SUPPORTING INFORMATION

Mo(CO)6 Catalysed Chemoselective Hydrosilylation of α,β-Unsaturated Amides for the Formation of Allylamines

Alexey Volkov,^a Fredrik Tinnis,^{*a} Tove Slagbrand,^a Ida Pershagen^a and Hans Adolfsson^{*a}

^a Department of Organic Chemistry,

Stockholm University, the Arrhenius Laboratory, SE-106 91 Stockholm, Sweden

Table of content

Instrumentation	.2
Material	2
General	.2
Substrate scope investigation	3
Synthesis of Naftifine (14)	3
Compound characterization.	5
Spectroscopic data.	.9

Instrumentation

Characterizations were made by ¹H and ¹³C NMR spectroscopy. NMR spectra were recorded at Bruker 400, 500 MHz (¹H) and 100, 125 MHz (¹³C), and were referenced internally with CDCl₃ (δ H 7.26, δ C 77.16 ppm) (CD₃)₂SO (δ H 2.50, δ C 39.52 ppm). High temperature experiments were performed at Bruker 500 MHz (¹H) and 125 MHz (¹³C). HRMS was performed on Bruker micrOTOF/ESI.

Material

Unless otherwise noted, materials were purchased from commercial suppliers and were used without purification. Mo(CO)₆, sublimed 99,9+% was purchased from Sigma-Aldrich and used as received. THF was purchased from Fischer Scientific, and dispersed from a solvent drying system.

General

The 1 mmol scale catalytic reduction of amides was performed in microwave tubes 2-5 mL from Biotage, with a Teflon-coated magnetic stirring bar. The tubes were fitted with a cap containing a septum and the reactions were run under nitrogen atmosphere.

Substrate scope investigation

General procedure for catalytic reduction of amides.

Amide (1.0 mmol) and Mo(CO)₆ (0.0132 g, 0.05 mmol) were added to an oven dried 10 mL microwave tube equipped with a magnetic stirring bar. To the sealed tube, dry THF (2 mL) and TMDS (0.265 mL, 1.5 mmol) were added and the reaction mixture was stirred at 65 °C for 24 h. The reaction was quenched with NaOH (Aq. 2M, 10 mL) and the stirring was continued at r.t for 8 h. The mixture was extracted with DCM (3 x 20 mL), dried with Na₂SO₄ and evaporated under reduced pressure. The crude products were purified by column chromatography.

Evaluation of β , γ -unsaturated amide 7

Amide 7 (1.0 mmol) and Mo(CO)₆ (0.0132 g, 0.05 mmol) were added to an oven dried 10 mL microwave tube equipped with a magnetic stirring bar. To the sealed tube, dry THF (2 mL) and TMDS (0.265 mL, 1.5 mmol) were added and the reaction mixture was stirred at 65 °C for 24 h. The solvent was evaporated and 1,3,5-trimethoxybenzene (0.056 g, 0.33 mmol) was added as internal standard. The mixture was dissolved in CDCl₃ (3 mL) where after the ¹H NMR spectrum was immediately recorded.

Synthesis of Naftifine (14)

Synthesis of N-(naphthalen-1-ylmethyl)cinnamamide (12)

Dry THF (17 mL) was added to the carboxylic acid **10** (0.741 g, 5.0 mmol), activated molecular sieves 4Å (2.5 g) and zirconium(IV)chloride (0.118 g, 10 mol%) under nitrogen atmosphere and the mixture was heated under stirring to 100°C in a capped microwave vial. The amine **11** (0.943 g, 6.0 mmol) was added dropwise and the reaction was stirred at the same temperature for 24 h and then cooled to r.t. The mixture was filtered through a plug of silica (4 x 3.5 cm) with 150 mL of an EtOAc:Et₃N (200:1) eluent. The solvent was removed under reduced pressure affording analytically pure compound **12** (1.306 g, 91 %).

Synthesis of N-methyl-N-(naphthalen-1-ylmethyl)cinnamamide (13)

In 25 mL round-bottom flask to a suspension of NaH (0.12 g, 5.0 mmol) in 10 mL of dry DMF 1 g (3.5 mmol) of amide (**12**) was added drop wise as a solution in 2 mL of DMF at 0 °C and the reaction mixture was stirred for 2 h. 0.36 mL (5,9 mmol) of methyl iodide was thereafter added drop wise and the temperature was raised to r.t and the mixture was left stirring for 10 h. The reaction was quenched with 2 mL of 95% ethanol followed by water (40 mL). The reaction was then extracted with EtOAc (3x40 mL). The combined organic layers were dried over Na₂SO₄ and the solvent was removed by rotary evaporation. Crude product was purified by column chromatography using pentane/ethyl acetate (4:1) as an eluent yielding 0.976 g (93 %) of the target compound (**13**).

