08, 119.00, 117.48, 111.29, 67.63, 33.66, 17.19. HRMS (EI), *m/z*: [M+H]⁺ calculated for C₁₁H₁₃ON:175.0992, found 175.0992.

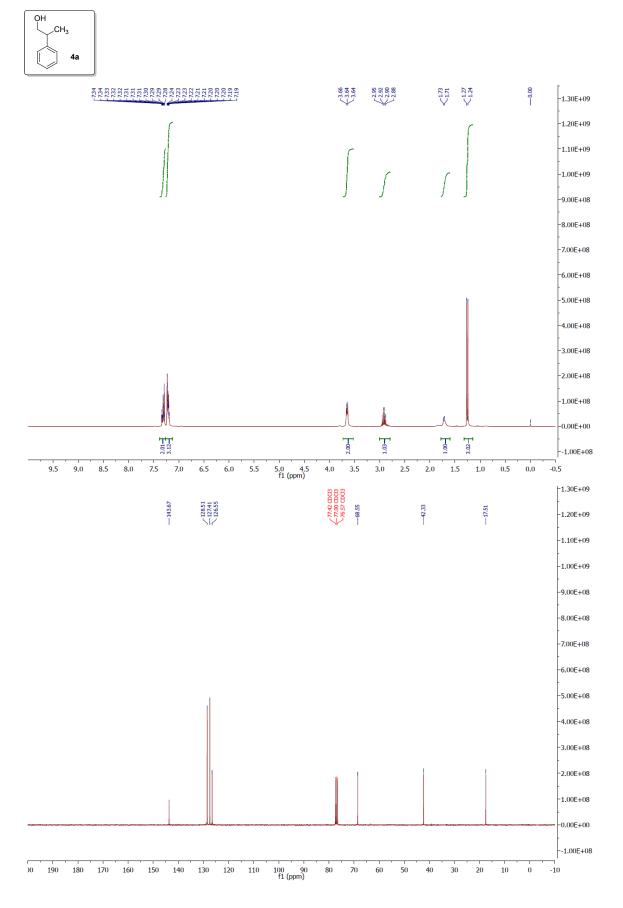
According to the general procedure, the reaction was performed on 1.17 mmol scale, compound **4k** was obtained in 65% yield (133.7 mg).

¹H NMR (300 MHz, CDCl₃) δ = 7.60-7.57 (m, 1H), 7.48-7.44 (m, 2H), 7.31- 7.19 (m, 2H), 3.85-3.71 (m, 2H), 3.18-3.11 (m, 1H), 1.75 (br, 1H), 1.37 (d, *J* = 6.0, 3H);¹³C NMR (75 MHz, CDCl₃) δ = 155.49, 141.33, 127.21, 124.28, 122.31, 122.22, 119.96, 111.60, 66.97, 32.84, 16.50. HRMS (EI), *m/z*: [M]⁺ calculated for C₁₁H₁₂O₂:176.0832, found 176.0829.

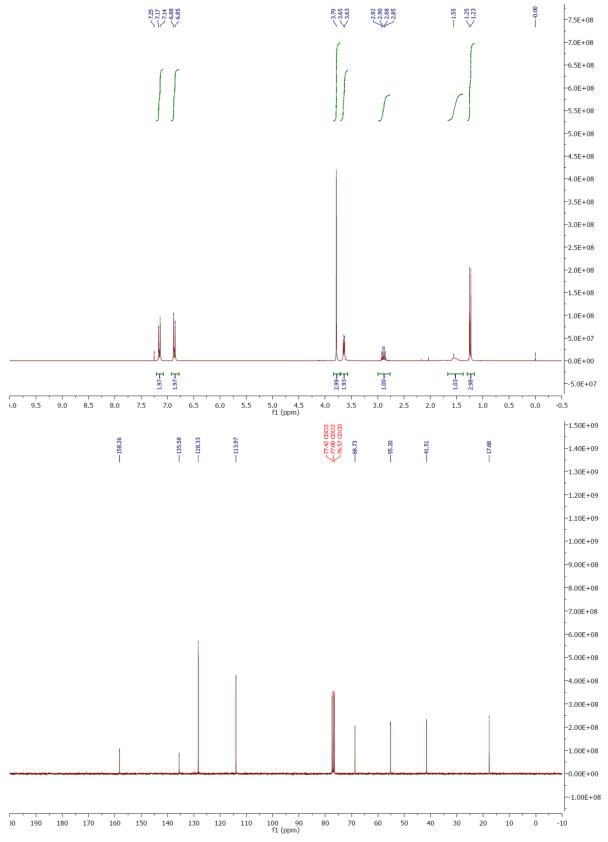
According to the general procedure, compound 4I was obtained in 84% yield (403.8 mg).

