Supporting Information

Efficient generation method and remarkable reactivities of 3-triflyloxybenzyne

Suguru Yoshida,^{*a*} Keisuke Uchida,^{*a*} Kazunobu Igawa,^{*b*} Katsuhiko Tomooka^{*b*} and Takamitsu Hosoya^{*,*a*}

^aLaboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan

^bInstitute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan

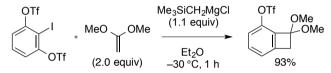
Contents

General Remarks	S1
Experimental Procedures	S2
Characterization Data of New Compounds	S3
References for Supporting Information	S9
¹ H and ¹³ C NMR Spectra of Compounds	S10

General Remarks

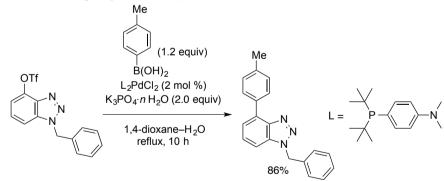
All reactions were performed in a dry glassware under atmosphere of argon otherwise noted. Analytical thin-layer chromatography (TLC) was performed on precoated (0.25 mm) silica-gel plates (Merck Chemicals, Silica Gel 60 F₂₅₄, Cat. No. 1.05715). Column chromatography was conducted using silica-gel (Kanto Chemical Co., Inc., Silica Gel 60N, spherical neutral, particle size 40-50 µm, Cat. No. 37563-85 or particle size 63–210 µm, Cat. No. 37565-85). Preparative thin-layer chromatography (PTLC) was performed on silica-gel (Wako Pure Chemical Industries Ltd., Wakogel B5-F, Cat. No. 230-00043). Melting points (Mp) were measured on a YANACO MP-J3 instrument or an OptiMelt MPA100 (Stanford Research Systems), and are uncorrected. ¹H and ¹³C NMR spectra were obtained with a Bruker AVANCE 500 spectrometer at 500 or 126 MHz, respectively. ¹⁹F NMR spectra were obtained with a Bruker AVANCE 400 spectrometer at 376 MHz. ³¹P NMR spectra were obtained with a Bruker AVANCE 400 spectrometer at 162 MHz. CDCl₃ (Acros Organics, Cat. No. 368651000) or C₆D₆ (Kanto Chemical Co. Inc., Cat. No. 05081-43) was used as a solvent for obtaining NMR spectra. Chemical shifts (δ) are given in parts per million (ppm) downfield from (CH₃)₄Si (δ 0.00 for ¹H NMR in CDCl₃) or the solvent peak (δ 77.0 for ¹³C NMR in CDCl₃, and δ 7.15 for ¹H NMR and δ 128.0 for ¹³C NMR in C₆D₆) as an internal reference, or α, α, α -trifluorotoluene $(\delta - 63.0 \text{ ppm for } {}^{19}\text{F NMR in CDCl}_3)$ or phosphoric acid as $(\delta 0.00 \text{ ppm for } {}^{31}\text{P NMR in D}_2\text{O})$ as an external standard with coupling constants (J) in hertz (Hz). The abbreviations s, d, t, q, m, and br signify singlet, doublet, triplet, quartet, multiplet, and broad, respectively. IR spectra were measured by diffuse reflectance method on a Shimadzu IRPrestige-21 spectrometer attached with DRS-8000A with the absorption band given in cm⁻¹. High-resolution mass spectra (HRMS) were measured on a Bruker micrOTOF mass spectrometer under positive electrospray ionization (ESI⁺) conditions. Elemental analyses were carried out at A Rabbit Science Japan Co., Ltd. X-ray crystallographic data was collected on a Rigaku R-AXIS RAPID diffractometer with graphite monochromated Cu-K α radiation ($\lambda = 1.54187$ Å) at 123 K. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre (CCDC) via www.ccdc.cam.ac.uk/data request/cif.

Tetrahydrofuran (THF) (Cat. No. 41001-84), diethyl ether (Et₂O) (Cat. No. 14547-84), tripotassium phosphate *n*-hydrate (Cat. No. 32380-30) and *n*-butyllithium (1.6 M, hexane solution, Cat. No. 04937-05) were purchased from Kanto Chemical Co. Inc. Magnesium turnings (19108-5000) was purchased from Acros Organics. Tetraphenylcyclopentadienone (**10**) (Cat. No. 326-46632), benzyl azide (**12**) (Cat. No. 327-79632), 4-methylphenylboronic acid (Cat. No. 321-63302), diphenyl sulfide (Cat. No. 162-12562), triphenylphosphine (Cat. No. 204-03061), isopropylmagnesium chloride lithium chloride complex (abt. 14%, THF solution, Cat. No. 095-06431) and 1,4-dioxane (Cat. No. 131474), 1-(*tert*-butyldimethylsilyloxy)-1-


methoxyethene (4) (Cat. No. 519324), bromobenzene (Cat. No. 16350), ethylmagnesium bromide (3.0 M, Et₂O solution, Cat. No. 189871) and isopropylmagnesium chloride (2.0 M, THF solution, Cat. No. 230111) were purchased from Sigma–Aldrich Japan. *N-tert*-Butyl- α -phenylnitrone (16) (Cat. No. B1701), methyl 4-(bromomethyl)benzoate (Cat. No. B2053), 2,5-dimethylfuran (6) (Cat. No. D0725), dibenzyl sulfide (Cat. No. B0440) and trimethylsilylmethyl chloride (Cat. No. C0862) were purchased from Tokyo Chemical Industry Co., Ltd. Bis(di-*tert*-butyl(4-dimethylaminophenyl)phosphine)dichloropalladium(II) (Pd(amphos)₂Cl₂) (Cat. No. 68 1844 5415) was purchased from Umicore AG & Co. KG.

Phenylmagnesium bromide (1.01 M in Et₂O or 1.05 M in THF) was prepared from bromobenzene and magnesium in the conventional way. (Trimethylsilyl)methylmagnesium chloride (1.07 M in Et₂O or 0.968 M in THF) was prepared from trimethylsilylmethyl chloride and magnesium in the conventional way. Phenylmagnesium bromide (1.05 M, THF solution), (trimethylsilyl)methylmagnesium chloride (1.07 M, Et₂O or THF solution) and commercial Grignard reagents were used after titrimetric determination of the concentration by the 1,10-phenanthroline method.^{S1}

1,3-Bis(triflyloxy)-2-iodobenzene^{S2} (1), methyl 4-(azidomethyl)benzoate^{S3} (14) and 2-iodo-3-methoxyphenyl triflate^{S2} (18) were prepared according to the reported methods.

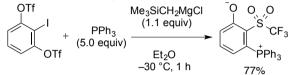

Experimental Procedures

A typical procedure for the cycloaddition of 3-triflyloxybenzyne



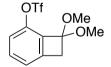
To a mixture of 1,3-bis(triflyloxy)-2-iodobenzene (1) (100 mg, 0.200 mmol) and 1,1-dimethoxyethylene (2) (37.9 μ L, 0.400 mmol, 2.00 equiv) dissolved in Et₂O (3.0 mL) was slowly added (trimethylsilyl)-methylmagnesium chloride (1.07 M, Et₂O solution, 0.206 mL, 0.220 mmol, 1.10 equiv) at -30 °C. After stirring for 1 h at the same temperature, to the mixture was added an aqueous phosphate buffer solution (pH 7, 10 mL). The mixture was extracted with EtOAc (10 mL × 3), and the combined organic extract was washed with brine (5 mL), dried (Na₂SO₄), and after filtration, the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica-gel 600 mg, *n*-hexane/EtOAc = 20/1) to give 8,8-dimethoxy-2-triflyloxybicyclo[4.2.0]octa-1,3,5-triene (3) (57.9 mg, 0.185 mmol, 92.5%) as a colorless oil.

