Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Supporting Information for:

Direct Regioselective Phosphonation of Heteroaryl N-oxides with H-

phosphonates under Metal and External Oxidant Free Conditions

Hui Wang^a, Xiuling Cui^{*a,b}, Yu Pei^a, Qianqian Zhang^a, Jie Bai^a, Donghui Wei^a and Yangjie Wu^{*a}

^a Department of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou, 450052, P.R. China ^b Xiamen Key Laboratory of Ocean and Gene Drugs, School of Biomedical Sciences and Institute

of Molecular Medicine of Huaqiao University & Engineering Research Center of Molecular Medicine of Chinese Education Ministry, Fujian, Xiamen, 361021, P.R. China

E-mail: cuixl@zzu.edu.cn; wyj@zzu.edu.cn

Table of Contents

I. General experimental	S 3
II. General procedure for the Phosphonation of Heteroaryl N-oxides	83
III. Experimental data for the described substances	S3-S10
IV. References	S10-S11
V. Cartesian coordinates of the optimized structures	S11-S13
VI. ¹ H, ¹³ C and ³¹ P NMR spectra	S14-S79

I. General experimental

Unless otherwise noted all commercial materials were used without further purification. The solvents were purified and dried according to standard methods. The dimethyl, diethyl and dibenzyl H-phosphonates were all purchased from Acros. Other H-phosphonates were prepared according to the literature procedure.¹ The silica gel was purchased from Qing Dao Hai Yang Chemical Industry Co. All of the heteroaryl N-oxides were synthesized according to the literature.² The NMR spectra were recorded on a Bruker DPX-400 spectrometer. Chemical shifts were reported in δ ppm referenced to an internal SiMe₄ standard for ¹H NMR (400 MHz), chloroform-*d* (δ 77.00) for ¹³C NMR (100 MHz) and H₃PO₄ as external standard for ³¹P NMR (162 MHz). High resolution mass spectra (HRMS) were recorded on an Agilent 6450 spectrometer with micromass MS software using electrospray ionisation (ESI). Melting points were performed using the Gaussian 09 program³. All structures were optimized and at the B3LYP⁴⁻⁶/6-31G(d, p) level, and the corresponding vibrational frequencies were calculated at the same level.

II. General procedure for the Phosphonation of Heteroaryl N-oxides

A mixture of quinoline *N*-oxide (72.5 mg, 0.5 mmol) and dimethyl H-phosphonate (138 uL, 1.5 mmol) in xylene (2.0 ml) in a sealed tube was stirred at 100 °C for 20 h. After cooling to room temperature, the mixture was purified by column chromatography on silica gel (EtOAc/petroleum ether=3/1, v/v) to afford the desired product **3a**.

III. Experimental data for the described substances

CDCl₃): δ = 151.45 (d, J = 224.7 Hz), 147.96 (d, J = 25.9 Hz), 136.15 (d, J = 11.9 Hz), 130.09, 128.38 (d, J = 3.4 Hz), 128.28, 127.58 (d, J = 1.6 Hz), 123.13 (d, J = 26.6 Hz), 53.45 (d, J = 6.2 Hz) ppm. ³¹P NMR (162 MHz, CDCl₃): δ = 13.4 ppm. HRMS (EI⁺): calculated for C₁₁H₁₃NO₃P [M+H⁺]: 238.0628, found: 238.0630.

Dimethyl (6-methylquinolin-2-yl)phosphonate (3b) Colorless oil (76% yield): ¹**H NMR** (400 MHz, CDCl₃): δ = 8.14-8.07 (m, 2 H), 7.91-7.87 (m, 1 H), 7.54 (d, *J* = 6.5 Hz, 2 H), 3.87 (d, *J* = 10.9 Hz, 6 H), 2.49 (s, 3 H) ppm. ¹³**C NMR** (100MHz, CDCl₃): δ = 150.49 (d, *J* = 225.5 Hz),

146.96 (d, J = 25.9 Hz), 138.77, 135.50 (d, J = 12 Hz), 132.67, 130.01, 128.74 (d, J = 3.4 Hz), 126.45 (d, J = 1.6 Hz), 123.49 (d, J = 26.7 Hz), 53.58 (d, J = 6.1 Hz), 21.73 ppm. ³¹P NMR (162 MHz, CDCl₃): $\delta = 13.7$ ppm. **HRMS** (EI⁺): calculated for C₁₂H₁₅NO₃P [M+H⁺]: 252.0784, found: 252.0788.

