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1. Experimental procedures and analytical data

General Procedures. Unless otherwise noted, all reactions were carried out under an argon
atmosphere in dried and degassed solvents using Schlenk techniques. Acetonitrile and thf
were purchased from Sigma Aldrich, dried, and degassed using an MBraun SPS-800 solvent
purification system. All lithium and sodium salts used were obtained from commercial
suppliers, dried in vacuum and used without further purification. Epoxides were obtained
from commercial suppliers and degassed under vacuum prior to use. The rhodium complex 1
was synthesised according to the literature procedure.™ H and *C NMR spectra were
recorded using a Bruker ARX 250 and AVANCE Il +400 spectrometer. *H and **C chemical
shifts are reported in ppm and calibrated to TMS on the basis of the residual solvent proton
signal as an internal standard (1.73 ppm, thf-dg; 1.94 ppm, CD3;CN; 5.32 ppm,
dichloromethane-d,). Assignment of peaks was made using 2D NMR correlation spectra. IR
spectra were recorded on a Bruker Vertex70 instrument. The mass spectrum was recorded
on a Thermo Finnigan TSQ 70.

Synthesis of rhodium complex 1:

1

We already reported the synthesis of this compound.™™! Additional *H NMR data of compound
1 in thf-dg and CgDs:

'H NMR (thf-ds, 400.11 MHz): & = 1.55 (s, 18H, t-Bu), 4.20 (s, 6H, NCH), 7.45 (d, 3J = 2.0
Hz, 2H, H-4"), 7.82 (d, *J = 1.8 Hz, 2H, H-2/7), 8.16 (d, *J = 1.8 Hz, 2H, H-4/5), 8.23 (d, 3J =
2.0 Hz, 2H, H-5").

'H NMR (benzene-ds 400.14 MHz): & = 1.56 (s, 18H, t-Bu), 3.74 (s, 6H, NCHs), 6.14 (d, %J =
1.6 Hz, 2H, H-4"), 7.31 (d, *J = 1.6 Hz, 2H, H-5), 7.63 (d, J = 2.0 Hz, 2H, H-2/7), 8.49 (d, “J
= 2.0 Hz, 2H, H-4/5).

BC{*HINMR (benzene-ds, 100.61 MHz): & = 32.5 (C(CHa)s), 35.0 (C(CHa)s), 40.3 (N-CHy),

110.9 (C2/7), 114.7 (C4/5), 115.7 (C5'), 122.7 (C4"), 125.4 (C1/8), 129.3 (C4a/5a), 37.3
(Cla/8a), 139.2 (C3/6), 182.5 (d, “Jgnc = 45.9 Hz, C27), 199.8 (d, “Jgnc = 71.4 Hz, CO).
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General Procedure for the Meinwald rearrangement with rhodium complex 1:

O
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Rh(bimca)CO™ 1 (2 mg, 4 umol, 10 mol%) and lithium bis(trifluoromethanesulfonimide) (1
mg, 10 mol%) were placed into a J. Young NMR tube and 1,3,5-trimethoxybenzene as
internal standard and benzene (0.5 mL) were added. At last dried 1,2-epoxyhexane (4.2 L,
35 pmol) was added and the reaction mixture was heated to 60 °C and monitored via *H
NMR spectroscopy during the time given.

'H NMR (benzene-ds 400.11 MHz): 6 = 0.77 (t, °J = 7.4 Hz, 3H, H-6), 1.08 (ps sext, 3J = 7.5
Hz, 2H, H-5), 1.34 (ps quint, 3J = 7.7 Hz, 2H, H-4), 1.64 (s, 3H, H-1), 1.87 (t, 3J = 7.3 Hz, 2H,
H-3).

Synthesis of rhodium complex 2:

In the glove box, 10 mg 1 (18.5 pumol) and lithium bis(trifluoromethanesulfonimide) (5 mg, 1
eq) were dissolved in 0.5 mL benzene-dgs in a J. Young NMR tube. Propylene oxide (1.5 pL,
1.2 eq) was added to the reaction mixture, which was allowed to react at room temperature
for 10 minutes. The resulting species 2 (R', R? = CH;) was characterised by NMR and IR
spectroscopy in solution.