Palladium catalyzed cross-coupling reaction of cycloadduct 13

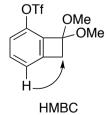


To a mixture of 1-benzyl-4-triflyloxy-1*H*-benzo[*d*][1,2,3]triazole (13) (71.5 mg, 0.200 mmol), 4methylphenylboronic acid (32.6 mg, 0.240 mmol, 1.20 equiv), Pd(amphos)₂Cl₂ (2.8 mg, 4.0 μ mol, 2.0 mol %), and tripotassium phosphate *n*-hydrate (106 mg, ca. 0.40 mmol, ca. 2.0 equiv) were added 1,4dioxane (2.0 mL) and H₂O (0.20 mL) at room temperature and the mixture was heated at 100 °C with stirring for 10 h. After cooling to room temperature, to the mixture was added water (10 mL). The mixture was extracted with EtOAc (50 mL × 3), and the combined organic extract was washed with aqueous saturated solution of sodium bicarbonate, brine (5 mL), dried (Na₂SO₄), and after filtration, the filtrate was concentrated under reduced pressure. The residue was purified by preparative TLC (*n*-hexane/EtOAc = 5/1) to give 1-benzyl-4-(4-tolyl)-1*H*-benzo[*d*][1,2,3]triazole (20) (51.5 mg, 0.172 mmol, 86.0%) as a colorless oil. A typical procedure for the synthesis of aryl triflone via nucleophilic addition of tetrahydrofuran to 3triflyloxybenzyne followed by thia-Fries rearrangement

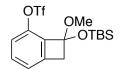
To a solution of 1,3-bis(triflyloxy)-2-iodobenzene (1) (100 mg, 0.200 mmol) in THF (3.0 mL) was slowly added isopropylmagnesium chloride lithium chloride complex (1.37 M, THF solution, 0.220 mmol, 1.10 equiv) at -78 °C. After stirring for 10 min at the same temperature, to the mixture was added an aqueous phosphate buffer solution (pH 7, 10 mL). The mixture was extracted with EtOAc (10 mL × 3), and the combined organic extract was washed with brine (5 mL), dried (Na₂SO₄), and after filtration, the filtrate was concentrated under reduced pressure. The residue was purified by preparative TLC (*n*-hexane/EtOAc = 5/1) to give 3-(4-chlorobutoxy)-2-triflylphenol (23) (54.0 mg, 0.162 mmol, 81.0%) as a colorless solid.


A typical procedure for the synthesis of aryl triflone via nucleophilic addition of nucleophiles to 3triflyloxybenzyne followed by thia-Fries rearrangement

To a mixture of 1,3-bis(triflyloxy)-2-iodobenzene (1) (100 mg, 0.200 mmol) and triphenylphosphine (262 mg, 1.00 mmol, 5.00 equiv) dissolved in Et₂O (3.0 mL) was slowly added (trimethylsilyl)methylmagnesium chloride (1.07 M, Et₂O solution, 0.206 mL, 0.220 mmol, 1.10 equiv) at -30 °C. After stirring for 1 h at the same temperature, to the mixture was added an aqueous phosphate buffer solution (pH 7, 10 mL). The mixture was extracted with EtOAc (10 mL × 3), and the combined organic extract was washed with brine (5 mL), dried (Na₂SO₄), and after filtration, the filtrate was concentrated under reduced pressure. The residue was purified by preparative TLC (dichloromethane/methanol = 10/1) to give 2-triflyl-3-(triphenylphosphonio)phenolate (**25**) (74.7 mg, 0.154 mmol, 77.0%) as a pale yellow solid.


Characterization Data of New Compounds

8,8-Dimethoxy-2-triflyloxybicyclo[4.2.0]octa-1,3,5-triene (3)



Colorless oil; TLC $R_f 0.37$ (*n*-hexane/EtOAc = 10/1); ¹H NMR (CDCl₃, 500 MHz) δ 3.40 (s, 2H, CH₂), 3.46 (s, 6H, 2CH₃), 7.16 (d, 1H, *J* = 8.5 Hz, aromatic), 7.25 (d, 1H, *J* = 7.5 Hz, aromatic), 7.41 (dd, 1H, *J* = 7.5, 8.5 Hz, aromatic); ¹³C NMR (CDCl₃, 126 MHz) δ 43.5 (1C), 51.9 (2C), 105.1 (1C), 118.5 (q, 1C, J^1_{C-F} = 321 Hz), 119.5 (1C), 124.2 (1C), 132.1 (1C), 136.4 (1C), 140.6 (1C), 144.9 (1C); ¹⁹F NMR (CDCl₃, 376 MHz) δ -73.9 (s); IR (KBr, cm⁻¹) 840, 913, 992, 1065, 1142, 1217, 1245, 1424, 2942; HRMS (ESI⁺) *m/z* 335.0183 ([M+Na]⁺, C₁₁H₁₁F₃NaO₅S⁺ requires 335.0171).

The regiochemistry was determined by HMBC analysis (500 MHz ¹H NMR/126 MHz ¹³C NMR in CDCl₃).



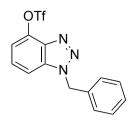
8-(tert-Butyldimethylsilyl)oxy-8-methoxy-2-triflyloxybicyclo[4.2.0]octa-1,3,5-triene (5)

Colorless oil; TLC R_f 0.52 (*n*-hexane/EtOAc = 10/1); ¹H NMR (CDCl₃, 500 MHz) δ 0.17 (s, 3H, SiCH₃), 0.19 (s, 3H, SiCH₃), 0.91 (s, 9H, 3CH₃), 3.45 (d, 1H, J = 13.5 Hz, methylene CH), 3.49 (s, 3H, OCH₃), 3.50 (d, 1H, J = 13.5 Hz, methylene CH), 7.13 (d, 1H, J = 8.5 Hz, aromatic), 7.22 (d, 1H, J = 7.0 Hz, aromatic), 7.38 (dd, 1H, J = 7.0, 8.5 Hz, aromatic); ¹³C NMR (CDCl₃, 126 MHz) δ –3.9 (1C), –3.5 (1C), 17.9 (1C), 25.5 (3C), 48.9 (1C), 53.2 (1C), 102.8 (1C), 118.6 (q, 1C, J^1_{C-F} = 321 Hz), 119.3 (1C), 124.1 (1C), 131.8 (1C), 138.8 (1C), 140.3 (1C), 144.4 (1C); ¹⁹F NMR (CDCl₃, 376 MHz) δ –74.1 (s); IR (KBr, cm⁻¹) 840, 1000, 1065, 1144, 1216, 1245, 1426, 2934; HRMS (ESI⁺) *m/z* 435.0867 ([M+Na]⁺, C₁₆H₂₃F₃NaO₅SSi⁺ requires 435.0880).

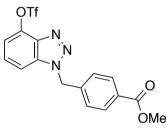
The regiochemistry was determined by HMBC analysis (500 MHz ¹H NMR/126 MHz ¹³C NMR in C₆D₆).

