Electronic Supplementary Information

Reversible Transformation between Chiral and Achiral Dy₆Mo₄ Clusters through a Symmetric Operation

Yong Zheng, Yin-Yin Pan, Yan-Ping Ren, La-Sheng Long,* Rong-Bin Huang, and Lan-Sun Zheng

State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

Email: lslong@xmu.edu.cn, ypren@xmu.edu.cn

1. General Experimental. All chemicals were of commercial origin and were used as received, except $(n-Bu_4N)_4Mo_8O_{26}$, which was prepared using a previously reported procedure.^[1] C, H, and N microanalyses were performed with a CE Instruments EA 1110 elemental analyzer. The infrared (IR) spectra were recorded on a Nicolet AVATAR FT-IR330 spectrophotometer using pressed KBr pellets. Magnetic measurements were performed with a Quantum Design SQUID MPMS magnetometer working in the 2-300 K range. X-ray powder diffraction (PXRD) studies were performed using a Panalytical X-Pert PRO diffractometer equipped with a Cu-K α radiation source ($\lambda = 0.15418$ nm, 40.0 kV, 30.0 mA). The calculated PXRD patterns were produced using the Mercury 3.1 software package and single-crystal reflection data.

2. Syntheses of complexes I-III.

$(NH_4)_2[Dy_6Mo_4O_{12}(rac-L^{3-})_4(OOCCH_3)_8] \cdot 4CH_3OH \cdot 6H_2O(I)$

A mixture of *rac*-3-aminopropane-1,2-diol (23 mg, 0.25 mmol) and 2-hydroxybenzaldehyde (26 µl, 0.25 mmol) in methanol (18 mL) was refluxed for 2 hours. To the solution of Schiff-base (*rac*-H₃L) formed *in situ* was added Dy(CH₃COO)₃·3H₂O (157 mg, 0.40 mmol), (ⁿBu₄N)₄Mo₈O₂₆ (50 mg, 0.023 mmol), NH₃·H₂O (34 µL, 0.60 mmol), and CH₃COONH₄ (123 mg, 1.6 mmol) under stirring at room temperature. The mixture was stirred for another 30 minutes, and was subsequently sealed in a 23 ml Teflon-lined Parr bomb. The sample was heated to 70 °C for 12 hours and then cooled to 30 °C at a rate of 4 °C h⁻¹. The filtrate was layered with *n*-hexane, and pale-yellow block-shaped crystals were collected after a few days. I, Yield: 60% (based on Dy). Elemental analysis (%) calcd for Dy₆Mo₄C₆₀H₁₀₀N₆O₅₀ (FW = 3064.21): C 23.52, H 3.28, N 2.74; found: C 23.57, H 3.36, N 2.64. IR (KBr, cm⁻¹): 3442(b,s), 2899(w), 2361(w), 2343(w), 2026(w), 1633(vs), 1561(s), 1468(m), 1446(m), 1407(m), 1340(m), 1283(w),

1221(w), 1193(w), 1149(w), 1124(w), 1092(w), 1066(w), 1026(w), 938(w), 872(w), 838(s), 812(m), 761(m), 718(w), 670(w), 647(w), 599(w), 548(w), 512(w), 478(w), 445(w).

$(Et_3NH)_2[Dy_6Mo_4O_{12}(rac-L^{3-})_4(OOCCH_3)_8] \cdot 18H_2O(II)$

Compound **II** was prepared in a manner similar to that described for compound **I**, except with Et₃NH and CH₃COOHNEt₃ used in place of NH₃·H₂O and CH₃COONH₄, respectively. **II**, Yield: 35% (based on Dy). Elemental analysis (%) calcd for Dy₆Mo₄C₆₈H₁₃₂N₆O₅₈ (FW = 3320.55): C 24.60, H 4.01, N 2.53; found: C 24.66, H 4.01, N 2.56. IR (KBr, cm⁻¹): 3438(b,s), 2932(w), 2360(w), 2343(w), 2026(w), 1631(vs), 1570(s), 1469(m), 1451(m), 1412(m), 1385(m), 1346(m), 1220(w), 1190(w), 1147(w), 1124(w), 1092(w), 1071(w), 1025(w), 944(w), 870(w), 835(s), 812(m), 759(m), 718(w), 670(w), 648(w), 598(w), 550(w), 516(w), 474(w), 420(w).