'H NMR (benzene-ds 400.14 MHz): & = 1.04 (d,®J = 5.8 Hz, 3H, CH3), 1.35 and 1.52 (each s
br, each 9H, t-Bu), 3.56-3.63 (m, 1H, CH), 3.69 and 3.85 (each s br, each 3H, NCHy), 6.32
and 6.49 (each s br, each 1H, H-4’, H-9’), 7.11 and 7.45 (each s br, each 1H, H-Carb), 7.16
(from 2D) and 7.49 (each s br, each 1H, H-5’, H-10), 7.86 and 8.07 (each s br, each 1H, H-
Carb). The signal at 7.16 ppm is covered by the solvent signal and was assigned via 2D
spectra (*H'H-COSY, 'H*®*C-HMBC, 'H"*C-HSQC) as well as the signal for the CH,-group
that is covered by the t-Bu-group (1.52 ppm) signals.

'H NMR (toluene-dg 400.14 MHz): & = 1.04 (d,®J = 5.8 Hz, 3H, CH,), 1.31 and 1.51 (each s
br, each 9H, t-Bu), 1.37-1.44 (s br, 2H, CH,) 3.56-3.63 (m, 1H, CH), 3.65 and 3.82 (each s
br, each 3H, NCHz), 6.26 and 6.49 (each s br, each 1H, H-4’, H-9’), 7.09 and 7.40 (each s br,
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each 1H, H-Carb), 7.15 and 7.52 (each s br, each 1H, H-5’, H-10’), 7.74 and 7.95 (each s br,
each 1H, H-Carb).

13C{*H} NMR (benzene-ds, 400.14 MHz): & = 19.1 (CH3), 23.2 (d br, *Jgnc = 23.0 Hz, CH,),
32.0 and 32.2 (C(CHa)s), 34.4 and 34.6 (C(CHas)s), 38.7 and 39.0 (NCHs), 80.5 (s br, CH),
109.6 and 109.9 (CCarb), 114.2 and 114.5 (CCarb), 115.2 and 116.6 (C5", C10°), 118.5 and
121.7 (C1, C8), 123.4 and 123.7 (C4a, C5a), 124.5 and 124.7 (C4’, C9’), 135.5 (Cla, C8a),
138.2 (C3, C6), 174.1 and 174.5, (each d, each "Jgyc = 56.0 Hz, C27, C7), 207.1 (d, “Jrnc =
46.2 Hz, CO).

7 (benzene-ds, cm™) = 2046 (vw br, Rh-CO), 1716 (w, acetone), 1645 (w), 1588 (w).
(Formation of complex 2 was confirmed by NMR spectroscopy prior to the IR-measurement.
Therefore benzene-ds was used as a solvent.)

In situ generation of type 2 complexes by reaction of 1a/b and epoxides in benzene-dg:

Ciri g Ciy

N

E:»j{h’—«’qj CeDs, LiNszR,zrt [ )>7/ : -<Nj

oc N
/ R? = CHa, C4Ho N\ R?
R R
o

2a/b (R' = CHs, R? = CHjs (a), CaHo (b))
2c/d (R* = CzHs, R? = CHs (C), CaHo (d))

2z

Rl = CH3 (a), C2H5 (b)

Other unsymmetrical complexes of type 2 can be generated at room temperature by reacting
Rh(I) complexes 1a and 1b with 2 eq of epoxide and 2 eq of LiNTf, in benzene-ds. Reaction
of complexes [Rh(bimca)(CO)] (1a) or [Rh(bimca™)(CO)] (1b) with propylene oxide and 1,2-
epoxyhexane lead clearly to the respective complexes of type 2, but the amount depends on
the steric demand of both reaction partners. Complex la (R' = CHj;) reacts with both
epoxides at room temperature completely to 2a/b, while 1b (R? = C,Hs) leads to a mixture of
1b and 2c/d.
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Figure 1. Complete conversion of 1a and propylene oxide (1, blue) or 1,2-epoxyhexane (2, green) at room temperature to
complexes 2a and 2b.
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Figure 2. Reaction of 1b with propylene oxide (1, blue) and 1,2-epoxyhexane (2, green) at room temperature led to the
analogue complexes 2¢ and 2d. In this case the conversion of 1b is incomplete and led to a ratio of 1b:2c = 4:3 or 2d (1b:2d
=8:1).
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After full conversion of the epoxide the starting complexes 1a/b are recovered (by NMR
spectroscopy).
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Figure 3. Monitoring the reaction of 1b with propylene oxide in benzene-dg; spectrum 1 (blue): before addition of

