Supporting Information for

Highly Diastereo- and Enantioselective Construction of

Spiro[cyclopenta[b]indole-1,3'-oxindole] Scaffold via Catalytic

Asymmetric Formal [3+2] Cycloadditions

Wei Tan, Xin Li, Yu-Xin Gong, Meng-Di Ge and Feng Shi*

School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou,

221116, China

Email: <u>fshi@jsnu.edu.cn</u>

List of Contents

1. General method (S2)

2. Screening of catalysts and optimization of conditions (S2-S4)

3. General procedure for the synthesis of substrates 2 (S4-S6)

4. General procedure for the synthesis of products 3 and control experiments (S6)

5. Characterization data of products 3 (S6-S19)

6. Procedure and characterization data for the derivation of product 3ea (S19-S20)

7. Copies of NMR spectra for products 3 and 7 (S21-S42)

8. Chiral HPLC analyses of products 3 (S43-S63)

9. X-ray single crystal data for product 3ae (S64-S65)

1. General method

NMR spectra were measured respectively at 400 and 100 MHz, respectively. The solvent used for NMR spectroscopy was CDCl₃, using tetramethylsilane as the internal reference. HRMS (ESI) was determined by a micrOTOF-Q II HRMS/MS instrument (Bruker). Enantiomeric excesses (*ee*) were determined by chiral high-performance liquid chromatography (chiral HPLC). The chiral columns used for the determination of enantiomeric excesses by chiral HPLC were Chiralpak IC and IA columns. Optical rotation values were measured with instruments operating at $\lambda = 589$ nm, corresponding to the sodium D line at the temperatures indicated. Analytic grade solvents for the column chromatography and commercially available reagents were used as received. Substrates **1** and **2** were synthesized according to the literature methods.¹

2. Screening of catalysts and optimization of conditions

To testify our hypothesis, isatin-derived 3-indolylmethanol 1a was initially subjected to the reactions with 2-vinylindoles 2a' and 2a, respectively, in the presence of CPA 4a (Table1, entries 1-2). As expected, 2-vinylindole 2a' failed to afford the desired [3+2] cycloaddition product 3aa' (entry 1), while 3-methyl-2-vinylindole 2a successfully delivered the designed spiro[cyclopenta[b]indole-1,3'-oxindole] **3aa** in a high yield and good stereoselectivity within one hour (entry 2). These results demonstrated that the introduction of a methyl group to C3-position of 2-vinylindole greatly switched its reactivity, leading to the desired [3+2] cycloaddition with 3-indolylmethanol. So, substrate 2a was utilized to the experiments on screening of **BINOL**-derived **CPAs** 4 (entries 2-6), which revealed that 3,3'-(9-phenanthrenyl)-substituted CPA 4d delivered the reaction in the highest stereoselectivity (entry 5). Then, the BINOL backbone of catalyst 4d was changed to structurally more rigid H₈-BINOL and SPINOL backbones, leading to further improved enantioselectivities (entries 7-8 vs 5) but with a decrease of the yield (entry

^{1. (}a) Q.-X. Guo, Y.-G. Peng, J.-W. Zhang, L. Song, Z. Feng, L.-Z. Gong, *Org. Lett.* **2009**, *11*, 4620; (b) L. Song, Q.-X. Guo, X.-C. Li, J. Tian, Y.-G. Peng, *Angew. Chem. Int. Ed.* **2012**, *51*, 1899; (c) C. Zheng, Y. Lu, J. Zhang, X. Chen, Z. Chai, W. Ma, G. Zhao, *Chem. Eur. J.* **2010**, *16*, 5853.

8 vs 5). In the presence of spiro-CPA **6a**, different types of solvents were tested for the aim to increase the yield without sacrifice of the stereoselectivity (entry 8-12). Although chloroform greatly enhanced the yield, the enantioselectivity was decreased to the same level as CPA **4a** offered (entry 9 vs 5). Considering the excellent catalytic activity and synthetic simplicity of H₈-BINOL derived CPA **5a** (entry 7), this catalyst was finally chosen as the most suitable one for further evaluation on the reaction temperature (entries 13-14). The results disclosed that elevating the temperature was detrimental to the enantioselectivity (entry 13 vs 7), while properly lowering the temperature to 0° C led to a higher enantioselectivity of 98% *ee* albeit with a prolonged reaction time (entry 14 vs 7).

Table 1. Screening of catalysts and optimization of conditions^[a]

11	3aa	6a	AcOEt	trace	-	-
12	3aa	6a	1,4-dioxane	trace	-	-
13 ^[e]	3aa	5a	toluene	99	>95:5	78
14 ^[f]	3aa	5a	toluene	97	>95:5	98

[a] Unless indicated otherwise, the reaction was carried out in 0.05 mmol scale catalyzed by 10 mol % 4-6 in solvent (0.5 mL) at 25°C for 1 h, and the mole ratio of 1a:2a was 1:1.2. [b] Isolated yield. [c] The *dr* value was determined by ¹H MMR. [d] The *ee* value was determined by HPLC.
[e] Performed at 50°C. [f] Performed at 0°C for 12 h.

3. General procedure for the synthesis of substrates 2

A to **B**: Under argon atmosphere, 2.7 mL anhydrous DMF (35 mmol) was added to a dried flask and cooled to 0 °C. Then, 1 mL POCl₃ (11 mmol) was added dropwise to the reaction system and stirred for 5 min at 0 °C. Substrate **A** (10 mmol) was dissolved in 4 mL anhydrous DMF and was added to the reaction system. Then, the reaction mixture was stirred at rt for 30 min and was warmed to 60 °C to react for 4 h. After stopping the reaction, NaOH aqueous solution (2 M) was added to the reaction mixture at 0 °C and modulated the pH to 7. Subsequently, a large amount of water was added to the reaction mixture and stirred for 5 min to generate a yellow solid (compound **B**), which was filtered and subjected to the next step.

B to **C**: Under argon atmosphere, compound **B** (5 mmol) was added to a dried flask and dissolved in 40 mL anhydrous THF. Then, LiAlH_4 (25 mmol) was added to the reaction system by many portions at 0 °C and stirred for 10 min at rt, which was

further refluxed at 80 °C for 5 h. After completing the reaction, NaOH aqueous solution (1 M) was added to the reaction mixture at 0 °C and modulated the pH to 7. Subsequently, the resultant reaction mixture was extracted by EtOAc and the organic layer was further purified by flash column chromatography (petroleum ether/ethyl acetate = 2/1) to obtain compound **C**.