HMBC

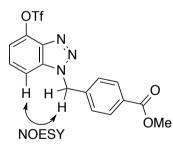
1,4-Dihydro-1,4-dimethyl-5-triflyloxy-1,4-epoxynaphthalene (7)


Colorless oil; TLC $R_f 0.37$ (*n*-hexane/EtOAc = 10/1); ¹H NMR (CDCl₃, 500 MHz) δ 1.91 (s, 3H, CH₃), 2.03 (s, 3H, CH₃), 6.79 (d, 1H, J = 5.0 Hz, alkenic), 6.83 (d, 1H, J = 8.0 Hz, aromatic), 6.88 (d, 1H, J = 5.0 Hz, alkenic), 7.05 (dd, 1H, J = 7.0, 8.0 Hz, aromatic), 7.11 (d, 1H, J = 7.0 Hz, aromatic); ¹³C NMR (CDCl₃, 126 MHz) δ 15.1 (1C), 16.4 (1C), 88.8 (1C), 89.3 (1C), 118.1 (1C), 118.4 (1C), 118.6 (q, 1C, J^1_{C-F} = 321 Hz), 127.7 (1C), 142.3 (1C), 144.1 (1C), 146.4 (1C), 146.8 (1C), 157.5 (1C); ¹⁹F NMR (CDCl₃, 376 MHz) δ – 73.3 (s); IR (KBr, cm⁻¹) 932, 1141, 1221, 1423, 2936, 2984; HRMS (ESI⁺) *m/z* 343.0209 ([M+Na]⁺, C₁₃H₁₁F₃NaO₄S⁺ requires 343.0222).

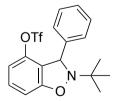
1,4-Dihydro-9-phenyl-5-triflyloxynaphthalen-1,4-imine (9)


Pale brown solid; Mp 60–62 °C; TLC R_f 0.44 (*n*-hexane/EtOAc = 5/1); ¹H NMR (CDCl₃, 500 MHz) δ 5.50 (s, 1H), 5.65 (s, 1H), 6.77–6.83 (m, 3H), 6,86 (dd, 1H, J = 7.5, 7.5 Hz), 6.97–7.03 (m, 3H), 7.15–7.20 (AA'BB', 2H), 7.25 (d, 1H, J = 7.5 Hz); ¹³C NMR (CDCl₃, 126 MHz) δ 67.0 (1C), 69.6 (1C), 117.8 (2C), 118.1 (1C), 118.7 (q, 1C, J^1_{C-F} = 321 Hz), 121.3 (1C), 121.4 (1C), 127.6 (1C), 129.0 (2C), 140.8 (1C), 141.5 (1C), 142.1 (1C), 143.9 (1C), 145.9 (1C), 152.9 (1C); ¹⁹F NMR (CDCl₃, 376 MHz) δ –73.1 (s); IR (KBr, cm⁻¹) 866, 1119, 1142, 1213, 1422, 1495, 1601; HRMS (ESI⁺) *m/z* 390.0395 ([M+Na]⁺, C₁₇H₁₂F₃NNaO₃S⁺ requires 390.0382).

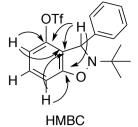
1-Benzyl-4-triflyloxy-1*H*-benzo[*d*][1,2,3]triazole (13)

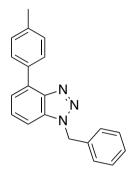


Colorless solid; Mp 84–85 °C; TLC R_f 0.29 (*n*-hexane/EtOAc = 5/1); ¹H NMR (CDCl₃, 500 MHz) δ 5.88 (s, 2H, CH₂), 7.25–7.32 (m, 3H, aromatic), 7.32–7.40 (m, 4H, aromatic), 7.43 (dd, 1H, J = 8.5, 8.5 Hz, aromatic); ¹³C NMR (CDCl₃, 126 MHz) δ 52.8 (1C), 110.4 (1C), 116.2 (1C), 118.8 (q, 1C, J^1_{C-F} = 321 Hz), 127.70 (2C), 127.74 (1C), 128.9 (1C), 129.2 (2C), 133.8 (1C), 135.3 (1C), 139.1 (1C), 139.6 (1C); ¹⁹F NMR (CDCl₃, 376 MHz) δ –72.9 (s); IR (KBr, cm⁻¹) 822, 1015, 1139, 1168, 1219, 1428, 1505, 3035; Anal. calcd. for C₁₄H₁₀F₃N₃O₃S: C, 47.06; N, 11.76; H, 2.82%; Found: C, 47.09; N, 11.96; H, 2.79%.


1-[4-(Methoxycarbonyl)benzyl]-4-triflyloxy-1*H*-benzo[*d*][1,2,3]triazole (15)

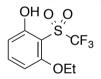
Colorless solid; Mp 1 1 1 1–1 12 °C; TLC R_f 0.46 (*n*-hexane/EtOAc = 1/1); ¹H NMR (CDCl₃, 500 MHz) δ 3.91 (s, 3H, CH₃), 5.94 (s, 2H, CH₂), 7.30 (d, 1H, J = 8.0 Hz, aromatic), 7.32–7.37 (m, 3H, aromatic), 7.46 (dd, 1H, J = 8.0, 8.0 Hz, aromatic), 8.01–8.05 (AA'BB', 2H, aromatic); ¹³C NMR (CDCl₃, 126 MHz) δ 52.3 (1C+1C, two signals overlapped), 1 10.1 (1C), 1 16.4 (1C), 1 18.8 (q, 1C, J^1_{C-F} = 321 Hz), 127.5 (2C), 128.1 (1C), 130.5 (2C), 130.7 (1C), 135.2 (1C), 138.6 (1C), 139.2 (1C), 139.7 (1C), 166.3 (1C); ¹⁹F NMR (CDCl₃, 376 MHz) δ –72.9 (s); IR (KBr, cm⁻¹) 827, 1018, 1139, 1216, 1283, 1424, 1505, 1728; Anal. calcd. for C₁₆H₁₂F₃N₃O₅S: C, 46.27; N, 10.12; H, 2.91%; Found: C, 46.07; N, 10.41; H, 2.84%. The regiochemistry was determined by the NOESY experiment (500 MHz ¹H NMR in C₆D₆).


2-tert-Butyl-2,3-dihydro-3-phenyl-4-triflyloxy-1,2-benzoisoxazole (17)

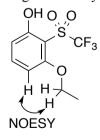

Colorless solid; Mp 48–49 °C; TLC R_f 0.40 (*n*-hexane/EtOAc = 20/1); ¹H NMR (CDCl₃, 500 MHz) δ 1.19 (s, 9H, CH₃), 5.79 (s, 1H, sp³CH), 6.72 (d, 1H, *J* = 8.5 Hz, aromatic), 6.88 (d, 1H, *J* = 8.0 Hz, aromatic), 7.22–7.36 (m, 6H, aromatic); ¹³C NMR (CDCl₃, 126 MHz) δ 25.2 (3C), 61.9 (1C), 65.5 (1C), 107.2 (1C), 113.3 (1C), 118.5 (q, 1C, J^1_{C-F} = 321 Hz), 122.8 (1C), 127.5 (2C), 128.0 (1C), 128.7 (2C), 130.8 (1C), 141.1 (1C), 144.4 (1C), 159.6 (1C); ¹⁹F NMR (CDCl₃, 376 MHz) δ –73.4 (s); IR (KBr, cm⁻¹) 855, 1009, 1140, 1215, 1249, 1423, 1457, 2976; Anal. calcd. C₁₈H₁₈F₃NO₄S: C, 53.86; N, 3.49; H, 4.52%; Found: C, 53.86; N, 3.50;

H, 4.56%.

The regiochemistry was determined by HMBC analysis (500 MHz ¹H NMR/126 MHz ¹³C NMR in CDCl₃).