Synthesis of (E)-N-methyl-N-(naphthalen-1-ylmethyl)-3-phenylprop-2-en-1amine (Naftifine) (14)

Amide 13 was reduced following general procedure for catalytic reduction of amides.

Compound characterization.

1-cinnamylpiperidine 2a

0.176 g, 87 % yield; ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.39 - 7.36$ (m, 2H), 7.32 – 7.28 (m, 2H), 7.24 – 7.19 (m, 1H), 6.50 (d, J = 15.8 Hz, 1H), 6. 30 (dt, $J_I = 6.7$ Hz, $J_2 = 15.8$ Hz, 1H), 3.12 (dd, $J_I = 1.2$ Hz, $J_2 = 6.7$ Hz, 2H), 2.44 (bs, 4H), 1.65 – 1.57 (m, 4H), 1.49 – 1.40 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 137.2$, 132.8, 128.7, 127.5, 127.3, 126.4, 62.0, 54.7, 26.1, 24.5; HRMS (ESI, m/z) calcd. for C₁₄H₂₀N [M + H]⁺ 202.1590, found 202.1585.

1-cinnamylpyrrolidine 2b

0.167 g, 89 % yield; ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.39 - 7.36$ (m, 2H), 7.33 – 7.28 (m, 2H), 7.24 – 7.19 (m, 1H), 6.53 (d, J = 15.9, 1H), 6. 34 (dt, $J_1 = 6.7$ Hz, $J_2 = 15.9$ Hz, 1H), 3.26 (dd, $J_1 = 1.3$ Hz, $J_2 = 6.7$ Hz, 2H), 2.59 – 2.53 (m, 4H), 1.83 – 1.77 (m, 4H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 137.3, 131.9, 128.7, 127.9, 127.5, 126.4, 58.6, 54.2, 23.6;$ HRMS (ESI, m/z) calcd. for C₁₃H₁₈N [M + H]⁺ 188.1434, found 188.1433.

4-cinnamylmorpholine 2c

0.180 g, 89 % yield; ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.39 - 7.36$ (m, 2H), 7.34 – 7.28 (m, 2H), 7.26 – 7.21 (m, 1H), 6.54 (d, J = 15.9 Hz, 1H), 6. 26 (dt, $J_I = 6.7$ Hz, $J_2 = 15.9$ Hz, 1H), 3.77 – 3.72 (m, 4H), 3.16 (dd, 2H, $J_I = 1.32$ Hz, $J_2 = 6.8$ Hz), 2.53 – 2.48 (m, 4H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 136.9$, 133.5, 128.7, 127.7, 126.5, 126.2, 67.1, 61.6, 53.8; HRMS (ESI, m/z) calcd. for C₁₃H₁₈NO [M + H]⁺ 204.1383, found 204.1379.

(E)-N,N-dimethyl-3-phenylprop-2-en-1-amine 2d

0.117 g, 73 % yield; ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.40 - 7.36$ (m, 2H), 7.33 – 7.28 (m, 2H), 7.25 – 7.20 (m, 1H), 6.52 (d, J = 15.7 Hz, 1H), 6.27 (dt, $J_1 = 6.6$ Hz, $J_2 = 15.7$ Hz, 1H), 3.08 (dd, $J_1 = 1.3$ Hz, $J_2 = 6.7$ Hz, 2H), 2.28 (s, 6H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 137.2$, 132.6, 128.7, 127.6, 127.5, 126.4, 62.2, 45.4; HRMS (ESI, m/z) calcd. for C₁₁H₁₆N [M + H]⁺ 162.1277, found 162.1276.

(E)-N,N-dibenzyl-3-phenylprop-2-en-1-amine 2e

 $\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\$

(E)-N,N-dimethyl-4-(3-(piperidin-1-yl)prop-1-en-1-yl)aniline 4a

 $\begin{array}{c} \text{0.210 g, 82 \% yield; }^{1}\text{H-NMR} (400 \text{ MHz, CDCl}_3): \delta = \\ \text{7.29} - 7.25 (m, 2H), 6.69 - 6.66 (m, 2H), 6.40 (d, J = \\ 15.7 \text{ Hz, 1H}), 6.09 (dt, J_I = 7.0 \text{ Hz}, J_2 = 15.7 \text{ Hz}, 1H), \end{array}$

3.09 (dd, J_1 = 1.1 Hz, J_2 = 7.0 Hz, 2H), 2.94 (s, 6H), 2.42 (bs, 4H), 1.64 – 1.56 (m, 4H), 1.48 – 1.42 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ = 150.0, 132.7, 127.2, 125.8, 122.7, 112.5, 62.1, 54.5, 40.5, 26.0, 24.4; **HRMS** (ESI, m/z) calcd. for C₁₆H₂₄N₂Na₂ [M + 2Na]²⁺ 145.0862, found 145.0863.

