Supplementary Information

Transformation from non- to double-interpenetration in robust Cd(II) doubly-pillared-layered metal-organic frameworks

Himanshu Aggarwal,^a Prem Lama^a and Leonard J. Barbour^{a*}

*Department of Chemistry and Polymer Science, University of Stellenbosch, Stellenbosch 7600, South Africa

Synthesis

Both [Cd(tp)(4,4'-bipy)] and [Cd(atp)(4,4'-bipy)] non-interpenetrated frameworks were synthesized following previously reported procedures.^{1,2}

Single Crystal Parameters

Table S1. Comparison of unit cell parameters of non-interpenetrated, activated and twofold interpenetrated [Cd(tp)(4,4'-bipy)].

Non-interpenetrated [Cd(tp)(4,4'-bipy)] (CCDC REFCODE CUHPUR)	Activated [Cd(tp)(4,4'-bipy)] (this study)	Twofold interpenetrated [Cd(tp)(4,4'-bipy)] CCDC REFCODE LOTXIB
Space Group = <i>Pbam</i>	Space Group = $C2/c$	Space Group = $C2/c$
Temperature (K) = 100	Temperature (K) = 100	Temperature $(K) = 294$
<i>a</i> (Å) = 12.949(<1)	<i>a</i> (Å) = 15.902(3)	a (Å) = 16.108(3)
<i>b</i> (Å) = 21.290 (<1)	<i>b</i> (Å) = 11.664(3)	<i>b</i> (Å) = 11.675(2)
<i>c</i> (Å) = 11.683 (<1)	c (Å) = 20.202(2)	c (Å) = 20.171(4)
α (°) = 90	α (°) = 90	α (°) = 90
β (°) = 90	β (°) = 112.093(3)	β (°) = 111.99(3)
γ (°) = 90	γ (°) = 90	$\gamma(^{\circ}) = 90$
$V(Å^3) = 3220.82$	$V(Å^3) = 3472.04(3)$	$V(Å^3) = 3517.4(11)$

Table S2. Comparison of unit cell parameters of non-interpenetrated, activated and twofold interpenetrated [Cd(atp)(4,4'-bipy)].

Non-interpenetrated [Cd(atp)(4,4'-bipy)] CCDC REFCODE YUXQOY	Activated [Cd(atp)(4,4'-bipy)] (this study)	Twofold interpenetrated [Cd(atp)(4,4'-bipy)] CCDC REFCODE YUXQUE
Space Group = <i>Pbam</i>	Space Group = $C2/m$	Space Group = $C2/m$
Temperature $(K) = 293$	Temperature (K) = 100	Temperature (K) = 293
<i>a</i> (Å) = 13.700(3)	a (Å) = 16.202(2)	a (Å) = 15.950(3)
b(Å) = 21.050(4)	<i>b</i> (Å) = 11.921(3)	<i>b</i> (Å) = 11.700(2)
c (Å) = 11.720(2)	c (Å) = 10.438(3)	c (Å) = 10.210(2)
α (°) = 90	α (°) = 90	α (°) = 90
β (°) = 90	β (°) = 112.683 (3)	β (°) = 112.77(3)
γ (°) = 90	γ (°) = 90	$\gamma(^{\circ}) = 90$
$V(Å^3) = 3379.87$	$V(Å^3) = 1860.13(3)$	$V(Å^3) = 1756.8(6)$

Figure S1: PXRD patterns of (a) simulated non-interpenetrated 2, (b) as-synthesized non-interpenetrated 2, (c) activated 2 at 150 °C, (d) activated 2 at 200 °C, (e) activated 2 at 270 °C and (f) (a) simulated doubly interpenetrated 2.

Thermogravimetric analysis (TGA)

Thermogravimetric analysis was carried out using a TA Instruments Q500 analyser. The sample was heated at 40 °C/min from room temperature to decomposition.

Figure S2: TGA for 1.

Figure S3: TGA for activated 1.

Figure S4: TGA for 2.

Figure S5: TGA for activated 2.

Differential Scanning Calorimetry (DSC)

DSC experiments were carried out on a TA Instruments Q100 with the sample heated to 270 $^{\circ}$ C at a rate of 40 $^{\circ}$ C/min.

Figure S6: DSC for 1.

Figure S7: DSC for 2.

Figure S8: Dinuclear unit in 1.

Figure S9: Dinuclear unit in 2.

Figure S10: Packing diagram showing the diagonal distances between metal cluster centres (i.e. the Cd \cdots Cd centroid) in (a) non-interpenetrated 1 and (b) doubly interpenetrated 1.

Figure S11: Packing diagram showing the diagonal distances between metal cluster centres (i.e. the Cd \cdots Cd centroid) in (a) non-interpenetrated 2 and (b) doubly interpenetrated 2.

Rietveld Refinement

The observed X-ray powder patterns were refined using Rietveld³ method. We employed the program TOPAS³ using as the corresponding published single-crystal X-ray structures as starting models. The resultant difference plots thus generated are given below.