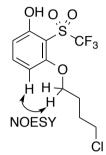
1-Benzyl-4-(4-tolyl)-1*H*-benzo[*d*][1,2,3]triazole (20)



Colorless oil; TLC $R_f 0.38$ (*n*-hexane/EtOAc = 5/1); ¹H NMR (CDCl₃, 500 MHz) δ 2.46 (s, 3H, CH₃), 5.91 (s, 2H, CH₂), 7.29–7.39 (m, 8H, aromatic), 7.46 (dd, 1H, J = 7.5, 8.0 Hz, aromatic), 7.50 (d, 1H, J = 7.5 Hz, aromatic), 8.04–8.08 (AA'BB', 2H, aromatic); ¹³C NMR (CDCl₃, 126 MHz) δ 21.3 (1C), 52.2 (1C), 108.1 (1C), 122.0 (1C), 127.5 (2C), 127.6 (1C), 128.4 (1C), 128.9 (2C), 129.0 (2C), 129.4 (2C), 133.4 (1C), 133.5 (1C), 133.8 (1C), 134.8 (1C), 138.1 (1C), 144.4 (1C); IR (KBr, cm⁻¹) 824, 1097, 1159, 1245, 1257, 1455, 1496, 1606, 2921, 3032; HRMS (ESI⁺) *m/z* 322.1313 ([M+Na]⁺, C₂₀H₁₇N₃Na⁺ requires 322.1315).

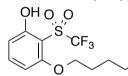
3-Ethoxy-2-triflylphenol (22)

Colorless oil; TLC $R_f 0.44$ (*n*-hexane/EtOAc = 5/1); ¹H NMR (CDCl₃, 500 MHz) δ 1.45 (t, 3H, J = 7.0 Hz, CH₃), 4.14 (q, 2H, J = 7.0 Hz, CH₂), 6.48 (dd, 1H, J = 0.50, 8.5 Hz, aromatic), 6.63 (dd, 1H, J = 0.50, 8.5 Hz, aromatic), 7.51 (dd, 1H, J = 8.5, 8.5 Hz, aromatic), 9.55 (1H, OH); ¹³C NMR (CDCl₃, 126 MHz) δ 14.0 (1C), 65.6 (1C), 103.6 (1C), 103.7 (q, 1C, J^{2}_{C-F} = 4.9 Hz), 111.4 (1C), 119.9 (q, 1C, J^{1}_{C-F} = 328 Hz), 139.3 (1C), 159.9 (1C), 160.7 (1C); ¹⁹F NMR (CDCl₃, 376 MHz) δ -76.5 (s); IR (KBr, cm⁻¹) 1092, 1122, 1218, 1334, 1495, 1580, 1607, 3340; Anal. calcd. for C₉H₉F₃O₄S: C, 40.00; H, 3.36%; Found: C, 40.10; H, 3.38%. Regiochemistry was determined by the NOESY experiment (500 MHz ¹H NMR in CDCl₃).

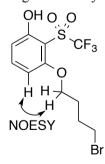


3-(4-Chlorobutoxy)-2-triflylphenol (23)

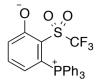
OHO O S ℃F₃ CI


Colorless solid; Mp 31–32 °C; TLC R_f 0.38 (*n*-hexane/EtOAc = 5/1); ¹H NMR (CDCl₃, 500 MHz) δ 1.94–2.08 (m, 4H, 2CH₂), 3.63 (t, 2H, *J* = 6.0 Hz, CH₂), 4.10 (t, 2H, *J* = 5.5 Hz, CH₂), 6.49 (dd, 1H, *J* = 0.8, 8.5 Hz, aromatic), 6.66 (dd, 1H, *J* = 0.8, 8.5 Hz, aromatic), 7.53 (dd, 1H, *J* = 8.5, 8.5 Hz, aromatic), 9.55 (s, 1H, OH); ¹³C NMR (CDCl₃, 126 MHz) δ 26.0 (1C), 28.6 (1C), 44.6 (1C), 68.9 (1C), 103.3 (1C), 103.5 (1C), 111.6 (1C), 119.9 (q, 1C, J^{1}_{C-F} = 328 Hz), 139.4 (1C), 159.8 (1C), 160.9 (1C); ¹⁹F NMR (CDCl₃, 376 MHz) δ -77.0 (s); IR (KBr, cm⁻¹) 1039, 1220, 1335, 1495, 1568, 1575, 1606, 2956, 3314; Anal. calcd. for C₁₁H₁₂ClF₃O₄S: C, 39.71; H, 3.64%; Found: C, 39.84; H, 3.59%.

Regiochemistry was determined by the NOESY experiment (500 MHz ¹H NMR in CDCl₃).



3-(4-Bromobutyloxy)-2-triflylphenol (24)


.Br

Colorless solid; Mp 32–33 °C; TLC R_f 0.35 (*n*-hexane/EtOAc = 5/1); ¹H NMR (CDCl₃, 500 MHz) δ 2.00 (tt, 2H, J = 6.5, 6.5 Hz, CH₂), 2.10 (tt, 2H, J = 6.5, 6.5 Hz, CH₂), 3.49 (t, 2H, J = 6.5 Hz, CH₂), 4.10 (t, 2H, J = 6.5 Hz, CH₂), 6.49 (d, 1H, J = 8.5 Hz, aromatic), 6.66 (d, 1H, J = 8.5 Hz, aromatic), 7.53 (dd, 1H, J = 8.5, 8.5 Hz, aromatic), 9.55 (s, 1H, OH); ¹³C NMR (CDCl₃, 126 MHz) δ 27.2 (1C), 28.7 (1C), 33.3 (1C), 68.7 (1C), 103.3 (1C), 103.5 (1C), 111.7 (1C), 119.9 (q, 1C, J^{1}_{C-F} = 328 Hz) 139.4 (1C), 159.8 (1C), 160.9 (1C); ¹⁹F NMR (CDCl₃, 376 MHz) δ –77.0 (s); IR (KBr, cm⁻¹) 1072, 1121, 1208, 1335, 1450, 1492, 1578, 1607, 2925, 3335; Anal. calcd. for C₁₁H₁₂BrF₃O₄S: C, 35.03; H, 3.21%; Found: C, 35.23; H, 3.15%. Regiochemistry was determined by the NOESY experiment (500 MHz ¹H NMR in CDCl₃).

2-Triflyl-3-(triphenylphosphonio)phenolate (25)

Pale yellow solid; Mp 261–262 °C; TLC R_f 0.56 (CH₂Cl₂/MeOH = 5/1); ¹H NMR (CDCl₃, 500 MHz) δ 5.86 (dd, 1H, J = 6.5 Hz, J_{H-P} = 19.0 Hz, aromatic), 7.08 (d, 1H, J = 8.5 Hz, aromatic), 7.11–7.18 (m, 1H, aromatic), 7.40–7.90 (m, 15H, aromatic); ¹³C NMR (CDCl₃, 126 MHz) δ 116.0 (br s, 1C), 116.6 (d, 1C, J_{C-P} = 38.4 Hz), 120.1 (q, 1C, J_{C-F}^1 = 330 Hz), 122.7–123.2 (br, 1C), 123.7 (br s, 1C), 129.5 (d, 6C, J_{C-P} = 13.2 Hz), 133.6 (br, d, 3C, J_{C-P} = 8.1 Hz), 133.7 (d, 6C, J_{C-P} = 3.0 Hz), 134.1 (d, 3C, J_{C-P} = 19.3 Hz), 135.1 (1C), 175.7 (d, 1C, J_{C-P} = 4.8 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ –72.3 (s); ³¹P NMR (CDCl₃, 162 MHz) δ 27.1 Hz (s); IR (KBr, cm⁻¹) 1109, 1174, 1185, 1211, 1328, 1437, 1524, 1595, 3061; HRMS (ESI⁺) *m/z* 487.0728 ([M+H]⁺, C₂₅H₁₉F₃O₃PS⁺ requires 487.0739).