(E)-1-(3-(4-bromophenyl)allyl)piperidine 4b

Br N 0.256 g, 91 % yield; ¹H-NMR (400 MHz, CDCl₃): δ = 7.41 – 7.37 (m, 2H), 7.22 – 7.19 (m, 2H), 6.40 (d, J = 15.9 Hz, 1H), 6.27 (dt, $J_I = 6.6$ Hz, $J_2 = 15.8$ Hz, 1H), 3.07 (dd, $J_I = 1.0$ Hz, $J_2 = 6.6$ Hz, 2H), 2.40 (bs, 4H), 1.63 – 1.55 (m, 4H), 1.45 – 1.41 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ = 136.1, 131..7, 131.4, 128.3, 127.9, 121.1, 61.8, 54.7, 26.0, 24.4; HRMS (ESI, m/z) calcd. for C₁₄H₁₉BrN [M + H+]: 280.0695; found: 280.0685.

(E)-4-(3-(piperidin-1-yl)prop-1-en-1-yl)phenol 4c

0.196 g, 90 % yield; ¹H-NMR (400 MHz, CDCl₃): δ = HO 6.39 (d, J = 16.0 Hz, 1H), 5.98 (dt, $J_1 = 7.1$ Hz, $J_2 = 15.9$ Hz, 1H), 3.12 (d, $J_2 = 7.0$ Hz, 2H), 2.57 (bs, 4H), 1.73 – 1.62 (m, 4H), 1.53 – 1.42 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ = 157.0, 134.3, 128.3, 127.9, 122.0, 116.4, 61.7, 54.4, 25.2, 24.1; HRMS (ESI, m/z) calcd. for C₁₄H₂₀NO [M + H+]: 218.1539; found: 218.1544.

(E)-1-(3-(furan-2-yl)allyl)piperidine 4d

 $0.170 \text{ g, } 89 \% \text{ yield; } ^{1}\text{H-NMR} (400 \text{ MHz, CDCl}_3): \delta = 7.34 - 7.30 \text{ (m, 1H), } 6.37 - 6.28 \text{ (m, 2H), } 6.26-6.16 \text{ (m, 2H), } 3.09 - 3.06 \text{ (m, 2H), } 2.41 \text{ (bs, 4H), } 1.65 - 1.53 \text{ (m, 4H), } 1.49 - 1.39 \text{ (m, 2H); } ^{13}\text{C-NMR} (100 \text{ MHz, CDCl}_3): \delta = 152.9, 141.9, 126.2, 121.2, 111.3, 107.2, 61.7, 54.7, 26.1, 24.5; \\ \text{HRMS} (ESI, m/z) \text{ calcd. for } C_{12}H_{18}\text{NO} [\text{M} + \text{H}]^{+} 192.1383, \text{ found } 192.1375.$

(E)-1-(3-(thiophen-2-yl)allyl)piperidine 4e

0.190 g, 92 % yield; ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.14 - 7.10$ (m, 1H), 6.97 – 6.88 (m, 2H), 6.62 (d, 1H, J = 15.7 Hz), 6.13 (dt, 1H, $J_1 = 6.9$ Hz, $J_2 = 15.7$ Hz) 3.07 (dd, 2H, $J_1 = 1.3$ Hz, $J_2 = 6.9$ Hz), 2.42 (bs, 4H), 1.67-1.53 (m, 4H), 1.51 – 1.38 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 142.5$, 127.4, 127.3, 125.8, 125.2, 124.0, 61.7, 54.7, 26.1, 24.5; HRMS (ESI, m/z) calcd. for C₁₂H₁₈NS [M + H]⁺ 208.1154, found 208.1158.