Dimethyl (8-methylquinolin-2-yl)phosphonate (3c) Colorless oil (72% yield). ¹**H NMR** (400 MHz, CDCl₃): δ = 8.21 (dd, *J* = 8.3, 6.0 Hz, 1 H), 7.93 (dd, *J* = 8.3, 4.5 Hz, 1 H), 7.66 (d, *J* = 8.1 Hz, 1 H), 7.60 (d, *J* = 6.9 Hz, 1 H), 7.49 (t, *J* = 7.7 Hz, 1 H), 3.96 (d, *J* = 10.8 Hz, 6 H), 2.81 (s, 3 H)

ppm. ¹³C NMR (100MHz, CDCl₃): δ = 150.64 (d, *J* = 226.0 Hz), 147.17 (d, *J* = 25.2 Hz), 138.23 (d, *J* = 1.2 Hz), 136.45 (d, *J* = 11.8 Hz), 130.27, 128.62 (d, *J* = 3.5 Hz), 128.31, 125.72 (d, *J* = 1.3 Hz), 123.03 (d, *J* = 27.2 Hz), 54.02 (d, *J* = 6.3 Hz), 17.91 ppm. ³¹P NMR (162 MHz, CDCl₃): δ = 12.8 ppm. HRMS (EI⁺): calculated for C₁₂H₁₅NO₃P [M+H⁺]: 252.0784, found: 252.0787.

Dimethyl (6-bromoquinolin-2-yl)phosphonate (3d) Orange oil (72% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.14 (dd, J = 5.7, 8.3 Hz, 1 H), 8.05 (d, J = 9.0 Hz, 1 H), 7.97 (d, J = 2.1 Hz, 1 H), 7.93 (dd, J = 4.7, 8.4 Hz, 1 H), 7.77 (dd, J = 2.2, 9.0 Hz, 1 H), 3.88 (d, J = 10.8

Hz, 6 H) ppm. ¹³C **NMR** (100MHz, CDCl₃): δ = 152.05 (d, J = 225.3 Hz), 146.50 (d, J = 26.0 Hz), 135.12 (d, J = 11.7 Hz), 133.68, 131.82, 129.58 (d, J = 1.5 Hz), 129.37 (d, J = 3.4 Hz), 123.98 (d, J = 26.4 Hz), 122.56, 53.54 (d, J = 6.2 Hz) ppm. ³¹P **NMR** (162 MHz, CDCl₃): δ = 12.8 ppm. HRMS (EI⁺): calculated for C₁₁H₁₂N₂O₅P [M+H⁺]: 315.9733, found: 315.9737.

(100MHz, CDCl₃): δ = 151.88 (d, *J* = 225.6 Hz), 146.37 (d, *J* = 26.0 Hz), 135.28 (d, *J* = 11.7 Hz), 134.29, 131.83, 131.22, 129.99 (d, *J* = 3.4 Hz), 126.22 (d, *J* = 1.5 Hz), 124.07 (d, *J* = 26.4 Hz), 53.59 (d, *J* = 6.1 Hz) ppm. ³¹**P NMR** (162 MHz, CDCl₃): δ = 12.8 ppm. **HRMS** (EI⁺): calculated for C₁₁H₁₂ClNO₃P [M+H⁺]: 272.0238, found: 272.0245.

ppm. ¹³C NMR (100MHz, CDCl₃): δ = 156.14 (d, *J* = 224.0 Hz), 149.76 (d, *J* = 25.8 Hz), 146.63, 138.38 (d, *J* = 11.4 Hz), 132.38, 127.45 (d, *J* = 3.4 Hz), 124.93 (d, *J* = 25.8 Hz), 124.51 (d, *J* = 1.49 Hz), 123.65, 54.00 (d, *J* = 6.3 Hz) ppm. ³¹P NMR (162 MHz, CDCl₃): δ = 11.5 ppm. HRMS (EI⁺): calculated for C₁₁H₁₂N₂O₅P [M+H⁺]: 283.0478, found: 283.0480.