Crystallographic analysis

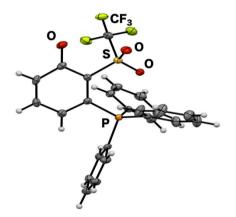
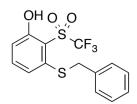
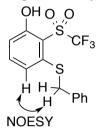


Figure S1. ORTEP drawing of phosphonium salt 25 (ellipsoids set at 40% probability level).


Selected crystal data: Crystal System; monoclinic, Space Group; $P2_1/n$ (No. 14), a = 9.528(2) Å, b = 17.804(3) Å, c = 13.794(2) Å, $\beta = 104.385(9)^{\circ}$, V = 2266.6(6) Å³, Z = 4, $R_1 = 0.0316$, w $R_2 = 0.0836$. CCDC 1014336 contains the supplementary crystallographic data for this compound. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

3-(Diphenylsulfonio)-2-triflylphenolate (26)

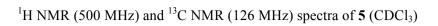

Pale yellow solid; Mp 176–177 °C; TLC R_f 0.59 (CH₂Cl₂/MeOH = 5/1); ¹H NMR (CDCl₃, 500 MHz) δ 5.63 (d, 1H, J = 7.5 Hz, aromatic), 6.87 (d, 1H, J = 9.0 Hz, aromatic), 7.10 (dd, 1H, J = 7.5, 9.0 Hz, aromatic), 7.48 (d, 4H, J = 8.0 Hz, aromatic), 7.66 (dd, 4H, J = 7.5, 8.0 Hz, aromatic), 7.74 (t, 2H, J = 7.5 Hz, aromatic); ¹³C NMR (CDCl₃, 126 MHz) δ 110.2 (1C), 114.6 (1C), 120.3 (q, 1C, J^1_{C-F} = 329 Hz), 123.2 (1C), 125.7 (1C), 130.7 (4C), 131.2 (4C), 133.3 (1C), 133.9 (1C), 134.1 (2C), 175.8 (1C); ¹⁹F NMR (CDCl₃, 376 MHz) δ –75.4 (s); IR (KBr, cm⁻¹) 1011, 1108, 1196, 1333, 1447, 1484, 1535, 1600, 3060; HRMS (ESI⁺) *m/z* 411.0325 ([M+H]⁺, C₁₉H₁₄F₃O₃S₂⁺ requires 411.0331).

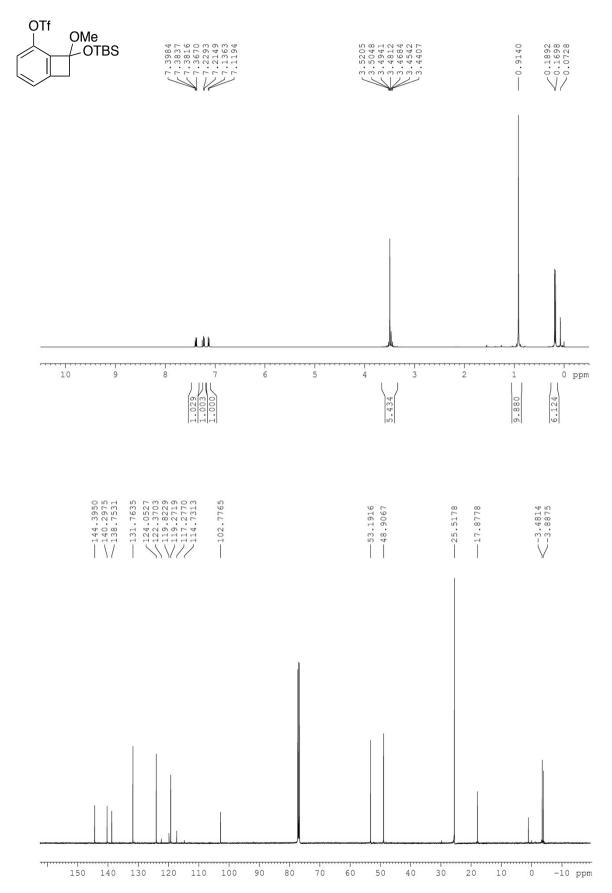
3-Benzylthio-2-triflylphenol (27)

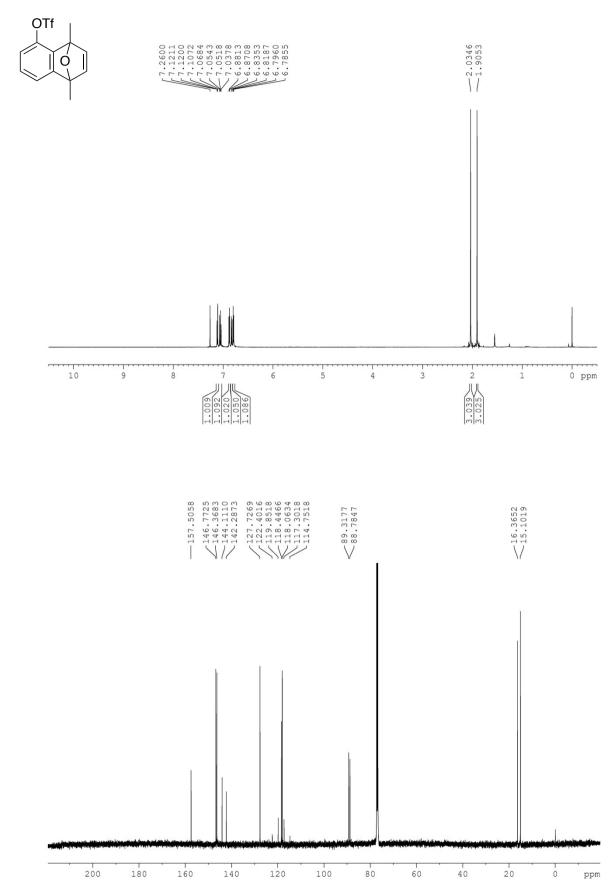
Colorless solid; Mp 112–113 °C; TLC R_f 0.41 (*n*-hexane/EtOAc = 5/1); ¹H NMR (CDCl₃, 500 MHz) δ 4.18 (s, 2H, CH₂), 6.85 (d, 1H, J = 8.0 Hz, aromatic), 6.94 (d, 1H, J = 8.0 Hz, aromatic), 7.26–7.43 (m, 5H, aromatic), 7.44 (dd, 1H, J = 8.0, 8.0 Hz, aromatic), 9.43 (s, 1H, OH); ¹³C NMR (CDCl₃, 126 MHz) δ 38.9 (1C), 110.6 (1C), 116.6 (1C), 120.2 (q, 1C, J^{1}_{C-F} = 329 Hz), 120.4 (1C), 127.8 (1C), 128.8 (2C), 129.0 (2C), 134.8 (1C), 137.8 (1C), 144.5 (1C), 161.3 (1C); ¹⁹F NMR (CDCl₃, 376 MHz) δ –77.3 (s); IR (KBr, cm⁻¹) 1033, 1095, 1137, 1206, 1221, 1357, 1464, 1585, 3370; Anal. calcd. for C₁₄H₁₁F₃O₃S₂: C, 48.27; H, 3.18%; Found: C, 48.27; H, 3.25%.