¹H NMR (300 MHz, CDCl₃) δ = 7.89-7.80 (m, 2H), 7.40-7.35 (m, 2H), 7.20 (s, 1H), 3.90-3.77 (m, 2H), 3.50-3.41 (m, 1H), 1.47 (br, 1H), 1.43 (d, *J* = 6.0, 3H); ¹³C NMR (75 MHz, CDCl₃) δ = 140.67, 138.58, 138.48, 124.40, 123.96, 122.97, 121.72, 121.15, 67.39, 35.85, 17.10. HRMS (EI), *m/z*: [M]⁺ calculated for C₁₁H₁₂OS:192.0603, found 192.0606.

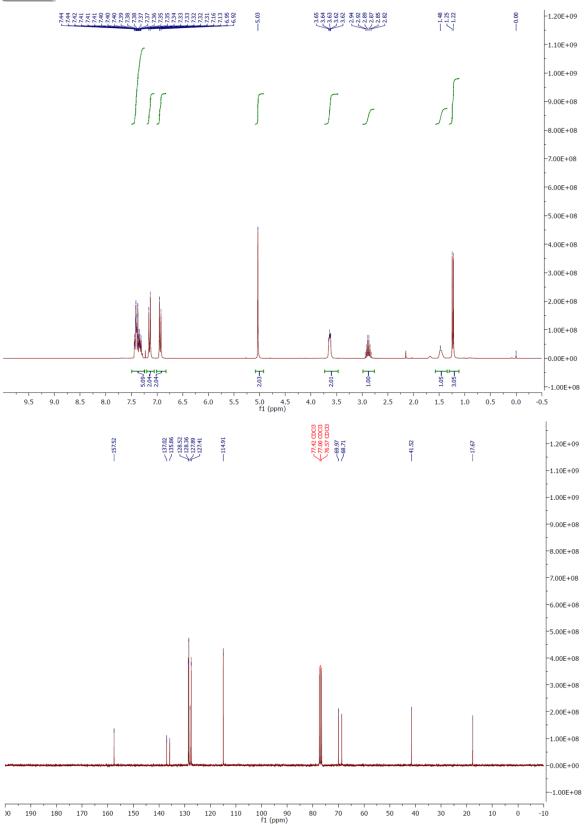
General Procedure for synthesis of compounds 4a using ¹³CH₃OH