Compound	1	1	2	2
	Non-	Doubly-	Non-	Doubly-
	interpenetrated	interpenetrated	interpenetrated	interpenetrated
<i>R</i> _p fitted	0.074	0.037	0.043	0.024
_w <i>R</i> _p fitted	0.101	0.051	0.056	0.031
Bragg R-factor	2.20	0.79	0.47	0.56
GoF (χ)	3.05	3.71	2.00	1.51
Temperature (K)	298(2)	298(2)	298(2)	298(2)
Space group	Pbam	C2/c	Pbam	<i>C</i> 2/ <i>m</i>
<i>a</i> (Å)	12.9018(5)	15.8442(3)	13.4882(6)	16.1576(7)
<i>b</i> (Å)	21.3502(6)	11.6038(2)	21.1458(3)	11.6540(9)
<i>c</i> (Å)	11.6964(4)	20.0921(3)	11.5206(8)	10.1833(13)
α, γ (°)	90	90	90	90

Table S3 Final Rietveld refinement parameters for the four structures:

β (°)	90	112.461(12)	90	113.403(15)
No. of parameters	1612	369	2749	402

Table S4: Comparison of Rietveld parameters with the reported unit cell parameters for Non-interpenetrated and doubly-interpenetrated compound 1.

Compound	Non-interpenetrated 1		Doubly-interpenetrated 1	
Compound	Rietveld	Reported	Rietveld	Reported
Temperature (K)	298	100	298	294
Space group	Pbam	Pbam	C2/c	C2/c
a (Å)	12.901(5)	12.949(5)	15.844(3)	16.108(3)
b (Å)	21.350(6)	21.290(6)	11.603(2)	11.675(2)
c (Å)	11.696(4)	11.682(5)	20.092(3)	20.171(4)
α, γ (°)	90.00	90.00	90.00	90.00
β (°)	90.00	90.00	112.46(12)	111.99(3)

Table S5: Comparison of Rietveld parameters with the reported unit cell parameters for non-interpenetrated and doubly-interpenetrated compound 2.

Compound	Non-interpenetrated 2		Doubly-interpenetrated 2	
Compound	Rietveld	Reported	Rietveld	Reported
Temperature (K)	298	293	298	293
Space group	Pbam	Pbam	<i>C</i> 2/ <i>m</i>	C2/m
a (Å)	13.488(6)	13.700(3)	16.157(7)	15.950(3)
b (Å)	21.145(3)	21.050(4)	11.654(9)	11.700(2)
c (Å)	11.520(8)	11.720(2)	10.183(13)	10.210(2)
α, γ (°)	90.00	90.00	90.00	90.00
β (°)	90.00	90.00	113.40(15)	112.77(3)

Figure S12: Observed (blue) and refined (red) X-ray powder diffractograms (the latter obtained from Rietveld refinement) as well as the difference plot (grey) for non-interpenetrated compound **1**.

Figure S13: Observed (blue) and refined (red) X-ray powder diffractograms (the latter obtained from Rietveld refinement) as well as the difference plot (grey) for doubly-interpenetrated compound 1.

Figure S14: Observed (blue) and refined (red) X-ray powder diffractograms (the latter obtained from Rietveld refinement) as well as the difference plot (grey) for non-interpenetrated compound **2**.

Figure S15: Observed (blue) and refined (red) X-ray powder diffractograms (the latter obtained from Rietveld refinement) as well as the difference plot (grey) for doubly-interpenetrated compound **2**.

Phase purity analysis

The as-synthesized and activated PXRD patterns for both compounds 1 and 2 were compared with those generated from the corresponding published CIF files using X'Pert Highscore $Plus^4$ to quantify phase purity.

Figure S16: Quantification plot for as-synthesized 1 generated by X'Pert Highscore Plus (using the non-interpenetrated (blue) and doubly interpenetrated (red) CIF files of 1).

Figure S17: Quantification plot for activated 1 generated by X'Pert Highscore Plus (using the non-interpenetrated (blue) and doubly interpenetrated (red) CIF files of 1).

Figure S18: Quantification plot for as-synthesised 2 generated by X'Pert Highscore Plus (using the non-interpenetrated (blue) and doubly interpenetrated (red) CIF files of 2).

Figure S19: Quantification plot for activated 2 generated by X'Pert Highscore Plus (using the non-interpenetrated (blue) and doubly interpenetrated (red) CIF files of 2).

References:

- 1. J. Zhang, L. Wojtas, R. W. Larsen, M. Eddaoudi and M. J. Zaworotko, J. Am. Chem. Soc., 2009, 131, 17040-17041.
- 2. H.-L. Jiang, Yo. Tatsu, Z.-H. Lu and Q. Xu, J. Am. Chem. Soc., 2010, 132, 5586-5587.
- 3. A. Coelho, J. Appl. Crystallogr., 2000, 33, 899–908.
- 4. PANalytical B. V. Almelo, The Netherlands, 2009, X'Pert Highscore Plus Version 2.2e.