propylene oxide, spectrum 2 (green): after addition of 2 eq propylene oxide, and spectrum 3 (grey): after 16 h at room
temperature (full conversion of the epoxide to acetone and recovery of complex 1b).

Synthesis of rhodium complex 3:

Route 1:
In the glove box, 15 mg of 1 (26 umol) were dissolved in 0.5 mL tetrahydrofurane-dg with
propylene oxide (2 pL, 1 eq) and lithium chloride (1 mg, 1 eq) in a J. Young NMR tube. The
reaction mixture was allowed to react at room temperature for 4 days, after which the
complete formation of 3 was observed. Slow decomposition during workup prevents further
analysis.
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'H NMR (thf-dg, 400.14 MHz): 6 = 1.16 (d,3J = 6.2 Hz, 3H, CHs), 1.50 and 1.51 (each s, each
9H, t-Bu), 1.65-1.75 (m, 2H, CH,), 3.55-3.66 (m, 1H, CH), 3.98 and 3.99 (each s, each 3H,
NCHs), 7.21 and 7.22 (each d, each 3J = 2.1 Hz, each 1H, H-4", H-9), 7.61 and 7.64 (each d,
each J = 1.5 Hz, each 1H, H-4, H-5), 7.99 and 8.00 (each d, each *J = 1.5 Hz, each 1H, H-2,
H-7), 8.18 and 8.19 (each d, each 3J = 2.1 Hz, each 1H, H-5", H-10").

3C{*H} NMR (thf-dg,100.61 MHz): & = 22.3 (CHj), 26.1 (d, 2Jrnc = 30.0 Hz, CH,), 32.9 and
32.9 (C(CHs)3), 35.5 (2x C(CHs)s), 39.5 and 39.8 (NCHs), 79.4 (CH), 109.5 and 109.7 (C4,
C5), 114.3 and 114.5 (C2, C7), 117.6 and 117.8 (C5°, C10°), 124.6 and 124.8 (C4’, C9"),
125.7 and 126.3 (C4a, C5a), 127.6 and 127.5 (C1, C8), 136.9 and 137.0 (Cla, C8a), 136.9
and 137.0 (C3, C6) 180.5 and 181.0 (each d, each *Jgnc = 41.0 Hz, C2°, C7"), 229.4 (d, *Jrnc
= 43.3 Hz, Caqy).

MS (FAB*): m/z = 628.3 (1 %) [M+H]", 642.3 (100 %) [M-C3HsO,]"

Route 2:

In the glove box, 15 mg of 1 (26 pmol) were dissolved in 0.5 mL acetontirile-d; with propylene
oxide (2 uL, 1 eq) and lithium chloride (1 mg, 1 eq) in a J. Young NMR tube. The reaction
mixture was allowed to react at room temperature for 24 h at 60 °C, after which the complete
formation of the new species 3 was observed. Slow decomposition during workup prevents
further analysis.

'H NMR (CDsCN, 400.14 MHz): & = 1.14 (d, ®J = 6.1 Hz, 3H, H-15), 1.51 (s, 18H, t-Bu),
1.56-1.63, 1.64-1.73 (each m, each 1H, CH,), 3.55-3.66 (m, 1H, CH), 3.95 and 3.95 (each
s, each 3H, NCHs), 7.23 and 7.24 (each d, each 3 = 2.2 Hz, each 1H, H-4"), 7.68 and 7.70
(each d, each *J = 1.5 Hz, each 1H, H-4, H-5), 8.07 and 8.08 (each d, each *J = 1.5 Hz, each
1H, H-2, H-7), 8.18 and 8.20 (each d, each 3J = 2.1 Hz, each 1H, H-5").