$(Me_4N)_2[Dy_6Mo_4O_{12}(rac-L^{3-})_4(OOCCH_3)_8] \cdot CH_3OH \cdot 14H_2O$ (III)

Compound **III** was prepared in a manner similar to that described for compound **I**, except with Me₄N·OH and CH₃COONMe₄ used in place of NH₃·H₂O and CH₃COONH₄, respectively. **III**, Yield: 40% (based on Dy). Elemental analysis (%) calcd for Dy₆Mo₄C₆₅H₁₂₀N₆O₅₅ (FW = 3224.43): C 24.21, H 3.75, N 2.61; found: C 24.23, H 3.79, N 2.78; IR (KBr, cm⁻¹): 3423(b, s), 3196(b, s), 3021(m), 2896(w), 2026(w), 1633(vs), 1560(s), 1469(s), 1451(s), 1432(m), 1342(m), 1244(w), 1221(w), 1193(w), 1149(m), 1124(m), 1093(m), 1068(w), 1025(w), 935(w), 871(m), 837(s), 810(m), 759(m), 719(w), 673(w), 649(w), 614(w), 599(w), 565(w), 550(w), 515(w), 473(w), 473(w), 447(w), 419(w).

(Me₄N)₂[Gd₆Mo₄O₁₂(*rac*-L³⁻)₄(OOCCH₃)₈]·CH₃OH·14H₂O (III-Gd analogue)

Compound **III-Gd** was prepared in a manner similar to that described for compound **I**, except with $Me_4N \cdot OH$, $Gd(CH_3COO)_3 \cdot 3H_2O$, and $CH_3COONMe_4$ used in place of $NH_3 \cdot H_2O$, $Dy(CH_3COO)_3 \cdot 3H_2O$, and CH_3COONH_4 , respectively. **III-Gd**, Yield: 35% (based on Gd). Elemental analysis (%) calcd for $Gd_6Mo_4C_{65}H_{120}N_6O_{55}$ (FW = 3192.93): C 24.45, H 3.79, N 2.63; found: C 24.33, H 3.70, N 2.72; IR (KBr, cm⁻¹): 3420(b, s), 3166(b, s), 2930(m), 2892(w), 2026(w), 1631(vs), 1560(s), 1467(s), 1450(s), 1343(m), 1244(w), 1221(w), 1192(w), 1148(m), 1124(m), 1093(m), 1068(w), 1043(w), 1025(w), 932(w), 898(w), 870(m), 835(s), 808(m), 760(m), 718(w), 671(w), 647(w), 616(w), 598(w), 562(w), 547(w), 510(w), 475(w), 446(w), 418(w).

3. X-ray Structure Determination.

Intensity data for I and II(b) were collected on a Bruker SMART CCD using graphite-monochromated Mo-K α radiation \Box ($\lambda = 0.71073$ Å) at 173 K and 123 K. The frames were integrated with the Bruker SAINT© program in the APEX II software package using a narrow-frame integration algorithm, which also corrects for Lorentz and polarization effects. Absorption corrections were applied using SADABS.

Intensity data for **II(a)** and **III** were collected on an Oxford Gemini S Ultra system using graphitemonochromated Mo-K α radiation ($\lambda = 0.71073$ Å) at 133 K and 153 K. Data reductions were performed using the CrysAlis RED program.

Intensity data for the **III-Gd analogue** were collected on a Rigaku R-AXIS RAPID Image Plate singlecrystal diffractometer using graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ nm) at 173 K. Absorption correction was applied by correction of symmetry-equivalent reflections using the ABSCOR program.