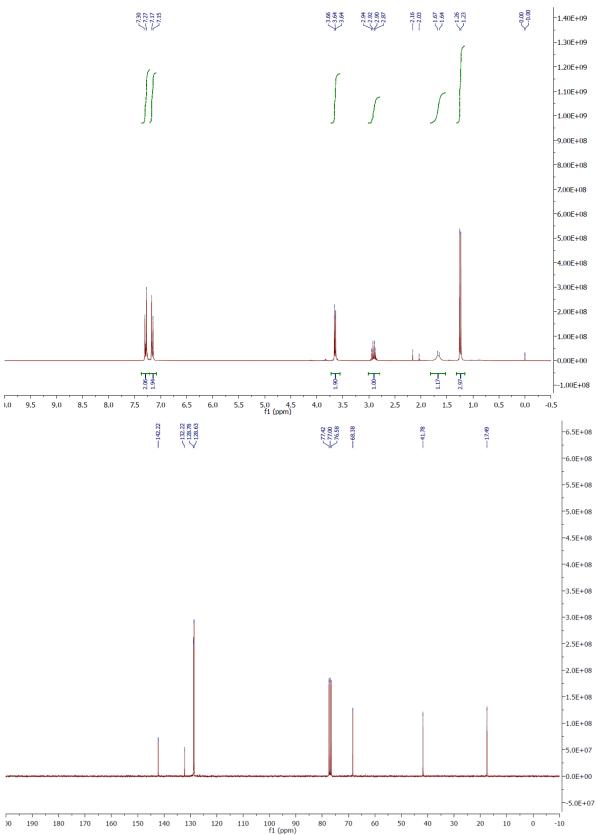


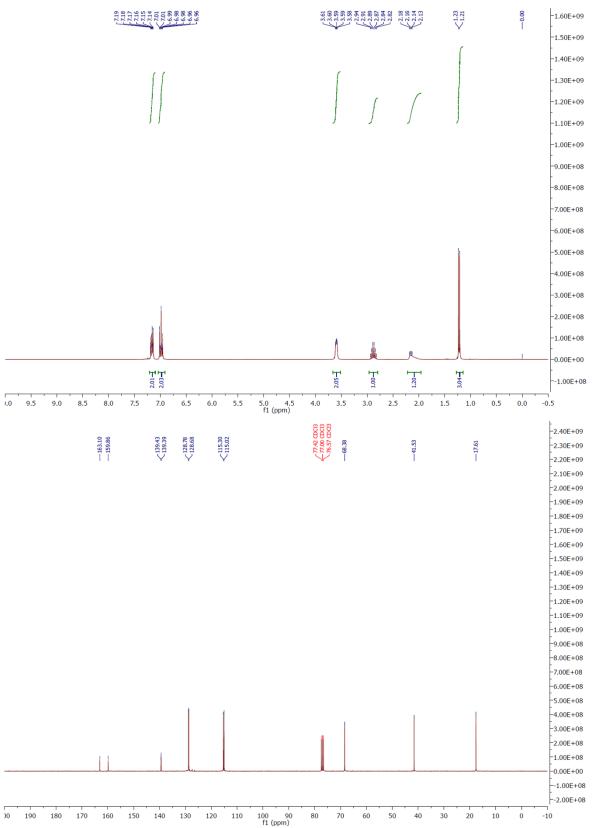
According to the general procedure using ¹³CH₃OH instead of anhydrous CH₃OH, the desired compound was obtained in 70% yield (239.9 mg). ¹³C NMR (75 MHz, CDCl₃) δ = 143.72, 128.46 (2C), 127.39, 127.36, 126.48, 68.49, 42.29 (d, *J* = 34.5), 17.50.