Regiochemistry was determined by the NOESY experiment (500 MHz 1 H NMR in C₆D₆).

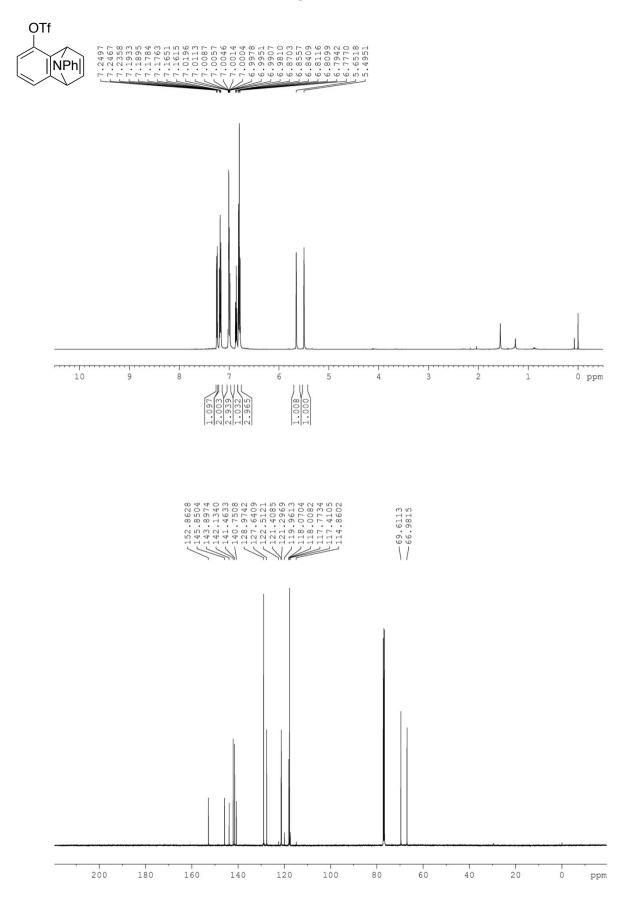


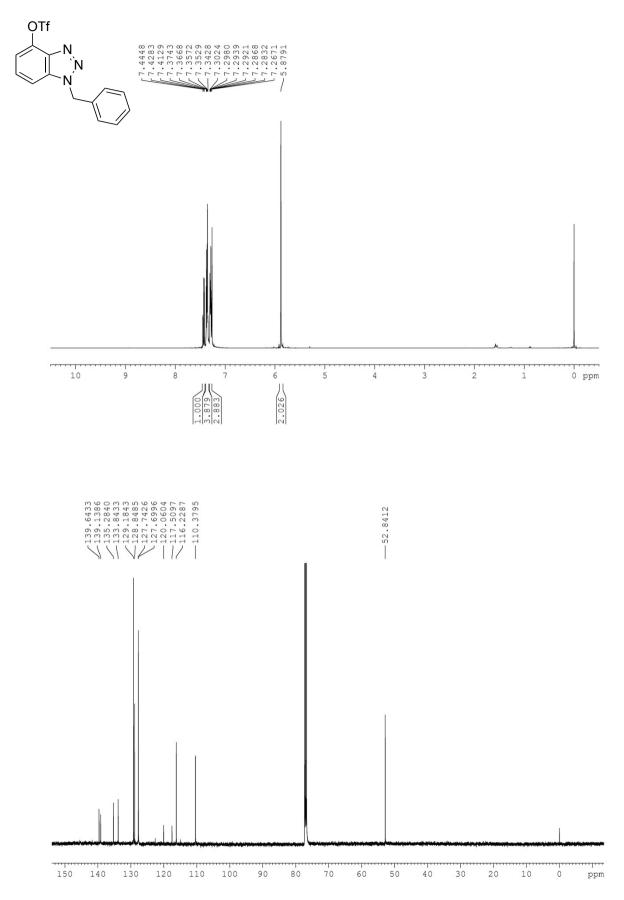

References for Supporting Information


- (S1) D. E. Bergbreiter and E. Pendergrass, J. Org. Chem., 1981, 46, 219.
- (S2) T. Hamura, T. Hosoya, H. Yamaguchi, Y. Kuriyama, M. Tanabe, M. Miyamoto, Y. Yasui, T. Matsumoto and K. Suzuki, *Helv. Chim. Acta*, 2002, **85**, 3589.
- (S3) E. A. Wydysh, S. M. Medghalchi, A. Vadlamudi and C. A. Townsend, J. Med. Chem. 2009, 52, 3317.