All structures were solved by direct methods and refined to convergence by the least-squares method on F^2 using the SHELXTL software suite and Olex2.^[2,3] Hydrogen atoms were calculated in ideal positions with isotropic displacement parameters set to $1.2 \times \Box$ Ueq of the attached atom ($1.5 \times \Box$ Ueq for methyl hydrogen atoms). The severely disordered guest molecules in **H** and **HH** were removed by SQUEEZE during the structural refinement.^[4] Other disordered atoms were refined with commands of AFIX, DFIX, ISOR, SIMU, and DELU. CCDC 967301-967305 contain the supplementary crystallographic data for **I**, **H**(**a**), **H**(**b**), **HI-Gd**, and **HI**(**b**), respectively. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Complex	Ι	II(a)	II(b)	III-Gd	III(b)
Formula	Dy ₆ Mo ₄ C ₆₀ H ₁₀₀ N ₆ O ₅₀	Dy ₆ Mo ₄ C ₆₈ H ₁₃₂ N ₆ O ₅₈	Dy ₆ Mo ₄ C ₆₈ H ₁₃₂ N ₆ O ₅₈	Gd ₆ Mo ₄ C ₆₅ H ₁₂₀ N ₆ O ₅₅	Dy ₆ Mo ₄ C ₆₅ H ₁₂₀ N ₆ O ₅₅
Mr	3064.21	3320.55	3320.55	3192.93	3224.43
Temperature/K	173(2)	133(2)	123(2)	173(2)	153(2)
Crystal size/mm ³	$0.50\times0.40\times0.30$	$0.35 \times 0.35 \times 0.3$	$0.50 \times 0.40 \times 0.30$	$0.15 \times 0.10 \times 0.10$	$0.40 \times 0.10 \times 0.08$
Crystal system	Tetragonal	Trigonal	Trigonal	Trigonal	Trigonal
Space group	$P4_2/n$	P3 ₁ 21	P3 ₂ 21	P3 ₁ 21	P3 ₂ 21
a/Å	14.510(2)	21.969(1)	22.087(2)	21.761(3)	21.983(1)
b/Å	14.510(2)	21.969(1)	22.087(2)	21.761(3)	21.983(1)
c/Å	20.196(3)	19.099(1)	19.183(3)	19.354(4)	19.146(1)
$V/{ m \AA}^3$	4252.2(11)	7982.7(2)	8103.9(13)	7937(2)	8012.4(4)
Ζ	2	3	3	3	3
$Dc/g cm^{-3}$	2.393	2.072	2.041	2.004	2.005
μ/mm ⁻¹	5.874	4.708	4.637	4.253	4.685
Data/restraints/params	4179/0/281	10454/96/562	10621/15/561	10380/151/535	10486/147/537
θ /deg	1.73-26.00	2.83-26.00	1.50-26.00	3.02-26.00	2.82-26.00
Obs reflns	4060	9516	10194	5726	8291
Goof on F^2	1.169	1.065	1.137	1.009	1.161
Flack parameters	Null	0.002(12)	0.000(11)	-0.02(2)	0.00(3)
$R_1[I > 2\sigma(I)]^a$	0.0304	0.0384	0.0490	0.0795	0.1015
wR_2 (all data) ^b	0.0724	0.0859	0.1129	0.1967	0.2257

Tab. S1. Crystal data and structure refinements for I-III.

 ${}^{a}R_{1} = \sum ||F_{O}| - |F_{C}|| / \sum |F_{O}| \qquad {}^{b}wR_{2} = \{\sum [w(F_{O}^{2} - F_{C}^{2})^{2}] / \sum [w(F_{O}^{2})^{2}] \}^{1/2}$

Fig. S1. The molecular structure of the Schiff-base ligand H₃L.

Fig. S2. Schematic presentation of the coordination mode for the L³⁻ ligand with Harris notation.^[5]

Figure S3. Plots of the temperature dependence of $\chi_{\rm M}$ T *vs*. T and $\chi_{\rm M}^{-1}$ *vs*. T for **I-III** under a 1000 Oe DC field at temperatures between 2 and 300 K.

Fig 4. Simulated PXRD patterns for I and III and experimental PXRD patterns for I and III synthesized and for I and III prepared through ion exchange.

Fig. S5. Field dependence of the magnetization of I-III at 2 K.

Fig. S6. Experimental field-dependent magnetization plots of I-III at indicated temperatures.

Figure S5. a) In-phase susceptibility (χ') as a function of frequency (υ) for **I-III** in the temperature range 2.0–5.0 K at zero dc field. b) Out-of-phase susceptibility (χ'') as a function of frequency (υ) for **I-III** in the temperature range 2.0–5.0 K at zero dc field.

Fig. S8. Plots of $\ln(\chi''/\chi')$ vs. 1/T for I, II, and III. The solid lines represent the fitting results over the range 2.2–3.5 K.

- [1] N. H. Hur, W. G. Klemperer and R.-C. Wang, Inorg. Synth., 1990, 27, 78.
- [2] Bruker AXS SHELXTL version 6.12. Structure Determination Package. Bruker AXS 2000. Madison, WI, USA.
- [3] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst., 2009, 42, 339-341.
- [4] A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7.

[4] R. A. Coxall, S. G. Harris, D. K. Henderson, S. Parsons, P. A. Tasker and R. E. P. Winpenny, *J. Chem. Soc., Dalton Trans.* 2000, 2349.