13C{*H} NMR (CD5CN, 100.61 MHz): & = 22.4 (CHs), 26.6 (d, 2Jgnc = 36.7 Hz, CH,), 30.0 and
32.9 (C(CHjy)3), 36.0 (2x C(CHz3)3), 40.0 and 40.3 (NCHjs), 80.0 (CH), 110.8 (C4, C5), 115.0
and 115.3 (C2, C7), 125.7 and 126.0 (C4", C9), 126.2 and 126.7 (C4a, Cb5a), 127.2 and
127.4 (C1, C8), 136.0 and 136.6 (Cla, C8a), 139.0 (C3, C6) 179.6 and 179.8 (each d, each
3Jrnc = 40.7 Hz, C2°, C7°), 228.8 (Cacyi, NO coupling detected due to low intensity). Signals for
C5” and C10" could not be detected due to overlap with the signal for CD;CN.

MS (FABY): m/z = 628.3 (1 %) [M+H]", 642.3 (100 %) [M-C3sHs0,]".
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Synthesis of rhodium complex 4a:

In the glove box, 15 mg 1 (26 pmol) were dissolved in 0.5 mL thf-dg with propylene oxide (2
KL, 1 eq) and lithium chloride (1 mg, 1 eq) in a J. Young NMR tube. The reaction mixture was
allowed to react at 80 °C for 4 days, after which the formation of yellow precipitate was
observed. The solvent was removed and the yellow residue dissolved in CD,Cl, and
characterised NMR spectroscopically.

IH NMR (CD,Cl,, 400.14 MHz): & = 1.55 (s, 18H, t-Bu), 2.01 (br s, 3H, CHs), 3.96 (s br, 1H,
CH), 4.18 (s, 6H, NCHa), 7.17 (d, 3J = 1.7 Hz, 2H, H-4"), 7.65 (d, “J = 1.3 Hz, 2H, H-2/7), 8.03
(d, 33 = 1.7 Hz, 2H, H-5"), 8.14 (d, *J = 1.3 Hz, 2H, H-4/5).

BC{*H} NMR (thf-dg, 100.61 MHz): & = 21.0 (CHs), 31.9 (C(CHa)s), 34.7 (C(CHs)s), 38.7
(NCH,), 93.6 (CH), 110.8 (C4), 114.7 (C2/7), 116.3 (C5'), 125.3 (C4/5), 127.6 (C4a/5a),

135.0 (Cla/8a), 137.2 (C1/8), 139.3 (C3/6), 174.6 (d, “Jrnc = 112.6 Hz, C2"), 189.8 (d, ZJrnc =
89.0 Hz, CORNh), the Cay signal could not be detected.

The equilibrium between Rh-catalyst 1 and complex 3a in thf-dsg:

Experiment whether species 3a is able to release acetone and such reacts back to catalyst 1
or complex 3a gets only deactivated by dehydrogenation to 4a (Figures 4-7).

S VIR S O

R? N

N, | N 1eq LiCl, thf-dg, rt N | N \ | 3
D= === DA —— D)
[N\ Loy e { t\ ; { t\ /

Complex 1 was dissolved with a catalytic amount of LiCl and propylene oxide in thf-dg (Figure
4). After 20 h at room temperature a mixture of 1 and 3a (2:1) and a small amount of Rh
complex 4a was obtained. Upon evaporation of the solvent and redissolving the residue in
thf-dg the ratio of complexes 1 to 3a remained unchanged, but all organic components were
removed (Figure 5). After 1 day at room temperature acetone was generated and the 'H
NMR spectrum shows complex 1 as the only organometallic species (Figure 6). The thf-dg
and all volatiles were evaporated again and the residue dissolved in dichloromethane-d, (as
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the solubility of 4a is much better in CD,Cl,). The *H NMR spectrum gives evidence for the

formation of 4a (Figure 7).