C to **D**: To a stirred solution of compound **C** (5 mmol) in CH₃CN (40 mL), MnO₂ (30 mmol) was added by many portions and then reacted at rt for 15 h, which indicated the completion of the reaction by TLC. Then, the reaction mixture was filtered and the filtrate was condensed, which was purified by flash column chromatography (petroleum ether/ethyl acetate = 15/1) to give compound **D**.

D to substrates **2**: Under argon atmosphere, $ArCH_2Ph_3PBr$ (0.96 mmol) was added to a dried flask and dissolved in 3 mL anhydrous toluene. Then, NaH (1.6 mmol) was added to the reaction system at 0 °C and stirred for 20 min at rt. Subsequently, the solution of compound **D** (0.8 mmol) in anhydrous toluene (3 mL) was added to the reaction system, which was reacted at 80 °C for 2 h. After completing the reaction, saturated NH₄Cl aqueous solution was added to the reaction mixture, which was extracted by EtOAc. The resultant organic layer was dried by anhydrous Na₂SO₄ and purified by flash column chromatography (petroleum ether/ethyl acetate = 50/1) to afford substrates **2**.

(*E*)-3-methyl-2-styryl-1H-indole (2a): ¹H NMR (400 MHz, CDCl₃) $\delta = 8.07$ (s, 1H), 7.56 - 7.52 (m, 3H), 7.40 - 7.28 (m, 4H), 7.28 - 7.18 (m, 3H), 7.14 - 7.07 (m, 1H), 6.80 (d, *J* = 16.5, 1H), 2.42 (s, 3H).

(*E*)-3-methyl-2-(2-methylstyryl)-1H-indole (2b): ¹H NMR (400 MHz, CDCl₃) δ
8.08 (s, 1H), 7.65 (d, J = 7.6 Hz, 1H), 7.56 (d, J = 7.9 Hz, 1H), 7.34 (d, J = 8.1 Hz, 1H), 7.29 - 7.23 (m, 3H), 7.24 - 7.19 (m, 3H), 7.18 - 7.10 (m, 2H), 7.01 (d, J = 16.3 Hz, 1H), 2.47 (s, 3H), 2.43 (s, 3H).

(*E*)-2-(2-fluorostyryl)-3-methyl-1H-indole (2c): ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.64 (td, *J* = 7.7, 1.7 Hz, 1H), 7.56 (d, *J* = 7.9 Hz, 1H), 7.34 – 7.29 (m, 2H), 7.24 – 7.19 (m, 2H), 7.16 (td, *J* = 7.5, 1.2 Hz, 1H), 7.13 – 7.07 (m, 2H), 6.95 (d, *J* = 16.6 Hz, 1H), 2.42 (s, 3H).

(*E*)-3-methyl-2-(3-methylstyryl)-1H-indole (2d): ¹H NMR (400 MHz, CDCl₃) $\delta = 8.05$ (s, 1H), 7.54 (d, J = 7.9, 1H), 7.36 – 7.29 (m, 3H), 7.28 (d, J = 7.5, 1H), 7.25 – 7.17 (m, 2H), 7.14 – 7.06 (m, 2H), 6.78 (d, J = 16.5, 1H), 2.42 (s, 3H), 2.40 (s, 3H). (*E*)-2-(3-chlorostyryl)-3-methyl-1H-indole (2e): ¹H NMR (400 MHz, CDCl₃) $\delta = 8.03$ (s, 1H), 7.55 (d, J = 7.9, 1H), 7.50 (t, J = 1.8, 1H), 7.37 (d, J = 7.7, 1H), 7.34 – 7.27 (m, 2H), 7.25 – 7.19 (m, 3H), 7.15 – 7.08 (m, 1H), 6.71 (d, J = 16.4, 1H), 2.42 (s,

3H).

(*E*)-3-methyl-2-(4-methylstyryl)-1H-indole (2f): ¹H NMR (400 MHz, CDCl₃) δ = 8.00 (s, 1H), 7.56 (d, *J* = 7.9, 1H), 7.51 – 7.44 (m, 2H), 7.31 (d, *J* = 8.0, 1H), 7.25 – 7.19 (m, 1H), 7.18 – 7.05 (m, 4H), 6.74 (d, *J* = 16.5, 1H), 2.42 (s, 3H).

(*E*)-2-(4-fluorostyryl)-3-methyl-1H-indole (2g): ¹H NMR (400 MHz, CDCl₃) δ = 8.02 (s, 1H), 7.55 (d, *J* = 7.8, 1H), 7.43 (d, *J* = 8.1, 2H), 7.31 (d, *J* = 8.0, 1H), 7.24 - 7.15 (m, 4H), 7.14 - 7.08 (m, 1H), 6.78 (d, *J* = 16.5, 1H), 2.42 (s, 3H), 2.38 (s, 3H).

4. General procedure for the synthesis of products 3 and control experiments

Toluene (0.5 mL) was added to the mixture of 3-indolylmethanols **1** (0.05 mmol), 3-methyl-2-vinylindoles **2** (0.06 mmol) and the catalyst **5a** (0.005 mmol). The resultant reaction mixture was stirred at rt or 0 $^{\circ}$ C for a given time, which was purified through flash column chromatography to afford pure products **3**.

5. Characterization data of products 3

(1R,2R,3R)-1'-benzyl-5'-methyl-3-(3-methyl-1H-indol-2-yl)-2-phenyl-3,4-dihydro -2H-spiro[cyclopenta[b]indole-1,3'-indolin]-2'-one (3ba):

(Flash column chromatography eluent, petroleum ether/ethyl acetate = 7/1); Reaction time = 4 h ; yield: 91% (26.7 mg); >95:5 dr; white solid; m.p. 169–170 °C; $[\alpha]_D^{20} = -56.0$ (c 0.45, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.93 (s, 1H), 7.49 (d, J = 7.6 Hz, 1H), 7.29 (s, 1H), 7.27 – 7.25 (m, 1H), 7.25 – 7.19 (m, 4H), 7.19 – 7.13 (m, 4H), 7.13 – 7.06 (m, 4H), 7.02 – 6.93 (m, 2H), 6.83 (d, J = 7.8 Hz, 1H), 6.51 (d, J = 7.1 Hz, 2H), 6.43 (d, J = 7.9 Hz, 1H), 5.89 (d, J = 9.7 Hz, 1H), 4.97 (d, J = 16.0 Hz, 1H), 4.56 (d, J = 9.7 Hz, 1H), 4.36 (d, J = 16.0 Hz, 1H), 2.34 (s, 3H), 2.17 (s,