yield). ¹**H** NMR (400 MHz, CDCl₃): $\delta = 8.79$ (dd, J = 8.9, 1.5 Hz, 1 H), 8.73 (d, J = 8.3 Hz, 1 H), 8.60 (d, J = 9.1 Hz, 1 H), 7.95-7.86 (m, 2 H), 4.05 (d, J = 11.6 Hz, 6 H) ppm. ¹³**C** NMR (100MHz, CDCl₃): $\delta = 143.75$ (d, J = 7.5 Hz), 139.74 (d, J = 11.8 Hz), 136.59 (d, J = 219.4 Hz), 133.45, 132.20, 125.16, 123.68 (d, J = 1.6 Hz), 123.50 (d, J = 11.9 Hz), 120.82, 55.29 (d, J = 6.1 Hz) ppm. ³¹**P** NMR (162 MHz, CDCl₃): $\delta = 6.4$ ppm. **HRMS** (EI⁺): calculated for C₁₁H₁₂N₂O₅P [M+H⁺]: 283.0478, found: 283.0479.

127.69 (d, J = 27.3 Hz), 127.23, 54.25 (d, J = 6.2 Hz) ppm. ³¹**P** NMR (162 MHz, CDCl₃): $\delta = 11.6$ ppm. **HRMS** (EI⁺): calculated for C₁₁H₁₂BrNO₃P [M+H⁺]: 315.9733, found: 315.9735.

Dimethyl (4-chloroquinolin-2-yl)phosphonate (3j) Colorless oil (39% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.24$ -8.21 (m, 2 H), 8.03 (dd, J = 5.4, 2.1 Hz, 1 H), 7.82-7.77 (m, 1 H), 7.70 (t, J = 8.1 Hz, 1 H), 3.91 (d, J = 11.1 Hz, 6 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 151.76$ (d, J = 226.3 Hz), 149.07 (d, J = 27.4 Hz), 143.46 (d, J = 17.6 Hz), 131.13, 130.81, 129.56, 126.93 (d, J = 3.1 Hz), 124.12, 123.58 (d, J = 27.5 Hz), 53.86 (d, J = 6.2 Hz) ppm. ³¹P NMR (162 MHz, CDCl₃):

 δ = 11.9 ppm. **HRMS** (EI⁺): calculated for C₁₁H₁₂ClNO₃P [M+H⁺]: 272.0238, found: 272.0241.

Dimethyl (3-methylquinolin-2-yl)phosphonate (3k) White solid (83% yield): m.p. 79-80 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.07 (d, *J* = 8.5 Hz, 1 H), 7.88 (d, *J* = 6.8 Hz, 1 H), 7.64 (d, *J* = 8.2 Hz, 1 H), 7.59 (t, *J* = 7.2 Hz, 1 H), 7.48 (t, *J* = 7.6 Hz, 1 H), 3.90 (d, *J* = 11.0 Hz, 6 H), 2.67 (s,

3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 151.52 (d, J = 222.8 Hz), 145.86 (d, J = 26.0 Hz), 136.92 (d, J = 12.1 Hz), 133.38 (d, J = 28.3 Hz), 130.03 (d, J = 1.4 Hz), 129.13, 128.64 (d, J = 3.5 Hz), 128.46, 126.83 (d, J = 1.7 Hz), 53.69 (d, J = 6.6 Hz), 19.41 ppm. ³¹P NMR (162 MHz, CDCl₃): δ = 14.0 ppm. **HRMS** (EI⁺): calculated for C₁₂H₁₅NO₃P [M+H⁺]: 252.0784, found: 252.0789.

Dimethyl (3-bromoquinolin-2-yl)phosphonate (31) White solid (85% yield). m.p. 152-153 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.43 (d, J = 6.0 Hz, 1 H), 8.15 (d, J = 8.4 Hz, 1 H), 7.78-7.73 (m, 2 H), 7.66-7.61 (m, 1 H), 4.02 (d, J = 11.1 Hz, 6 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ =

150.83 (d, J = 235.7 Hz), 145.66 (d, J = 24.2 Hz), 139.95 (d, J = 9.4 Hz), 130.45, 130.33 (d, J = 1.2 Hz), 129.53, 129.29 (d, J = 3.3 Hz), 126.64, 117.94 (d, J = 25.4 Hz), 54.25 (t, J = 6.1 Hz) ppm. ³¹P NMR (162 MHz, CDCl₃): $\delta = 11.7$ ppm. HRMS (EI⁺): calculated for C₁₁H₁₂BrNO₃P [M+H⁺]: 315.9733, found: 315.9737.