1-(2-methyl-3-phenylallyl)piperidine 6

0.191 g, 88 % yield; ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.40 - 7.19$ (m, 5H, minor and major), 6.52 (s, 1H, minor), 6.48 (s, 1H, major), 3.12 - 3.10 (m, 2H, minor), 3.04 - 3.01 (m, 2,H, major), 2.42 (bs, 4H, major), 2.32 (bs, 4H, minor), 2.02 - 2.00 (m, 3H, minor), 1.98 - 1.96 (m, 3H, major), 1.69 - 1.56 (m, 4H, major and minor), 1.55 - 1.40 (m, 2H, major and minor); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 138.2$, 136.5, 128.9, 128.1, 127.1, 126.2, 68.8, 54.7, 26.1, 24.6, 16.9 (major); 138.2, 137.3, 129.2, 128.6, 127.9, 126.1, 59.8, 54.5, 26.1, 24.5, 23.2 (minor); HRMS (ESI, m/z) calcd. for C₁₅H₂₂N [M + H+]: 216.1747; found: 216.1737.

(E)-N-benzyl-3-phenylprop-2-en-1-amine 9

0.159 g, 71 % yield; ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.46 - 7.24$ (m, 10H), 6.59 (d, J = 15.9 Hz, 1H), 6.38 (dt, J = 6.3 Hz, 15.9 Hz, 1H), 3.90 (s, 2H), 3.49 (d, J = 5.5 Hz, 2H), 2.66 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 139.6$, 137.0, 131.8, 128.5, 128.3, 127.8, 127.4, 127.1, 126.3, 53.0, 50.1; HRMS (ESI, m/z) calcd. for C₁₆H₁₈N [M + H+]: 224.1434; found: 224.1444.

N-(naphthalen-1-ylmethyl)cinnamamide 12

1.306 g, 91 % yield; ¹H-NMR (400 MHz, CDCl₃): $\delta =$ 8.08 - 8.04 (m, 1H), 7.90 - 7.80 (m, 2H), 7.69 (d, J =15.6 Hz, 1H), 7.59 - 7.42 (m, 6H), 7.36 - 7.31 (m, 3H), 6.36 (d, J = 15.6 Hz, 1H), 5.91 (bs, 1H), 5.03 - 5.00 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 165.6$, 141.6, 134.9, 134.1, 133.6, 131.6, 129.9, 128.9, 128.9, 127.9, 127.1, 126.9, 126.2, 125.6, 123.7, 120.4, 42.2; HRMS (ESI, m/z) calcd. for C₂₁H₁₉NNaO [M + Na+]: 324.1359; found: 324.1345.

N-methyl-N-(naphthalen-1-ylmethyl)cinnamamide 13

0.976 g, 93 % yield; ¹H-NMR (500 MHz, (CD₃)₂SO): $\delta = 7.66 - 7.62$ (m, 1H), 7.45 - 7.42 (m, 1H), 7.14 -6.94 (m, 6H), 6.89 - 6.81 (m, 4H), 6.68 - 6.62 (m, 1H), 4.68 (s, 2H), 2.55 (s, 3H); ¹³C-NMR (125 MHz, (CD₃)₂SO): $\delta = 165.6$, 140.9, 134.8, 133.1, 132.6, 130.7, 128.8, 128.1, 128.0, 127.3, 127.2, 125.7, 125.2, 124.8, 122.8, 118.5, 48.5, 33.8; HRMS (ESI, m/z) calcd. for C₂₀H₁₇NNaO [M + Na+]: 310.1202; found: 310.1208.

(E)-N-methyl-N-(naphthalen-1-ylmethyl)-3-phenylprop-2-en-1-amine 14

0.263 g, 92 % yield; ¹H-NMR (400 MHz, CDCl₃): $\delta = 8.40 - 8.36$ (m, 1H), 7.93 - 7.88 (m, 1H), 7.87 - 7.81 (m, 1H), 7.63 - 7.51 (m, 3H), 7.50 - 7.44 (m, 3H), 7.41 - 7.35 (m, 2H), 7.32 - 7.26 (m, 1H), 6.65 (d, J = 16.0 Hz, 1H), 6.45 (dt, J = 6.6 Hz, 16.0 Hz, 1H), 4.02 (s, 2H), 3.35 (dd, J = 1.2 Hz, 6.6 Hz, 2H), 2.35 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 137.3$, 135.0, 134.0, 132.8, 132.6, 128.7, 128.6, 128.0, 127.7, 127.6, 127.5, 126.4, 126.0, 125.7, 125.2, 124.8, 60.5, 60.2, 42.6; HRMS (ESI, m/z) calcd. for C₂₁H₂₂N [M + H+]: 288.1747; found: 288.1747.

Spectroscopic data.