3H). ¹³C NMR (100 MHz, CDCl₃) δ = 177.2, 144.6, 140.8, 140.5, 135.6, 135.4, 135.4, 132.5, 132.3, 130.8, 129.4, 129.3, 128.8, 128.5, 128.2, 127.7, 127.0, 126.5, 124.2, 123.0, 121.9, 120.1, 119.3, 118.8, 118.5, 118.1, 112.2, 110.6, 109.7, 109.0, 70.6, 60.4, 43.6, 41.1, 21.2, 8.7. IR (KBr): 3544, 3494, 3029, 2920, 2361, 2342, 1698, 1496, 1340, 741, 698 cm⁻¹; ESI FTMS exact mass calcd for (C₄₁H₃₃N₃O-H)⁻ requires m/z 582.2545, found m/z 582.2575. Enantiomeric excess: 94%, determined by HPLC (Daicel Chirapak IC, hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 4.287 min (minor), t_R = 4.927 min (major).

(1R,2R,3R)-1'-benzyl-5'-chloro-3-(3-methyl-1H-indol-2-yl)-2-phenyl-3,4-dihydro-2H-spiro[cyclopenta[b]indole-1,3'-indolin]-2'-one (3ca):

(Flash column chromatography eluent, petroleum ether/ethyl acetate = 7/1); Reaction time = 6 h ; yield: 74% (22.2 mg); >95:5 dr; white solid; m.p. 160–161 °C; $[\alpha]_D^{20} =$ -122.2 (c 0.248, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 7.89 (s, 1H), 7.48 – 7.44 (m, 2H), 7.32 – 7.30 (m, 1H), 7.28 – 7.27 (m, 1H), 7.26 – 7.21 (m, 3H), 7.20 - 7.18 (m, 2H), 7.17 - 7.12 (m, 4H), 7.11 - 7.07 (m, 3H), 7.03 - 6.97 (m, 1H), 6.83 (d, J = 7.8 Hz, 1H), 6.47 (d, J = 7.2 Hz, 2H), 6.44 (d, J = 8.3 Hz, 1H), 5.88 (d, J = 9.7 Hz, 1H), 4.98 (d, J = 16.0 Hz, 1H), 4.52 (d, J = 9.7 Hz, 1H), 4.35 (d, J = 16.0Hz, 1H), 2.16 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 176.7$ 144.7, 141.8, 140.4, 135.6, 134.9, 134.8 132.6 131.9, 129.3 129.2, 128.7 128.6 128.3, 128.3 127.9, 127.2, 126.5 123.9 122.8, 122.1, 122.1 120.4 119.4, 118.6 118.1 118.0, 112.2, 110.6, 110.3, 110.1, 70.7, 60.5, 43.7, 41.0, 8.7. IR (KBr): 3524, 3493, 3294, 2960, 2922, 2853, 2360, 2341, 1715, 1698, 1487, 1456, 1170, 1028, 741, 697 cm⁻¹; ESI FTMS exact mass calcd for $(C_{41}H_{32}CIN_3O-H)^-$ requires m/z 602.1998, found m/z 602.2010. Enantiomeric excess: 91%, determined by HPLC (Daicel Chirapak IC, hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): $t_R = 3.943$ min (minor), $t_R = 4.300$ min (major).

(1R,2R,3R)-1'-benzyl-6'-methoxy-3-(3-methyl-1H-indol-2-yl)-2-phenyl-3,4-dihyd ro-2H-spiro[cyclopenta[b]indole-1,3'-indolin]-2'-one (3da):

(Flash column chromatography eluent, petroleum ether/ethyl acetate = 7/1); Reaction time = 4 h ; yield: 97% (29 mg); >95:5 dr; white solid; m.p. 158–159 °C; $[\alpha]_D^{20}$ = -216.0 (c 0.488, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 7.95 (s, 1H), 7.48 (d, J = 7.6 Hz, 1H), 7.35 (d, J = 8.2 Hz, 1H), 7.25 – 7.21 (m, 5H), 7.19 – 7.13 (m, 4H), 7.12 - 7.09 (m, 3H), 7.08 - 7.07 (m, 1H), 6.97 (t, J = 7.5 Hz, 1H), 6.85 (d, J =7.8 Hz, 1H), 6.60 (dd, J = 8.2, 2.2 Hz, 1H), 6.51 (d, J = 7.2 Hz, 2H), 6.13 (d, J = 2.2Hz, 1H), 5.87 (d, J = 9.7 Hz, 1H), 4.95 (d, J = 16.0 Hz, 1H), 4.53 (d, J = 9.8 Hz, 1H), 4.34 (d, J = 16.0 Hz, 1H), 3.73 (s, 3H), 2.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta =$ 177.7, 160.2, 144.5, 144.4, 140.4, 135.6, 135.4, 135.3, 132.5, 129.4, 129.3, 128.6, 128.2, 127.7, 127.1, 126.5, 124.1, 123.0, 122.5, 121.9, 121.8, 120.2, 119.3, 118.9, 118.5, 118.1, 112.1, 110.6, 109.7, 106.6, 97.3, 70.6, 59.9, 55.3, 43.6, 40.87, 8.7. IR (KBr): 3534, 3488, 3309, 3199, 2921, 2361, 2343, 1699, 1503, 1377, 1161, 1031, 742, 698 cm⁻¹: ESI FTMS exact mass calcd for $(C_{41}H_{33}N_3O-H)^-$ requires m/z 598.2494, found m/z 598.2515. Enantiomeric excess: 93%, determined by HPLC (Daicel Chirapak IC, hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): $t_{\rm R} = 4.333 \text{ min (minor)}, t_{\rm R} = 4.820 \text{ min (major)}$

(1R,2R,3R)-1'-benzyl-6'-bromo-3-(3-methyl-1H-indol-2-yl)-2-phenyl-3,4-dihydro -2H-spiro[cyclopenta[b]indole-1,3'-indolin]-2'-one (3ea):