Dimethyl isoquinolin-1-ylphosphonate (3m)⁸ Colorless oil (92% yield).
¹H NMR (400 MHz, CDCl₃): δ = 8.84 (d, J = 8.5 Hz, 1 H), 8.64 (d, J = 5.6 Hz, 1 H), 7.83-7.79 (m, 1 H), 7.75 (dd, J = 5.4, 2.6 Hz, 1 H), 7.70-7.61 (m, 2 H), 3.89 (d, J = 11.0 Hz, 6 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ =

151.36 (d, J = 222.6 Hz), 142.06 (d, J = 25.5 Hz), 136.01 (d, J = 10.5 Hz), 130.66, 130.95 (d, J = 29.0 Hz), 128.59, 127.28 (d, J = 2.3 Hz), 126.86, 123.90 (d, J = 4.1 Hz), 53.71 (t, J = 6.1 Hz) ppm. ³¹P NMR (162 MHz, CDCl₃): $\delta = 13.2$ ppm. HRMS (EI⁺): calculated for C₁₁H₁₃NO₃P [M+H⁺]: 238.0628, found: 238.0634.

Dimethyl (7-bromoisoquinolin-1-yl)phosphonate (3n) Light yellow solid (80% yield). m. p. 84-85 °C. ¹H NMR (400 MHz, CDCl₃): δ = 9.08 (s, 1 H), 8.70 (d, J = 5.6 Hz, 1 H), 7.80-7.71 (m, 3 H), 3.92 (d, J = 11.0 Hz, 6 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 150.86 (d, J = 223.9 Hz), 142.74 (d, J = 24.9 Hz), 134.81, 134.68, 131.01 (d, J = 29.0 Hz), 129.41,

129.13 (d, J = 2.5 Hz), 123.92 (d, J = 4.2 Hz), 123.16, 54.2 (d, J = 6.3 Hz) ppm. ³¹P NMR (162 MHz, CDCl₃): $\delta = 12.4$ ppm. HRMS (EI⁺): calculated for C₁₁H₁₂BrNO₃P [M+H⁺]: 315.9733, found: 315.9735.

Dimethyl quinoxalin-2-ylphosphonate (30)⁹ Orange oil (74%) yield). ¹**H** NMR (400 MHz, CDCl₃): $\delta = 9.18$ (s, 1 H), 8.12 (dd, J =8.0, 1.8 Hz, 1 H), 8.05-8.01 (m, 1 H), 7.79-7.71 (m, 2 H), 3.87 (d, J= 11.0 Hz, 6 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 147.00$ (d, J =

222.4 Hz), 146.09 (d, J = 27.7 Hz), 143.03 (d, J = 2.6 Hz), 142.17 (d, J = 21.4 Hz), 132.16, 130.88, 130.16 (d, J = 1.3 Hz), 129.46 (d, J = 2.1 Hz), 53.85 (t, J = 5.4 Hz) ppm. ³¹P NMR (162 MHz, CDCl₃): $\delta = 11.0$ ppm. **HRMS** (EI⁺): calculated for C₁₀H₁₂N₂O₃P [M+H⁺]: 239.0580, found: 239.0581.

Dimethyl pyridin-2-ylphosphonate (3p)¹⁰ Colorless oil (48% yield). ¹H **NMR** (400 MHz, CDCl₃): $\delta = 8.74$ (d, J = 4.8 Hz, 1 H), 7.90 (t, J = 7.7 Hz, 1 H), 7.79-7.72 (m, 1 H), 7.41-7.36 (m, 1 H), 3.80 (d, *J* = 10.9 Hz, 6 H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 150.79 (d, J = 226.7 Hz), 150.56 (d, J =

22.8 Hz), 136.19 (d, J = 12.4 Hz), 128.38 (d, J = 25.2 Hz), 126.23 (d, J = 4.0 Hz), 53.44 (d, J = 6.1 Hz) ppm. ³¹P NMR (162 MHz, CDCl₃): $\delta = 13.7$ ppm. HRMS (EI⁺): calculated for C₇H₁₁NO₃P [M+H⁺]: 188.0471, found: 188.0473.