CDCl3 400 MHz 3.133 3.136 3.116 3.116 3.116 3.113 3.113 3.113 1.637 1.637 1.637 1.637 1.637 1.637 1.637 1.637 1.637 1.648 1.637 1.648 1.623 1.623 1.623 1.623 1.623 1.623 1.623 1.623 1.623 1.648 1.669

CDC13

400 MHz

H & 4 H 0000 H 000 25 25 25 25 571 555 543 823 81 79 90 78 78 78 NNN HHHH) 1 - L 1 U ι Ľ J J

																			
	9.5	9.0	8.5	8.0	7.5	7.0	6.5 8	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5 হ	2.0	1.5	1.0	ppm
					1010	il l	, - ,	-1				1.	4		4				

CDCl3 400 MHz

CDC13 100 MHz	137.32 131.90 127.45 126.42			23.62 N
190 180 170 160	150 140 130 120 110	100 90 80 70	60 50 40	30 20 10 ppm

CDCl3 100 MHz	 		62.14	54.52	40.54	26.00 N N
		nan ditarih, na gang tang tang tang tang tang tang t			courses and the second operations and	

***********************					<u>isto etterne etterne</u>		•••••••••			 	 ; ************************************	••••••••••••••••••••••••••••••••••••••
Br	1										I	
CDC13 100 MH	Z		136.08	131.66 131.42 128.26 127.86	121.11				61.81	54.71	26.03	

CDC13 100 MHz	 	61.72 61.39	OH 255.16 24110 00

	7.324 7.320 6.352 6.347 6.343	6.239 6.250 6.250 6.217 6.217 6.211	L6.196 .6.178 .6.178			< 3.089 $<$ 3.072	2.415	1.624 1.595 1.568 1.464 1.449 1.449	
9.5 9.0 8.5 8.0	7.5 7.0	0.6 7.00 5.00 5.00 5.00	5.5 5.0	4.5 4	.0 3.5	3.0	2.5	.1 5.1 0.2 ⁸⁷⁹ ¹⁹ ¹⁹ ¹⁹	.0 ppm

CDCl3 100 MHz			141.85				61.67 54.66	0 24.45 24.45
dan na na 1000 da an 1100 an 1	a ha ya kata a shikara da ang da sana a							
190 180	170 160	150	140	130 120	110 100	90 80 70	60 50 40) 30 20 10 ppm

DCl3 00 MHz			N S
e and an		n han til en synthesis soll fan mei fan ser sen synthesis son ser se	ne standarden lære en sjelen skale en skale skal

CDC13 100 MHz	138.22 138.22 137.28 137.28 137.28 128.16 128.96	128.10 127.97 127.12 126.17 126.09			68.76	59.75		26.14 24.64 24.52	-23.24	N
 180 170) 120 11	0 100	90 80	70	60	50 40	30	20 10	ppm

|--|

 $\overbrace{5.007}{5.007}$

 400 MHz
 8
 8
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9</ N/m ħ

0 Ν Ĥ

CDCl3 100 MHz	165.63	141.62 134.89 134.89 133.56 133.56 133.56 128.94 129.87 128.91 127.93 127.93 127.93 126.91 127.93 125.57 125.91 125.57 120.44		m			42.22	2	
								J N H	
a jula kata ku na jujeka mana kata kata kata kata kata kata kata k	רב או באי ווין לא דער או אין איז		ng Alum Marine ang ng mang mang mang mang mang mang ma	s Line break some born break break break some some some some some some some some	háðar að bennað besænnargar á á senskiljender af Þæðing senskiljender af senskiljender af senskiljender af senskiljender af se	det jande janviersen skriver i de son of de te	uline, htmenikanska rudar (htmenikanska statu) Na statu s	the addition with the second state in prestars	den in beging och utlen ja som utlekkä suossa ja lakt. In puis varing som
190 18	80 170 160 '	150 140 130 120 11() 100 90	80 70	60	50	40 3() <u>20</u>	10 ppm

7 . 650 7 . 650 7 . 634 7 . 634 7 . 650 7 . 337 7 . 126 7 . 056 6 . 979 6 . 6 . 979 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 .	4.683		DMSO-d6, 500 MHz 90C d1=10
	5.5 5.0 4.5 4.0 3.5	3.0 2.5 2.0	1.5 1.0 0.5 ppm

CDC13 400 MHz

 ※
※
※
※
※
※
※
※
※
※
※
※
※
※
※
※
※
※
※
※
※
※
※
※
※
※
※
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
% • -

ω ი ი .018 ым \cdots 4 $\infty \infty$ U J

351 . \sim