(Flash column chromatography eluent, petroleum ether/ethyl acetate = 7/1); Reaction time = 4 h ; yield: 97% (31.4 mg); >95:5 dr; white solid; m.p. 186–187 °C; $[\alpha]_D^{20}$ = -155.7 (c 0.56, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 7.91 (s, 1H), 7.48 (d, *J* = 7.7 Hz, 1H), 7.33 (d, *J* = 7.8 Hz, 1H), 7.30 – 7.27 (m, 1H), 7.26 – 7.22 (m, 4H), 7.19 – 7.16 (m, 4H), 7.14 – 7.09 (m, 4H), 7.09 – 7.07 (m, 1H), 6.99 (t, *J* = 7.5 Hz, 1H), 6.82 (d, *J* = 7.9 Hz, 1H), 6.68 (s, 1H), 6.49 (d, *J* = 7.5 Hz, 2H), 5.86 (d, *J* = 9.7 Hz, 1H), 4.94 (d, *J* = 16.1 Hz, 1H), 4.52 (d, *J* = 9.7 Hz, 1H), 4.32 (d, *J* = 16.1 Hz, 1H), 2.15 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 177.1, 144.7, 144.6, 140.4, 135.6, 135.0, 134.6, 132.1, 129.8, 129.4, 129.2, 128.7, 128.4, 127.9, 127.3, 126.4, 125.8, 124.8, 122.8, 122.0, 122.0, 122.0, 120.3, 119.4, 118.5, 118.0, 117.9, 112.6, 112.2, 110.7, 109.9, 70.5, 60.1, 43.6, 41.01, 8.7. IR (KBr): 3546, 3494, 2921, 2361, 2342,

1699, 1603, 1487, 1456, 1260, 1171, 740, 697 cm⁻¹; ESI FTMS exact mass calcd for $(C_{40}H_{30}BrN_{3}O-H)^{-}$ requires m/z 646.1493, found m/z 646.1508. Enantiomeric excess: 96%, determined by HPLC (Daicel Chirapak IA, hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 19.683 min (minor), t_R = 26.087 min (major).

(1R,2R,3R)-1'-benzyl-7'-methyl-3-(3-methyl-1H-indol-2-yl)-2-phenyl-3,4-dihydro -2H-spiro[cyclopenta[b]indole-1,3'-indolin]-2'-one (3fa):

(Flash column chromatography eluent, petroleum ether/ethyl acetate = 7/1); Reaction time = 4 h ; yield: 95% (27.8 mg); >95:5 dr; white solid; m.p. 184–185 °C; $[\alpha]_D^{20}$ = -861.4 (c 0.51, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 7.96 (s, 1H), 7.48 (d, *J* = 7.4 Hz, 1H), 7.35 (d, *J* = 6.2 Hz, 1H), 7.23 (s, 1H), 7.22 – 7.17 (m, 4H), 7.16 – 7.12 (m, 3H), 7.12 – 7.08 (m, 4H), 7.07 – 7.05 (m, 1H), 7.03 (d, *J* = 7.3 Hz, 1H), 7.00 – 6.95 (m, 2H), 6.86 (d, *J* = 7.8 Hz, 1H), 6.41 (d, *J* = 7.1 Hz, 2H), 5.87 (d, *J* = 9.8 Hz, 1H), 5.13 (d, *J* = 17.0 Hz, 1H), 4.72 (d, *J* = 17.0 Hz, 1H), 4.58 (d, *J* = 9.8 Hz, 1H), 2.15 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 178.1, 144.5, 141.4, 140.4, 137.4, 135.6, 135.4, 132.5, 131.5, 129.4, 129.4, 128.7, 128.3, 127.8, 126.6, 125.3, 122.9, 122.9, 121.8, 121.7, 120.1, 119.7, 119.3, 119.1, 118.5, 118.0, 112.2, 110.7, 109.7, 70.9, 59.8, 44.9, 41.1, 18.7, 8.7. IR (KBr): 3564, 3498, 2971, 2360, 2341, 1683, 1540, 1456, 1339, 742, 696 cm⁻¹; ESI FTMS exact mass calcd for (C₄₁H₃₃N₃O-H)⁻ requires m/z 582.2545, found m/z 582.2566. Enantiomeric excess: 93%, determined by HPLC (Daicel Chirapak IA, hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 24.543 min (major), t_R = 39.460 min (minor).

(1R,2R,3R)-1'-benzyl-7'-bromo-3-(3-methyl-1H-indol-2-yl)-2-phenyl-3,4-dihydro -2H-spiro[cyclopenta[b]indole-1,3'-indolin]-2'-one (3ga):

(Flash column chromatography eluent, petroleum ether/ethyl acetate = 7/1); Reaction time = 4 h ; yield: 97% (31.5 mg); >95:5 dr; white solid; m.p. 178–179 °C; $[\alpha]_D^{20}$ = -165.2 (c 0.488, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.95 (s, 1H), 7.48 (d, *J* = 7.5 Hz, 1H), 7.45 (dd, *J* = 7.3, 1.1 Hz, 1H), 7.40 (dd, *J* = 8.2, 1.1 Hz, 1H),

7.26 – 7.22 (m, 1H), 7.22 – 7.19 (m, 2H), 7.19 – 7.13 (m, 5H), 7.12 – 7.06 (m, 5H), 7.02 – 6.97 (m, 2H), 6.85 (d, J = 7.8 Hz, 1H), 6.48 (d, J = 7.1 Hz, 2H), 5.84 (d, J =9.7 Hz, 1H), 5.14 (dd, J = 37.8, 16.7 Hz, 2H), 4.55 (d, J = 9.7 Hz, 1H), 2.14 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 177.9$, 144.6, 140.8, 140.4, 137.2, 135.6, 134.9, 134.5, 134.2, 132.1, 129.4, 129.2, 128.4, 128.4, 128.1, 126.5, 125.7, 124.2, 122.9, 122.7, 122.0, 122.0, 120.3, 119.4, 118.5, 118.4, 117.9, 112.2, 110.7, 109.8, 102.4, 71.0, 60.1, 44.4, 41.16, 8.7. IR (KBr): 3554, 3493, 3307, 2923, 2855, 2360, 2341, 1698, 1450, 1339, 1116, 1021, 739, 697 cm⁻¹; ESI FTMS exact mass calcd for (C₄₀H₃₀BrN₃O-H)⁻ requires m/z 646.1493, found m/z 646.1468. Enantiomeric excess: 93%, determined by HPLC (Daicel Chirapak IA, hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 9.717 min (major), t_R = 28.957 min (minor).