Dimethyl (6-phenylpyridin-2-yl)phosphonate (3q) Colorless oil (26% yield). ¹**H NMR** (400 MHz, CDCl₃): δ = 8.06-8.03 (m, 2 H), 7.90-7.85 (m, 3 H), 7.51-7.41 (m, 3 H), 3.84 (d, J = 10.8 Hz, 6 H) ppm. ¹³C 3q **NMR** (100 MHz, CDCl₃): $\delta = 157.94$ (d, J = 22.6 Hz), 151.01 (d, J =226.4 Hz), 138.25, 136.95 (d, J = 12.6 Hz), 129.62, 128.85 (d), 127.06 (d), 126.56 (d, J = 25.4 Hz),

122.81 (d, J = 4.0 Hz), 53.83 (d, J = 6.2 Hz) ppm. ³¹P NMR (162 MHz, CDCl₃): $\delta = 13.2$ ppm. **HRMS** (EI⁺): calculated for C₁₃H₁₅NO₃P [M+H⁺]: 264.0784, found: 264.0790.

Diethyl quinolin-2-ylphosphonate (3r)¹⁰ Colorless oil (79% yield). ¹**H NMR** (400 MHz, CDCl3): $\delta = 8.19$ (t, J = 8.1 Hz, 2 H), 7.93 (dd, J = 8.4, 4.6 Hz, 1 H), 7.77 (d, J = 8.2 Hz, 1 H), 7.72-7.67 (m, 1 H), 7.54 (t, J = 7.2 Hz, 1 H), 4.31-4.16 (m, 4 H), 1.31 (t, J = 9.5 Hz, 6 H)

ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 152.62$ (d, J = 223.7 Hz), 148.08 (d, J = 25.8 Hz), 136.10

(d, J = 11.7 Hz), 130.27, 130.02, 128.42 (d, J = 3.4 Hz), 128.21, 127.59 (d, J = 1.5 Hz), 123.18 (d, J = 26.5 Hz), 63.02 (d, J = 6.0 Hz), 16.25 (d, J = 6.1 Hz) ppm. ³¹P NMR (162 MHz, CDCl₃): $\delta = 10.9$ ppm. **HRMS** (EI⁺): calculated for C₁₃H₁₇NO₃P [M+H⁺]: 266.0941, found: 266.0944.

Dipropyl quinolin-2-ylphosphonate (3s) Colorless oil (61% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.25 (t, J = 8.3 Hz, 2 H), 7.97 (dd, J = 8.4, 4.6 Hz, 1 H), 7.83 (d, J = 8.2 Hz, 1 H), 7.78-7.72 (m, 1 H), 7.61 (t, J = 7.4 Hz, 1 H), 4.24-4.11 (m, 4 H), 1.76-

1.68 (m, 4 H), 0.93 (t, J = 7.4 Hz, 6 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 152.80$ (d, J = 224.0 Hz), 148.22 (d, J = 25.9 Hz), 136.13 (d, J = 11.7 Hz), 130.46 (d, J = 1.2 Hz), 130.13, 128.55 (d, J = 3.4 Hz), 128.32, 127.72 (d, J = 1.6 Hz), 123.34 (d, J = 26.3 Hz), 68.63 (d, J = 6.3 Hz), 67.25 (d, J = 6.0 Hz), 23.86 (d, J = 6.2 Hz), 23.77 (d, J = 6.2 Hz), 10.04 ppm. ³¹P NMR (162 MHz, CDCl₃): $\delta = 10.9$ ppm. **HRMS** (EI⁺): calculated for C₁₅H₂₁NO₃P [M+H⁺]: 294.1254, found: 294.1261.