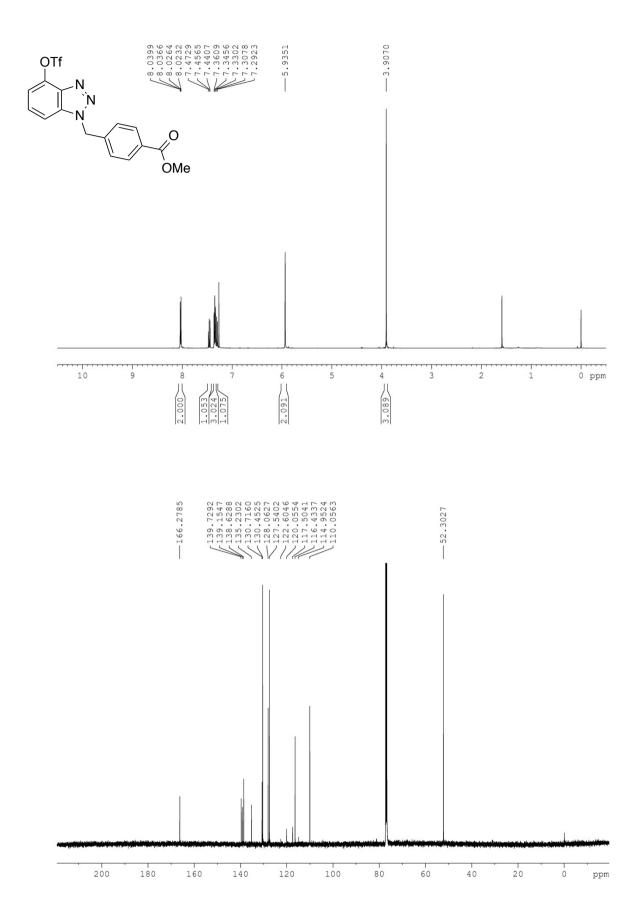

¹H and ¹³C NMR Spectra of Compounds

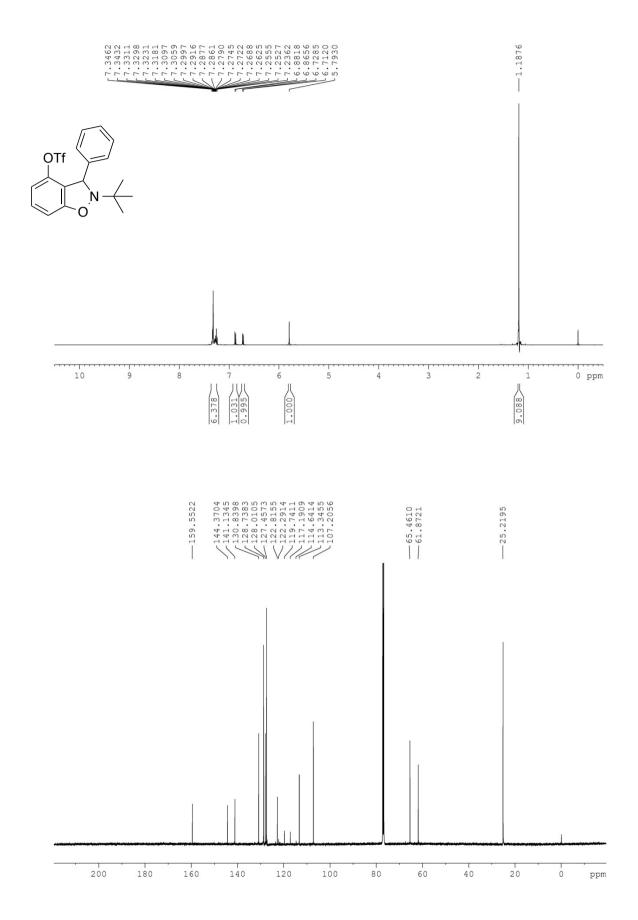
 1 H NMR (500 MHz) and 13 C NMR (126 MHz) spectra of **3** (CDCl₃)



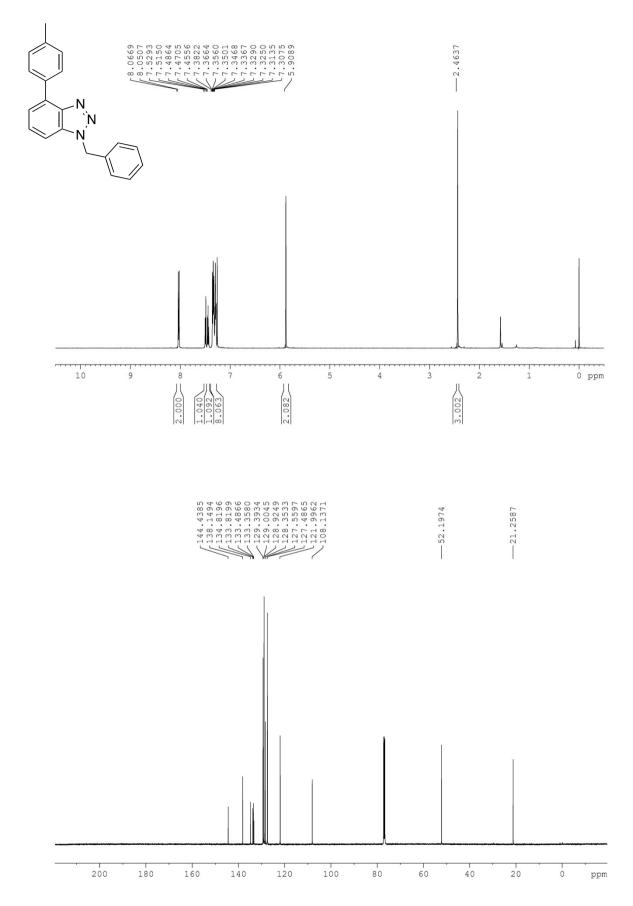


¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of 7 (CDCl₃)

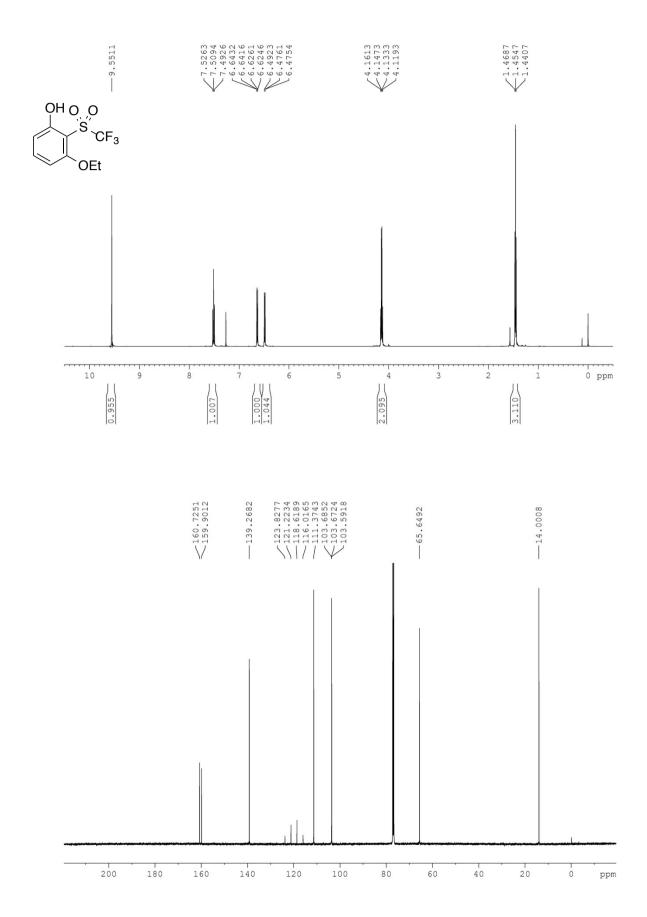

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of **9** (CDCl₃)

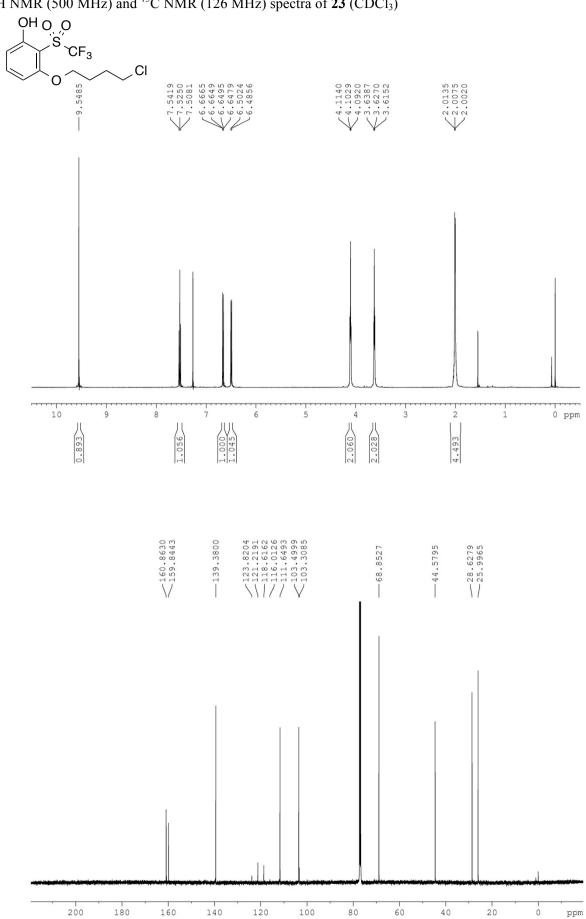


¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of **13** (CDCl₃)