(1R,2R,3R)-1'-benzyl-7-methoxy-3-(3-methyl-1H-indol-2-yl)-2-phenyl-3,4-dihydr o-2H-spiro[cyclopenta[b]indole-1,3'-indolin]-2'-one (3ha):

(Flash column chromatography eluent, petroleum ether/ethyl acetate = 7/1); Reaction time = 4 h ; yield: 92% (27.5 mg); >95:5 dr; white solid; m.p. 173–174 °C; $[\alpha]_D^{20}$ = -191.3 (c 0.424, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.97 (s, 1H), 7.47 (d, *J* = 7.4 Hz, 2H), 7.25 – 7.22 (m, 2H), 7.20 – 7.18 (m, 3H), 7.15 (s, 2H), 7.14 – 7.12 (m, 2H), 7.12-7.10 (m, 2H), 7.10 – 7.09 (m, 2H), 7.08 – 7.07 (m, 1H), 6.74 (dd, *J* = 8.9, 2.5 Hz, 1H), 6.53 (d, *J* = 7.7 Hz, 3H), 6.24 (d, *J* = 2.4 Hz, 1H), 5.86 (d, *J* = 9.8 Hz, 1H), 4.98 (d, *J* = 16.0 Hz, 1H), 4.55 (d, *J* = 9.8 Hz, 1H), 4.41 (d, *J* = 16.0 Hz, 1H), 3.65 (s, 3H), 2.16 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 177.3, 154.3, 145.6, 143.2, 135.6, 135.6, 135.3, 132.4, 130.5, 129.4, 129.2, 128.6, 128.5, 128.2, 127.7, 127.1, 126.5, 123.5, 123.5, 122.9, 121.9, 119.3, 118.5, 118.3, 112.6, 110.8, 110.6, 109.7, 109.3, 101.2, 70.6, 60.3, 55.9, 43.6, 41.0, 8.7. IR (KBr): 3565, 3413, 3236, 2360, 2341, 1715, 1697, 1637, 1615, 1488, 1456, 1170, 744, 697 cm⁻¹; ESI FTMS exact mass calcd for (C₄₁H₃₃N₃O₂-H)⁻ requires m/z 598.2494, found m/z 598.2516. Enantiomeric excess: 95%, determined by HPLC (Daicel Chirapak IC,

hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 4.643 min (minor), t_R = 6.027 min (major).

(1R,2R,3R)-1'-benzyl-7-bromo-3-(3-methyl-1H-indol-2-yl)-2-phenyl-3,4-dihydro-2H-spiro[cyclopenta[b]indole-1,3'-indolin]-2'-one (3ia):

(Flash column chromatography eluent, petroleum ether/ethyl acetate = 7/1); Reaction time = 7 h ; yield: 79% (25.8 mg); >95:5 dr; white solid; m.p. 153–155 °C; $[\alpha]_D^{20} =$ 703.7 (c 0.428, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.15 (s, 1H), 7.93 (s, 1H), 7.52 (d, J = 7.3 Hz, 1H), 7.43 (dd, J = 7.3, 0.9 Hz, 1H), 7.24 – 7.23 (m, 1H), 7.21 – 7.19 (m, 1H), 7.19 – 7.18 (m, 1H), 7.18 – 7.16 (m, 2H), 7.16 – 7.14 (m, 2H), 7.13 – 7.12 (m, 1H), 7.12 - 7.09 (m, 1H), 7.07 - 7.01 (m, 4H), 6.97 (t, J = 7.7 Hz, 2H), 6.63- 6.54 (m, 4H), 5.85 (d, J = 9.6 Hz, 1H), 4.91 (d, J = 15.9 Hz, 1H), 4.53 (d, J = 9.6 Hz, 1H), 4.48 (d, J = 16.0 Hz, 1H), 2.14 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 177.8$, 145.1, 143.0, 141.2, 135.5, 135.1, 135.1, 132.0, 130.5, 129.6, 129.0, 128.7, 128.7, 128.3, 127.8, 127.2, 126.5, 123.5, 123.3, 123.1, 122.0, 121.4, 119.4, 118.6, 118.1, 115.2, 115.1, 110.7, 109.6, 109.5, 70.5, 60.5, 43.7, 41.6, 8.8. IR (KBr): 3555, 3423, 2924, 2360, 2341, 1715, 1696, 1684, 1614, 1456, 1173, 746, 697 cm⁻¹; ESI FTMS exact mass calcd for $(C_{40}H_{30}BrN_3O-H)^2$ requires m/z 646.1493, found m/z 646.1480. Enantiomeric excess: 93%, determined by HPLC (Daicel Chirapak IC, hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 3.690 min (minor), $t_R = 4.067$ min (major).

(1R,2R,3R)-1'-benzyl-6-methyl-3-(3-methyl-1H-indol-2-yl)-2-phenyl-3,4-dihydro-2H-spiro[cyclopenta[b]indole-1,3'-indolin]-2'-one (3ja):

(Flash column chromatography eluent, petroleum ether/ethyl acetate = 7/1); Reaction time = 4 h ; yield: 83% (24.3 mg); >95:5 dr; white solid; m.p. 167–168 °C; $[\alpha]_D^{20}$ = -991.2 (c 0.306, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.97 (s, 1H), 7.50 – 7.44 (m, 2H), 7.25 – 7.21 (m, 2H), 7.19 – 7.16 (m, 4H), 7.15 – 7.10 (m, 5H), 7.10 – 7.06 (m, 2H), 6.96 (s, 1H), 6.78 (d, *J* = 8.1 Hz, 1H), 6.68 (d, *J* = 8.0 Hz, 1H), 6.53 (d, *J* = 7.8 Hz, 3H), 5.87 (d, *J* = 9.6 Hz, 1H), 4.96 (d, *J* = 16.0 Hz, 1H), 4.54 (d, *J*

= 9.6 Hz, 1H), 4.41 (d, J = 16.0 Hz, 1H), 2.37 (s, 3H), 2.15 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 177.4$, 143.8, 143.2, 141.0, 135.6, 135.4, 135.3, 132.6, 131.6, 130.8, 129.5, 129.2, 128.6, 128.4, 128.2, 127.7, 127.1, 126.5, 123.5, 122.8, 121.8, 121.7, 120.7, 119.3, 118.5, 118.4, 117.5, 112.2, 110.6, 109.6, 109.2, 70.6, 60.5, 43.6, 41.2, 21.7, 8.7. IR (KBr): 3565, 3433, 3291, 3057, 2920, 2857, 1696, 1611, 1488, 1465, 1174, 803, 741, 698 cm⁻¹; ESI FTMS exact mass calcd for (C₄₁H₃₃N₃O-H)⁻ requires m/z 582.2545, found m/z 582.2569. Enantiomeric excess: 93%, determined by HPLC (Daicel Chirapak IC, hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 4.227 min (minor), t_R = 5.860 min (major).