Dibutyl quinolin-2-ylphosphonate (3t) Colorless oil (53% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.15 (t, J = 8.0 Hz, 2 H), 7.88 (dd, J = 8.3, 4.5 Hz, 1 H), 7.73 (d, J = 8.2 Hz, 1 H), 7.67-7.62 (m, 1 H), 7.49 (t, J = 7.2 Hz, 1 H), 4.20-4.07 (m, 4 H),

1.65-1.57 (m, 4 H), 1.36-1.26 (m, 4 H), 0.79 (t, J = 7.4 Hz, 6 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 152.75$ (d, J = 223.7 Hz), 148.14 (d, J = 25.9 Hz), 136.07 (d, J = 11.6 Hz), 130.33 (d, J = 1.1 Hz), 130.07, 128.46 (d, J = 3.4 Hz), 128.24, 127.68 (d, J = 1.5 Hz), 123.25 (d, J = 26.3 Hz), 66.76 (d, J = 6.2 Hz), 32.43 (d, J = 6.1 Hz) 18.63 , 13.52 ppm. ³¹P NMR (162 MHz, CDCl₃): $\delta = 10.8$ ppm. **HRMS** (EI⁺): calculated for C₁₇H₂₅NO₃P [M+H⁺]: 322.1567, found: 322.1574.

Dibenzyl quinoline-2-ylphosphonate (3u) Orange oil (82% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.26-8.19 (m, 2 H), 7.94 (dd, J = 8.3, 4.7 Hz, 1 H), 7.83 (d, J = 8.2 Hz, 1 H), 7.80-7.74 (m, 1 H), 7.62 (t, J = 7.2 Hz, 1 H), 7.42-7.38 (m, 4 H), 7.34-7.27 (m, 1 H), 5.28 (d, J = 7.8 Hz, 4 H) ppm. ¹³C NMR

(100 MHz, CDCl₃): δ = 152.30 (d, J = 225.6 Hz), 148.05 (d, J = 26.3 Hz), 136.11 (d, J = 11.9 Hz), 135.98 (d, J = 6.5 Hz), 130.29 (d, J = 1.2 Hz), 130.12, 128.47 (d, J = 3.3 Hz), 128.37, 128.34, 128.26, 127.95, 127.62 (d, J = 1.6 Hz), 123.14 (d, J = 26.8 Hz), 68.50 (d, J = 6.0 Hz) ppm. ³¹P NMR (162 MHz, CDCl₃): δ = 11.2 ppm. HRMS (EI⁺): calculated for C₂₃H₂₁NO₃P [M+H⁺]: 390.1254, found: 390.1263.

Diisopropyl quinolin-2-ylphosphonate (3v) Colorless oil (44% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.16-8.12 (m, 2 H), 7.88 (dd, J = 8.4, 4.5 Hz, 1 H), 7.77 (d, J = 8.3 Hz, 1 H), 7.67-7.62 (m, 1 H), 7.49 (t, J = 7.4 Hz, 1 H), 4.86-4.74 (m, 4 H), 1.31 (d, J = 6.3 Hz,

6 H), 1.21 (d, J = 6.2 Hz, 6 H) ppm. ¹³C NMR (100MHz, CDCl₃): $\delta = 154.22$ (d, J = 224.2 Hz), 148.45 (d, J = 25.9 Hz), 136.29 (d, J = 11.5 Hz), 130.70 (d, J = 1.2 Hz), 130.32, 128.73 (d, J = 3.4Hz), 128.47, 127.99 (d, J = 1.6 Hz), 123.55 (d, J = 26.3 Hz), 72.13 (d, J = 6.0 Hz), 24.39 (d, J = 3.9 Hz), 24.13 (d, J = 4.9 Hz) ppm. ³¹P NMR (162 MHz, CDCl₃): $\delta = 9.0$ ppm. HRMS (EI⁺): calculated for C₁₅H₂₁NO₃P [M+H⁺]: 294.1254, found: 294.1258.

IV. References

- 1 P. N. Kapoor, L. M. Venanzi, *Helv. Chim. Acta.*, 1977, **60**, 2824.
- L.-C. Campeau, D. R. Stuart, J.-P. Leclerc, M. Bertrand-Laperle, E. Villemure, H.-Y. Sun, S. Lasserre, N. Guimond, M. Lecavallier, K. Fagnou, *J. Am. Chem. Soc.*, 2009, **131**, 3291.
- G. W. Trucks, M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V.

G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox , *Revision C*. 01; **2010**.