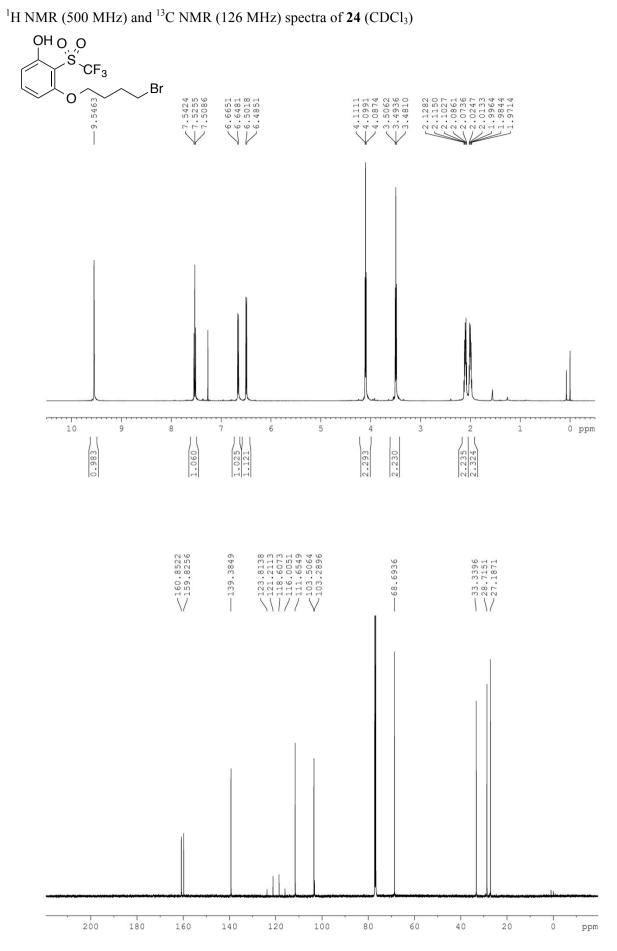


¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of **15** (CDCl₃)

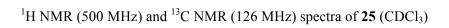


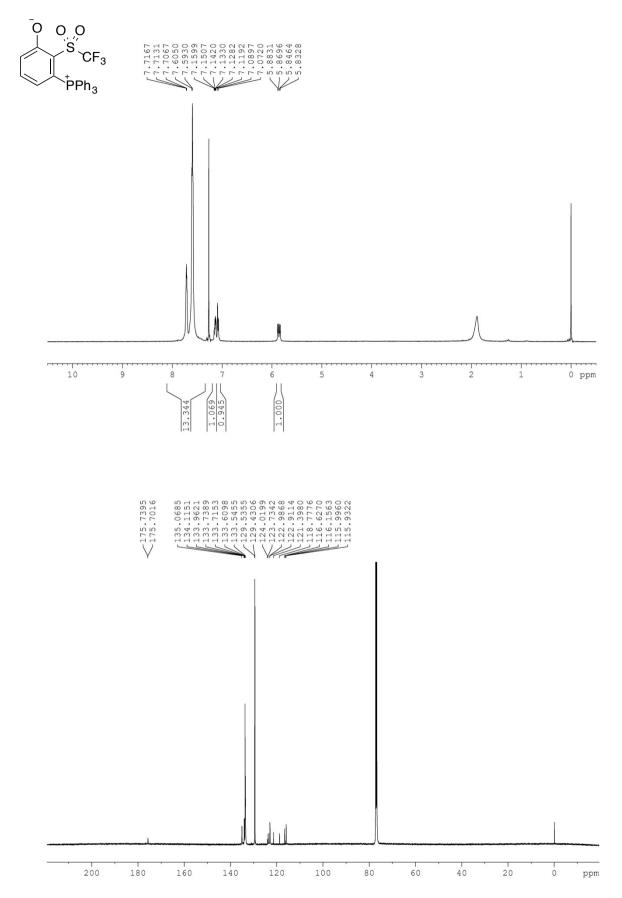


^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of **20** (CDCl₃)

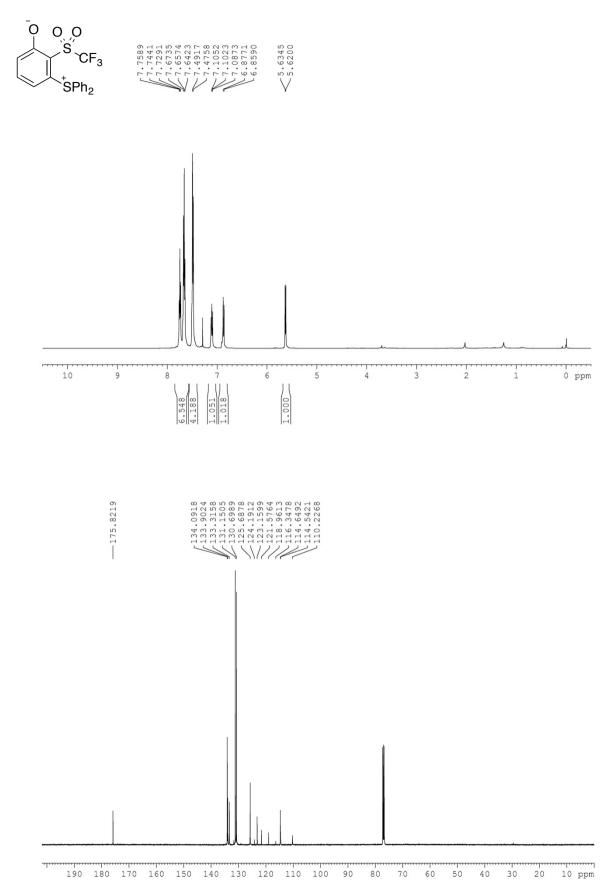


1 H NMR (500 MHz) and 13 C NMR (126 MHz) spectra of **22** (CDCl₃)

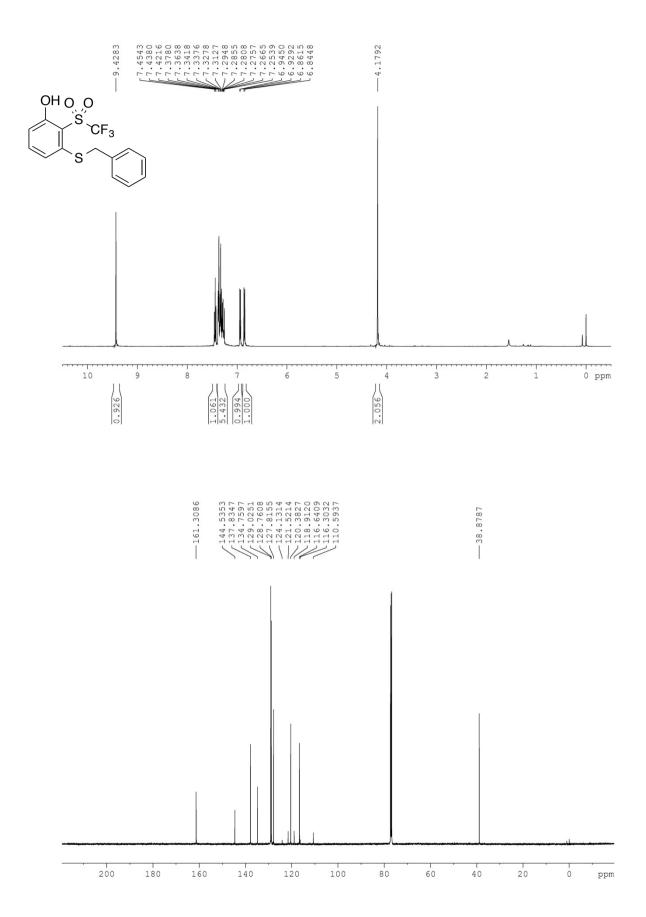




 1 H NMR (500 MHz) and 13 C NMR (126 MHz) spectra of **23** (CDCl₃)



 1 H NMR (500 MHz) and 13 C NMR (126 MHz) spectra of **24** (CDCl₃)



 1 H NMR (500 MHz) and 13 C NMR (126 MHz) spectra of **26** (CDCl₃)