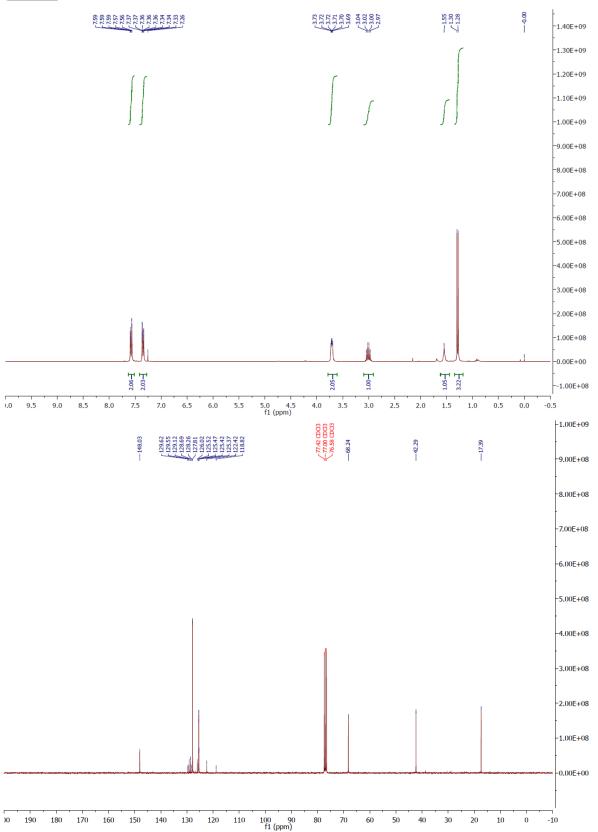

General Procedure for methylation of 1-butanol

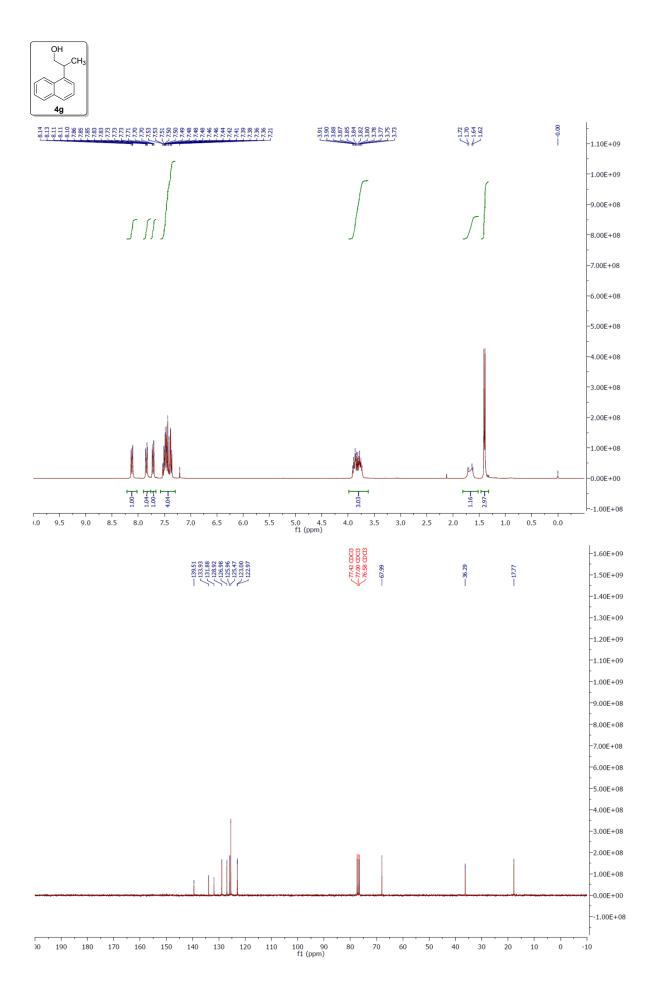
According to optimized conditions using 1-butanol as substrate, the reaction affords 2-methylbutan-1-ol in 11% and 20% GC yield at 140 °C and 160 °C, respectively.