- 4 A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
- 5 C. T. Lee, W. T. Yang, R. G. Parr, *Phys. Rev. B.*, 1988, **37**, 785.
- 6 B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett., 1989, 157, 200.
- 7 C.-B. Xiang, Y.-J. Bian, X.-R. Mao, Z.-Z. Huang, J. Org. Chem., 2012, 77, 7706.
- 8 H. Mirko, G. Wolfgang, G. Helmar, A. Ernst, *Synthesis*, 1999, **12**, 2071.
- 9 S. Dahbi, E. Methnani, P. Bisseret, *Tetrahedron Lett.*, 2010, **51**, 5516.
- 10 Y.-L. Zhao, G.-J. Wu, F.-S. Han, Chem. Commun., 2012, 48, 5868.

V. Cartesian coordinates of the optimized structures

	1 a		
С	-2.69626800	0.37864300	0.00000400
С	-1.70228200	1.33208100	0.00000000
С	-0.33178300	0.95874900	-0.00000100
С	-0.03311200	-0.43242200	-0.00000400
С	-1.05189300	-1.40329200	-0.00000400
С	-2.36985200	-0.99753600	0.00000200
Н	0.51026800	2.96221000	0.00000400
Н	-3.73849900	0.68317700	0.00000900
Н	-1.95029600	2.38959000	0.00000300
С	0.72977000	1.89995600	-0.00000200
Н	-0.75684200	-2.44461300	-0.00001300
Н	-3.16284600	-1.73875900	0.00000400
С	2.29531500	0.05946000	0.00000100
С	2.02466700	1.43386700	0.00000300
Н	3.29021800	-0.36434200	0.00000200
Н	2.86842400	2.11552900	0.00001100
0	1.57387700	-2.11461900	0.00001300
Ν	1.30874100	-0.86612300	-0.00001600
	2a		
Р	0.01727900	0.53826100	0.27788600
Н	-0.24682400	0.56201800	1.66360600
0	-1.43599600	0.30789700	-0.36970000
0	0.71746800	-0.90553700	0.06321800
0	0.74816200	1.70851400	-0.24850800
С	-2.21682100	-0.84776200	-0.02668300

Н	-3.19348500	-0.71133400	-0.49199900
Н	-1.74405200	-1.75625800	-0.40782000
Н	-2.34655900	-0.93184800	1.05911600
С	2.14167300	-0.99186500	-0.13720500
Н	2.32597500	-1.91374100	-0.69084100
Н	2.50358700	-0.13277800	-0.70525400
Н	2.65599500	-1.03921500	0.82815900
	2a-1		
Р	0.00377400	0.40178600	0.47410900
0	-1.43333900	0.24010300	-0.31537400
0	0.82643800	-0.76295100	-0.36435600
С	-2.23636400	-0.89660500	0.00948400
Н	-3.23629600	-0.70719500	-0.38608100
Н	-1.83091900	-1.80353500	-0.45081500
Н	-2.30882800	-1.04983400	1.09481000
С	2.18016800	-1.01205700	0.01601900
Н	2.45973000	-1.98556400	-0.39238800
Н	2.84713600	-0.24637300	-0.39522900
Н	2.30093500	-1.03857900	1.10746700
0	0.54725700	1.74152600	-0.33282200
Н	0.52596900	2.50685200	0.25799800
	Ε		
С	-4.66460200	-0.36769000	0.25773300
С	-3.69376700	-1.33358700	-0.00655500
С	-2.34777700	-0.98748000	-0.15756900
С	-1.97040700	0.36933500	-0.02062700
С	-2.94279900	1.34204100	0.23822300
С	-4.28140400	0.96811400	0.37259300
Н	-1.61976800	-3.00086800	-0.60986100
Н	-5.70503500	-0.65466400	0.37033400
Н	-3.97699400	-2.37750800	-0.11425000
С	-1.32186100	-1.96096000	-0.50748200
Н	-2.64215000	2.37585600	0.35358200
Н	-5.02455500	1.73281000	0.57863400
С	0.41440100	-0.17306700	-0.63422500
С	-0.05650000	-1.59961400	-0.74800700
Н	0.69175700	-2.32031900	-1.05869100
Ν	-0.61178000	0.71894400	-0.09198300
Р	1.93026500	-0.13367200	0.45794800
0	2.43032600	1.39558000	0.59538200
0	2.96549000	-0.83090600	-0.59494800
С	2.84706100	2.19426500	-0.52227800
Н	3.44275700	3.01196500	-0.11287700
Н	3.45708000	1.61202400	-1.21931500