(1R,2R,3R)-1'-benzyl-6-bromo-3-(3-methyl-1H-indol-2-yl)-2-phenyl-3,4-dihydro-2H-spiro[cyclopenta[b]indole-1,3'-indolin]-2'-one (3ka):

(Flash column chromatography eluent, petroleum ether/ethyl acetate = 7/1); Reaction time = 7 h ; yield: 81% (26.3 mg); >95:5 dr; white solid; m.p. 157–158 °C; $[\alpha]_D^{20}$ = -494.8 (c 0.426, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.14 (s, 1H), 7.92 (s, 1H), 7.52 (d, *J* = 7.4 Hz, 1H), 7.43 (d, *J* = 6.6 Hz, 1H), 7.24 (d, *J* = 7.6 Hz, 1H), 7.21 – 7.18 (m, 2H), 7.17 – 7.13 (m, 4H), 7.11 – 7.10 (m, 2H), 7.05 – 7.03 (m, 4H), 6.99 – 6.95 (m, 2H), 6.64 – 6.52 (m, 4H), 5.85 (d, *J* = 9.6 Hz, 1H), 4.91 (d, *J* = 15.9 Hz, 1H), 4.53 (d, *J* = 9.6 Hz, 1H), 4.48 (d, *J* = 15.9 Hz, 1H), 2.14 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 177.8, 145.2, 143.0, 141.2, 135.5, 135.1, 135.1, 132.0, 130.5, 129.6, 129.0, 128.7, 128.7, 128.3, 127.8, 127.2, 126.5, 123.5, 123.3, 123.1, 121.0, 122.4, 119.4, 118.6, 118.1, 115.2, 115.1, 110.7, 109.6, 109.5, 70.4, 60.5, 43.7, 41.6, 8.8. IR (KBr): 3545, 3493, 3274, 3057, 2921, 2361, 1687, 1606, 1457, 1261, 1173, 802, 746, 697 cm⁻¹; ESI FTMS exact mass calcd for (C₄₀H₃₀BrN₃O-H)⁻ requires m/z 646.1493, found m/z 646.1483. Enantiomeric excess: 90%, determined by HPLC (Daicel Chirapak IC, hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 3.693 min (minor), t_R = 4.067 min (major).

(1R,2R,3R)-1'-benzyl-5-methyl-3-(3-methyl-1H-indol-2-yl)-2-phenyl-3,4-dihydro-2H-spiro[cyclopenta[b]indole-1,3'-indolin]-2'-one (3la): (Flash column chromatography eluent, petroleum ether/ethyl acetate = 7/1); Reaction time = 4 h ; yield: 88% (25.6 mg); >95:5 dr; white solid; m.p. 176–178 °C; $[\alpha]_D^{20}$ = -166.9 (c 0.528, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 8.00 (s, 1H), 7.50 (t, *J* = 6.7 Hz, 2H), 7.29 – 7.27 (m, 1H), 7.26 – 7.21 (m, 3H), 7.21 – 7.15 (m, 4H), 7.14 – 7.12 (d, *J* = 7.1 Hz, 3H), 7.10 – 7.09 (m, 2H), 6.95 – 6.86 (m, 2H), 6.67 (d, *J* = 7.4 Hz, 1H), 6.54 (t, *J* = 7.2 Hz, 3H), 5.96 (d, *J* = 9.7 Hz, 1H), 5.01 (d, *J* = 16.0 Hz, 1H), 4.60 (d, *J* = 9.7 Hz, 1H), 4.42 (d, *J* = 16.0 Hz, 1H), 2.38 (s, 3H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 177.2, 144.2, 143.3, 140.0, 135.6, 135.4, 135.3, 132.6, 130.7, 129.4, 129.2, 128.6, 128.5, 128.2, 127.7, 127.0, 126.5, 123.5, 122.8, 122.7, 122.5, 122.0, 121.3, 120.4, 119.4, 119.3, 118.5, 115.8, 110.7, 109.9, 109.3, 70.6, 60.5, 43.6, 41.1, 16.8, 8.7. IR (KBr): 3552, 3416, 3236, 2919, 1694, 1638, 1616, 1465, 1383, 1299, 1080, 741, 698 cm⁻¹; ESI FTMS exact mass calcd for (C₄₁H₃₃N₃O-H)⁻ requires m/z 582.2545, found m/z 582.2584. Enantiomeric excess: 96%, determined by HPLC (Daicel Chirapak IC, hexane/isopropanol = 80/20, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 4.010 min (major), t_R = 4.483 min (minor).

(1R,2R,3R)-1'-benzyl-5-bromo-3-(3-methyl-1H-indol-2-yl)-2-phenyl-3,4-dihydro-2H-spiro[cyclopenta[b]indole-1,3'-indolin]-2'-one (3ma):