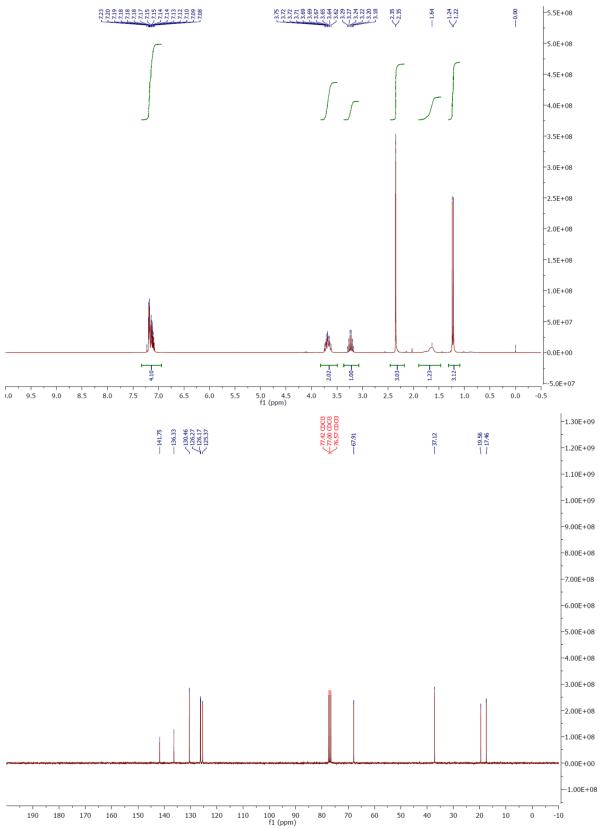

NMR spectrum

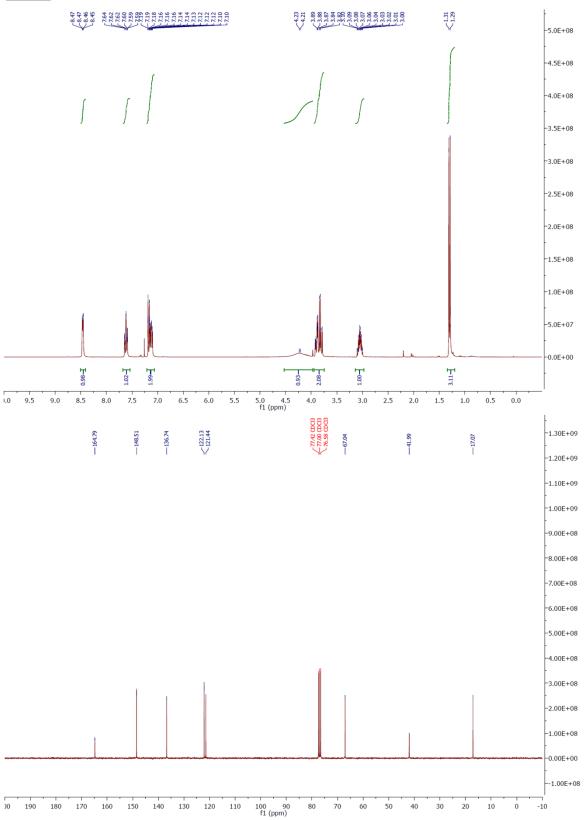


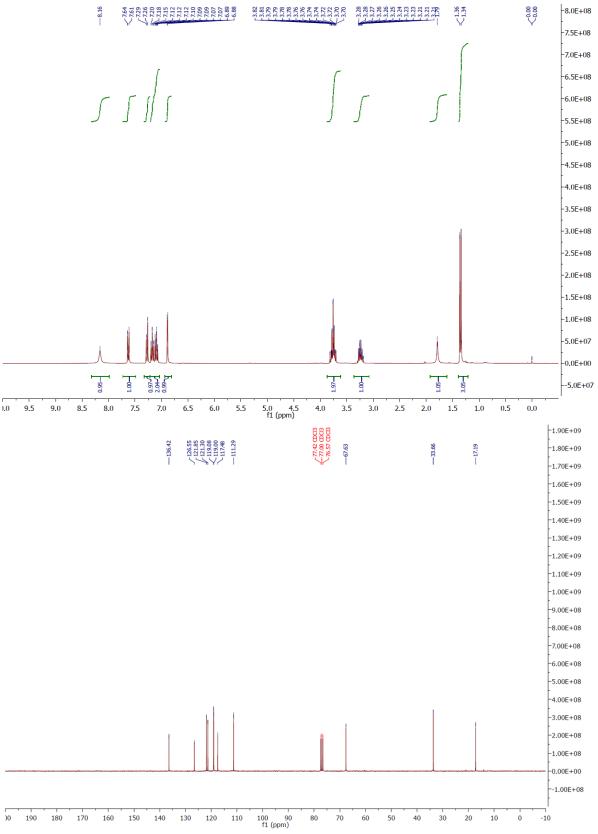


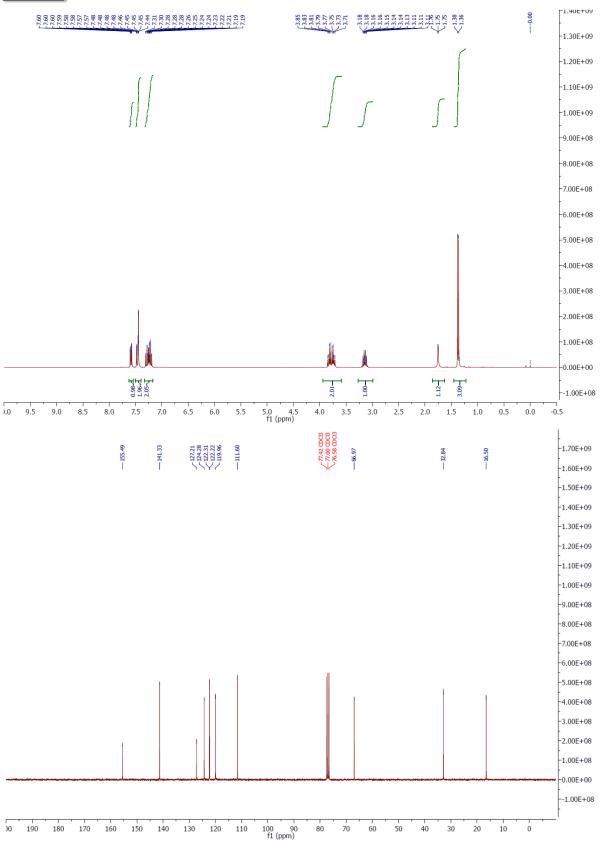


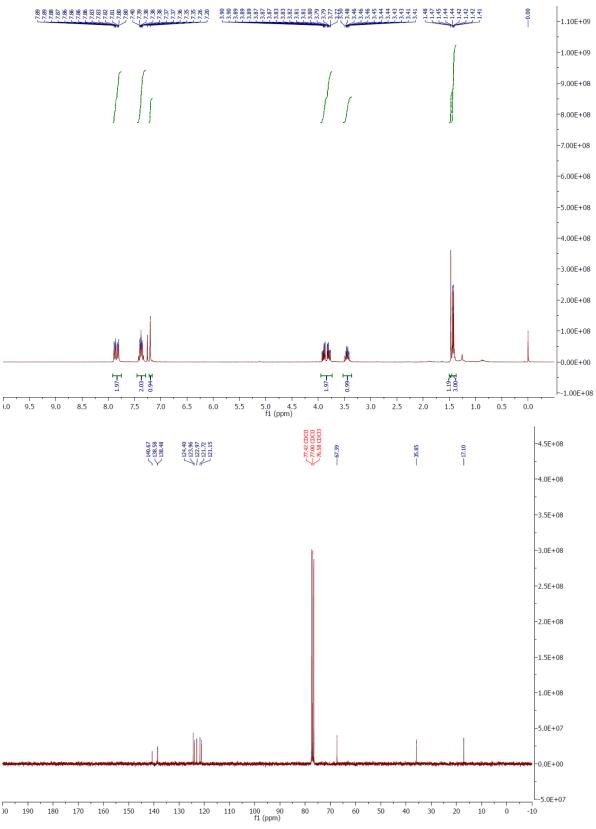


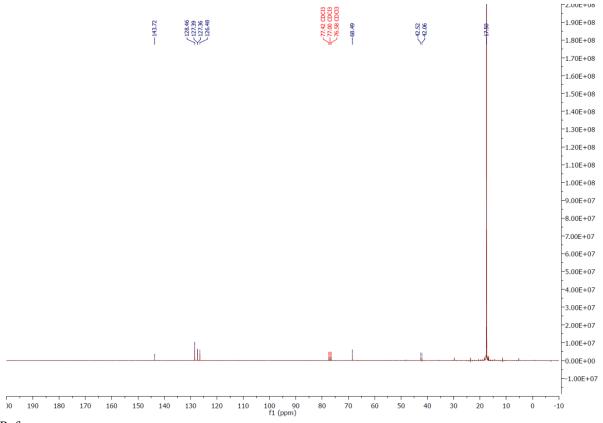












Ref:

(1) B. Plouvier, G. N. Beatch, G. L. Jung, A. Zolotoy, T. Sheng, L. Clohs, T. D. Barrett, D. Fedida, W. Q. Wang, J. J. Zhu, Y. Liu, S. Abraham, L. Lynn, Y. Dong, R. A. Wall and M. J. A. Walker, *J. Med. Chem.* **2007**, *50*, 2818-2841.