Н	1.97204100	2.60179000	-1.03363600
С	4.15227700	-1.46447400	-0.07756200
Н	4.89738600	-0.71262300	0.20116600
Н	3.90981000	-2.07532300	0.79496600
Н	4.54784600	-2.08954900	-0.87964000
0	1.81662400	-0.79243100	1.77774100
Н	0.73461200	0.18730100	-1.63019200
0	-0.38428000	2.05490500	-0.48555300
Н	-0.78930800	2.14309800	-1.37199800
	H ₂ O		
0	0.00000000	0.00000000	0.11918900
Н	0.00000000	0.75928700	-0.47675500
Н	0.00000000	-0.75928700	-0.47675500
	3a		
С	-4.49717900	-0.27360400	-0.05464900
С	-3.77271500	0.89470900	-0.11546700
С	-2.35474700	0.85598700	-0.08480100
С	-1.69569700	-0.41975500	0.01212300
С	-2.47131200	-1.60770800	0.07436700
С	-3.84344600	-1.53059900	0.04045700
Н	-2.02168900	2.99326500	-0.21631700
Н	-5.58149400	-0.23949500	-0.07925800
Н	-4.27381200	1.85514300	-0.18807000
С	-1.54911600	2.01805400	-0.14450900
Н	-1.95221100	-2.55717200	0.14672800
Н	-4.43879600	-2.43664400	0.08679500
С	0.36280700	0.60531200	-0.01271100
С	-0.17487700	1.90946600	-0.11260000
Н	0.46997300	2.77880100	-0.15716400
Ν	-0.34008900	-0.51874400	0.04900700
Р	2.12038600	0.26495300	-0.03501800
Ο	2.69035100	-0.24046700	-1.40982800
Ο	2.53666500	-0.83771900	1.00616800
С	2.48312700	-1.59307700	-1.94086600
Н	2.97319900	-1.59077900	-2.91185200
Н	2.94738200	-2.31634100	-1.27097300
Н	1.41451500	-1.78281700	-2.04579200
С	2.02805400	-0.94052800	2.37607000
Н	2.60706100	-1.74037400	2.83266100
Н	2.19554400	-0.00254800	2.90787300
Н	0.96975700	-1.19727200	2.34095800
0	2.82380800	1.66157000	0.21760000
Н	3.76943000	1.71653800	0.00062900

VI. ¹H, ¹³C and ³¹P NMR spectra of products.

¹H NMR spectrum of compound **3a**

³¹P NMR spectrum of compound **3a**

S17

¹³C NMR spectrum of compound **3b**

³¹P NMR spectrum of compound **3b**

¹³C NMR spectrum of compound **3**c

³¹P NMR spectrum of compound **3c**

¹³C NMR spectrum of compound **3d**

³¹P NMR spectrum of compound **3d**

¹H NMR spectrum of compound **3**e

¹H NMR spectrum of compound **3**f

¹³C NMR spectrum of compound **3f**

³¹P NMR spectrum of compound **3f**

S32

¹³C NMR spectrum of compound **3**g

S34

¹³C NMR spectrum of compound **3h**

³¹P NMR spectrum of compound **3h**

¹H NMR spectrum of compound **3**i

¹³C NMR spectrum of compound **3i**

³¹P NMR spectrum of compound **3i**

¹³C NMR spectrum of compound **3**j

³¹P NMR spectrum of compound **3**j

¹³C NMR spectrum of compound **3**k

¹³C NMR spectrum of compound **3**l

S50

¹³C NMR spectrum of compound **3m**

S54

¹H NMR spectrum of compound **3**q

¹³C NMR spectrum of compound **3**q

³¹P NMR spectrum of compound **3**q

¹H NMR spectrum of compound **3r**

¹H NMR spectrum of compound **3s**

¹H NMR spectrum of compound **3**t

¹³C NMR spectrum of compound **3t**

¹³C NMR spectrum of compound **3u**

¹H NMR spectrum of compound **3v**

 13 C NMR spectrum of compound **3**v