(Flash column chromatography eluent, petroleum ether/ethyl acetate = 7/1); Reaction time = 9 h ; yield: 72% (23.3 mg); >95:5 dr; white solid; m.p. 150–151 °C; $[\alpha]_D^{20}$ = -97.1 (c 0.344, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 7.95 (s, 1H), 7.50 (d, *J* = 7.8 Hz, 1H), 7.47 (d, *J* = 7.2 Hz, 1H), 7.30 (d, *J* = 7.7 Hz, 2H), 7.28 – 7.25 (m, 1H), 7.25 – 7.23 (m, 1H), 7.22 – 7.20 (m, 2H), 7.20 – 7.16 (m, 3H), 7.16 – 7.13 (m, 2H), 7.12 – 7.10 (m, 2H), 7.07 – 7.07 (m, 1H), 6.86 (t, *J* = 7.8 Hz, 1H), 6.75 (d, *J* = 7.8 Hz, 1H), 6.55 – 6.50 (m, 3H), 5.95 (d, *J* = 9.8 Hz, 1H), 5.02 (d, *J* = 16.0 Hz, 1H), 4.59 (d, *J* = 9.9 Hz, 1H), 4.41 (d, *J* = 16.0 Hz, 1H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 176.7, 145.2, 143.3, 138.9, 135.7, 135.2, 134.9, 131.8, 130.3, 129.3, 129.2, 128.7, 128.6, 128.3, 127.87, 127.1, 126.5, 124.4, 124.2, 123.4, 122.9, 122.2, 121.5, 120.0, 119.5, 118.6, 117.3, 110.7, 110.2, 109.4, 105.3, 70.6, 60.3, 43.7, 40.9, 8.7. IR (KBr): 3542, 3466, 2923, 2854, 2360, 1697, 1488, 1456, 1418, 1362, 741, 697 cm⁻¹;

ESI FTMS exact mass calcd for $(C_{40}H_{30}BrN_3O-H)^-$ requires m/z 646.1493, found m/z 646.1467. Enantiomeric excess: 94%, determined by HPLC (Daicel Chirapak IA, hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 18.930 min (minor), t_R = 44.390 min (major).

(1R,2R,3R)-1'-benzyl-3-(3-methyl-1H-indol-2-yl)-2-phenyl-3,4-dihydro-2H-spiro[cyclopenta[b]indole-1,3'-indolin]-2'-one (3aa):

(Flash column chromatography eluent, petroleum ether/ethyl acetate = 7/1); Reaction time = 12 h; yield: 97% (27.6 mg); >95:5 dr; white solid; m.p. $171-173 \text{ }^{\circ}\text{C}$; $[\alpha]_{D}^{20} =$ -195.7 (c 0.506, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.98 (s, 1H), 7.48 (t, J = 6.4 Hz, 2H), 7.27 – 7.25 (m, 1H), 7.25 – 7.23 (m, 2H), 7.22 – 7.19 (m, 3H), 7.18 - 7.16 (m, 2H), 7.16 - 7.14 (m, 2H), 7.13 - 7.12 (m, 2H), 7.11 - 7.09 (m, 2H), 7.09 - 7.05 (m, 1H), 6.95 (t, J = 7.5 Hz, 1H), 6.81 (d, J = 7.8 Hz, 1H), 6.53 (dd, J =10.0, 7.7 Hz, 3H), 5.90 (d, J = 9.7 Hz, 1H), 4.99 (d, J = 16.0 Hz, 1H), 4.58 (d, J = 9.8 Hz, 1H), 4.38 (d, J = 16.0 Hz, 1H), 2.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta =$ 177.2, 144.7, 143.2, 140.5, 135.6, 135.3, 135.3, 132.4, 130.7, 129.4, 129.2, 128.6, 128.5, 128.3, 127.7, 127.1, 126.5, 123.5, 123.0, 122.9, 121.9, 120.2, 119.3, 118.6, 118.5, 118.0, 112.2, 110.7, 109.7, 109.3, 70.6, 60.4, 43.6, 41.0, 8.7. IR (KBr): 3525, 3443, 3277, 3029, 2918, 1695, 1608, 1488, 1353, 1173, 1080, 1012, 740, 698 cm⁻¹; ESI FTMS exact mass calcd for (C₄₀H₃₁N₃O-H)⁻ requires m/z 568.2388, found m/z 568.2399. Enantiomeric excess: 98%, determined by HPLC (Daicel Chirapak IC, hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): $t_R = 4.273$ min (minor), $t_R = 4.870$ min (major).

(1R,2R,3R)-1'-benzyl-3-(3-methyl-1H-indol-2-yl)-2-(o-tolyl)-3,4-dihydro-2H-spir o[cyclopenta[b]indole-1,3'-indolin]-2'-one (3ab):

(Flash column chromatography eluent, petroleum ether/ethyl acetate = 7/1); Reaction time = 12 h ; yield: 93% (27.1 mg); >95:5 dr; white solid; m.p. 167–168 °C; $[\alpha]_D^{20} =$ –197.2 (c 0.608, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 8.08 (d, *J* = 7.0 Hz, 1H), 7.97 (s, 1H), 7.49 (t, *J* = 7.4 Hz, 2H), 7.28 – 7.23 (m, 2H), 7.21 – 7.20 (m,

1H), 7.19 – 7.17 (m, 3H), 7.15 – 7.12 (m, 4H), 7.11 – 7.09 (m, 1H), 7.08 – 7.05 (m, 1H), 6.98 (t, J = 7.5 Hz, 1H), 6.92 (d, J = 7.2 Hz, 1H), 6.83 (d, J = 7.9 Hz, 1H), 6.59 – 6.54 (m, 3H), 5.75 (d, J = 9.5 Hz, 1H), 5.11 (d, J = 16.0 Hz, 1H), 5.06 (d, J = 9.5 Hz, 1H), 4.43 (d, J = 16.0 Hz, 1H), 2.05 (s, 3H), 1.58 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 177.7$, 144.6, 143.1, 140.6, 137.7, 135.6, 135.4, 134.3, 132.6, 131.2, 130.2, 129.7, 129.5, 128.6, 128.5, 127.3, 127.1, 126.6, 126.1, 124.0, 122.9, 122.6, 121.9, 121.8, 120.1, 119.3, 118.6, 118.5, 118.1, 112.2, 110.7, 109.6, 109.3, 65.2, 60.4, 43.8, 43.7, 20.0, 8.4. IR (KBr): 3544, 3423, 3292, 3055, 3030, 2922, 2855, 2360, 2341, 1697, 1610, 1488, 1171, 740, 696 cm⁻¹; ESI FTMS exact mass calcd for (C₄₁H₃₃N₃O-H)⁻ requires m/z 582.2545, found m/z 582.2587. Enantiomeric excess: 97%, determined by HPLC (Daicel Chirapak IC, hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 4.420 min (minor), t_R = 5.213 min (major).