Thus we could demonstrate that some amount of complex 3a releases
regeneration of 1 as well as it can be dehydrogenated to complex 4a.
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Dehydrogenation of complex 3 to the deactivation product 4:

Dehydrogenation of complex 3 to complex 4 is accompanied by hydrogenation of the
acetone (which is formed during the catalysis) to isopropanol (Figure 8).
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Figure 8. After evaporation of all volatile compounds the signal at 1.08 ppm (isopropanol) is missing (std = 1,3,5-
trimethoxybenzene).
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The equilibrium between 1 and 3 in benzene:

Experiment, if complex 3 (generated in thf-dg) also released acetone upon dissolving in
benzene-ds. Two independent experiments were carried out.

Experiment 1: Complex 1 was dissolved with a catalytic amount of LiCl and propylene oxide
in thf-dg. After 16 h at 60 °C a mixture of complexes 1:3 (1:1) and Rh complex 4 was
obtained. Upon evaporation of the solvent and redissolving the residue in thf-dg the ratio of 1
to 3 remained constant, but all volatile components were removed. The thf-dg is again
removed and the residue dissolved in benzene-ds. The *H NMR spectrum shows 1 as the
major organometallic species. As the acetone signhal is covered by the t-Bu signal in
benzene-ds, a few drops of dmso-ds were added to shift the acetone peak (Figure 11). The
outcome of this experiment gives evidence for the backward reaction of 3 into the catalytic
cycle also in benzene.
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Experiment 2: Complex 1 is dissolved with a catalytic amount of LiCl and propylene oxide in
thf-dg. After 16 h at r.t. a mixture of complexes 1:3a = 1.3:1 was obtained. Upon evaporation
of all volatile compounds and dissolving the residue in thf-dg the ratio of 1:3a remained con-
stant. All volatiles were removed again in vacuo and the residue was dissolved in benzene-
de. The 'H NMR spectrum of the suspension clearly shows complex 1 as the only organo-
metallic species. Heating the sample for 1 h at 60 °C led to formation of a new Rh complex.
Upon removal of benzene-ds in vacuo and dissolving the residue in CD,Cl, this species was
identified as complex 4a which could have formed from precipitated 3a by dehydrogenation.

EY
 0.050
] 101 1 1
E < 3
%3 3 3 3
- 288 ¢ 8 5
8 0025 ss8P S ~ 89 gL
£ ifs 5 7 R v ER
s P NN PN std
/ |/ S
0 ] 2 2 23
447 345454349 466 346 4.43 334 2 1+3 & 858
O e e o P B
T T T T T T T | 128 1~
85 80 75 7.0 i , ”
Chemical Shift (ppm) 7 || Propylene oxi
1
v o %
E std &
009
008 thf
i g
2 007 3 thf
g o
g acetone %
§ 006 7 § S
g 4 propylene oxid & /
2 005 4 -
E 3
004 3
E & [
<
003 |
T, 2
1 938 ~
8BS 8 5 9o
024 d3T & ° 3 SR
ERE T I ) ks
I —
001
0 3 j JL LJ _,_,M,AJ | f
— LTS \ — —
4.47 3.45 454 3.49 4.66 3.46 4.43 3.34 30.00 1368961 109.31 2304 2614 2679 541 42133456 88.73 557
[ Sy | — [ S L
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 0

Chemical Shift (ppm)
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2. Crystallographic details for compounds 4a and 4b

Crystallographic Data. Data collection was carried out on a Bruker APEX Duo CCD (4b)
with an Incoatec IS Microsource with a Quazar MX mirror, or a Bruker APEX CCD (4a)
diffractometer, using Mo K, radiation (A = 0.71073 A) and a graphite monochromator in both
cases. Corrections for absorption effects were applied using SADABS."? All structures were
solved by direct methods using SHELXS and refined using SHELXL.®! Further details of the
refinement and crystallographic data are given in the respective CIF-files. CCDC 1018408
(compound 4a) and 1018409 (compound 4b) contain the supplementary crystallographic
data for this paper. These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Crystal structure of complex 4a:

In the glove box, 15 mg 1 (26 umol) were dissolved in 0.5 mL thf-dg with propylene oxide (2
pL, 1 eq) and lithium chloride (1 mg, 1 eq) in a J. Young NMR tube. The reaction mixture was
allowed to react at 80 °C for 4 days. Single crystals suitable for X-ray diffraction were
obtained from a saturated solution of the reaction mixture at room temperature. The structure
contains three thf solvent molecules, two of which are disordered.
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Crystal structure of complex 4b:

Rh(bimca)CO™ 1 (2 mg, 4 umol, 10 mol%) and lithium bis(trifluoromethanesulfonimide) (1
mg, 10 mol%) were placed into a J. Young NMR tube and 1,3,5-trimethoxybenzene as
internal standard and benzene (0.5 mL) were added. At last dried 1,2-epoxyhexane (4.2 L,
35 umol) was added and the reaction mixture was heated to 60 °C. Single crystals from
pentane/thf, suitable for X-ray diffraction were obtained from a saturated solution of the
reaction mixture upon cooling to room temperature. The structure contains a region with
heavily disordered solvent molecules. These could be identified from the shape to be a
pentane and a thf molecule. The two add up to 144 electrons. The Squeeze procedure!” in
programme package PLATON® reports the equivalent of 167 electrons per asymmetric unit,
in total 344 electrons. One ordered thf solvent molecule is included in the reported structure.
The alkyl product suffers from disorder in all three unique molecules. The current model still
suffers from large displacement parameters, in particular at the terminal end of the alkyl
product; also the C-C-distances in those regions suffer from large variations.

S18



3. 'Hand **C NMR spectra of the new compounds

Exemplary *H NMR spectrum for a Meinwald rearrangement (100 min, 60 °C, 30 mol% LiNTf, 10
mol% 1, benzene)
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BC{*H} NMR spectrum of 2 in benzene-dg
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BC{*H} NMR spectrum of 3a in thf-d;
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'H*®*C-HSQC NMR spectrum of 3a in thf-ds;
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'H**C-HMBC NMR spectrum of 3a in thf-dg;
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'H NMR spectrum of 3a in CD;CN:
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C-DEPT-135 NMR spectrum of 3a in CDsCN:
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'H'H-COSY NMR spectrum of 3a in CD;CN:
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'H'®*C-HSQC NMR spectrum of 3a in CD;CN:
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'H**C-HMBC NMR spectrum of 3a in CDsCN:
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'H NMR spectrum of 4a in CD,Cl.:
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EL ¥y

B E—
BEFE—
bieE—

EELE—

CD2C12

Tnml

¥ sooe

BEELL
=

16

32

48

92 B4 176 B8 160 152 144 136 128 120 112 g o5

200

Chemical Shitt (ppmy

S28



'H'®*C-HSQC NMR spectrum of 4a in CD,Cl,
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'H**C-HMBC NMR spectrum of 4a in CD,Cl,
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4. IR spectra of 1 and 2a

IR spectrum (benzene-dg) of complex 1.
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3
g1

IR (benzen-dg) of complex 2a.
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5. Catalytic epoxide rearrangement: optimisation of the reaction conditions
regarding additive and solvent

Table 1 Optimisation of the reaction conditions: additive and solvent.”

o) O
catalyst 1 + additive
'
solvent , AT, time
CqHo C4Ho
Entry Additive Solvent T[°C] TE:}e Yield®* [%]
1 LiCl thf-dg 60 24 4
2 NaCl thf-dg 60 24 2
3 Licl cD,Cl, 60 24 o
4 Licl CDsCN 60 24 o
5 NaBF, thf-dg 60 24 13
6 NaBPh, thf-dg 60 24 45
7 NaBPh, CeDg 60 24 61
8 LiB(CgFs)s CeDg 60 24 90
9 LiNTf, CeDg 60 24 >99

 Reaction conditions: 1 (10 mol%), additive (10 mol%), all reactions were carried out in a J. Young NMR tube with 1,2-epoxyhexane (35
umol) as substrate and 0.5 mL solvent. ® The ketone was observed as the sole reaction product.  The yield was determined by 'H NMR
using 1,3,5-trimethoxybenzene as internal standard. d Catalyst deactivation due to organometallic side products.[sl
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