(1R,2S,3R)-1'-benzyl-2-(2-fluorophenyl)-3-(3-methyl-1H-indol-2-yl)-3,4-dihydro-2H-spiro[cyclopenta[b]indole-1,3'-indolin]-2'-one (3ac):

(Flash column chromatography eluent, petroleum ether/ethyl acetate = 7/1); Reaction time = 12 h ; yield: 81% (23.9 mg); >95:5 dr; white solid; m.p. 156–157 °C; $[\alpha]_D^{20}$ = -652.3 (c 0.52, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 8.00 (s, 1H), 7.97 - 7.93 (m, 1H), 7.49 (dd, *J* = 7.2, 4.5 Hz, 2H), 7.27 - 7.23 (m, 2H), 7.21 - 7.20 (m, 1H), 7.19 - 7.17 (m, 1H), 7.17 - 7.15 (m, 1H), 7.15 - 7.13 (m, 1H), 7.12 - 7.08 (m, 6H), 6.95 (t, *J* = 7.5 Hz, 1H), 6.79 - 6.74 (m, 2H), 6.61 - 6.56 (m, 3H), 5.89 (d, *J* = 9.8 Hz, 1H), 5.07 (d, *J* = 9.8 Hz, 1H), 5.01 (d, *J* = 9.8 Hz, 1H), 4.44 (d, *J* = 16.0 Hz, 1H), 2.16 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 177.3, 162.5, 160.0, 144.4, 142.8, 140.4, 135.6, 135.4, 132.0, 130.9, 130.9, 130.2, 129.3, 129.0, 129.0, 128.6, 128.5, 127.1, 126.5, 124.2, 124.0, 124.0, 122.9, 122.9, 122.8, 122.7, 122.0, 121.9, 120.2, 119.3, 118.7, 118.5, 118.0, 115.4, 115.2, 112.1, 110.7, 109.9, 109.1, 60.6, 60.0, 43.6, 41.3, 8.6. IR (KBr): 3545, 3413, 3307, 3196, 3056, 2921, 2359, 1697, 1608, 1489, 1384, 740 cm⁻¹; ESI FTMS exact mass calcd for (C₄₀H₃₀FN₃O-H)⁻ requires m/z 586.2294, found m/z 586.2335. Enantiomeric excess: 97%, determined by HPLC (Daicel Chirapak IC, hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): $t_R = 4.227 \text{ min (minor)}, t_R = 4.673 \text{ min (major)}.$

(1R,2R,3R)-1'-benzyl-3-(3-methyl-1H-indol-2-yl)-2-(m-tolyl)-3,4-dihydro-2H-spir o[cyclopenta[b]indole-1,3'-indolin]-2'-one (3ad):

(Flash column chromatography eluent, petroleum ether/ethyl acetate = 7/1); Reaction time = 12 h ; yield: 83% (24.2 mg); >95:5 dr; white solid; m.p. 168–170 °C; $[\alpha]_D^{20}$ = -205.9 (c 0.544, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 7.94 (s, 1H), 7.48 (t, *J* = 8.0 Hz, 2H), 7.25 – 7.24 (m, 1H), 7.23 – 7.19 (m, 2H), 7.18 – 7.14 (m, 2H), 7.13 – 7.08 (m, 5H), 7.05 (s, 3H), 6.97 – 6.93 (m, 2H), 6.81 (d, *J* = 7.8 Hz, 1H), 6.55 – 6.50 (m, 3H), 5.89 (d, *J* = 9.8 Hz, 1H), 5.03 (d, *J* = 16.0 Hz, 1H), 4.54 (d, *J* = 9.8 Hz, 1H), 4.36 (d, *J* = 16.0 Hz, 1H), 2.20 (s, 3H), 2.13 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 177.2, 144.8, 143.3, 140.4, 137.6, 135.6, 135.4, 135.2, 132.5, 130.8, 129.9, 129.4, 128.5, 128.1, 127.1, 126.5, 126.2, 123.5, 123.0, 122.8, 121.9, 121.8, 120.1, 119.3, 118.6, 118.5, 118.0, 112.1, 110.6, 109.8, 109.2, 70.6, 60.3, 43.6, 40.9, 21.3, 8.7. IR (KBr): 3515, 3433, 3293, 3197, 3055, 2918, 2359, 1697, 1608, 1488, 1384, 1173, 739, 698 cm⁻¹; ESI FTMS exact mass calcd for (C₄₁H₃₃N₃O-H)⁻ requires m/z 582.2545, found m/z 582.2578. Enantiomeric excess: 98%, determined by HPLC (Daicel Chirapak IC, hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 4.037 min (minor), t_R = 4.760 min (major).

(1R,2R,3R)-1'-benzyl-2-(3-chlorophenyl)-3-(3-methyl-1H-indol-2-yl)-3,4-dihydro-2H-spiro[cyclopenta[b]indole-1,3'-indolin]-2'-one (3ae):

(Flash column chromatography eluent, petroleum ether/ethyl acetate = 7/1); Reaction time = 12 h ; yield: 96% (28.9 mg); >95:5 dr; white solid; m.p. 164–165 °C; $[\alpha]_D^{20}$ = -223.6 (c 0.602, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 7.94 (s, 1H), 7.47 (dd, *J* = 17.5, 7.4 Hz, 2H), 7.25 – 7.22 (m, 3H), 7.22 – 7.21 (m, 1H), 7.20 – 7.18 (m, 1H), 7.18 – 7.14 (m, 4H), 7.13 – 7.11 (m, 3H), 7.10 – 7.08 (m, 1H), 7.06 – 7.04 (m, 1H), 6.97 (t, *J* = 7.5 Hz, 1H), 6.81 (d, *J* = 7.9 Hz, 1H), 6.62 (t, *J* = 7.6 Hz, 3H), 5.83 (d, *J* = 9.7 Hz, 1H), 4.97 (d, *J* = 15.9 Hz, 1H), 4.52 (d, *J* = 9.7 Hz, 1H), 4.41 (d, *J*

= 15.9 Hz, 1H), 2.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 176.9, 144.3, 143.2, 140.5, 137.5, 135.6, 135.3, 134.0, 131.9, 130.2, 129.5, 129.3, 129.3, 128.8, 128.6, 128.0, 127.4, 127.3, 126.6, 123.5, 123.0, 122.9, 122.1, 122.0, 120.3, 119.4, 118.6, 118.1, 112.2, 110.68, 109.9, 109.4, 69.9, 60.2, 43.64, 4.03, 8.7. IR (KBr): 3515, 3453, 3293, 3199, 3057, 2921, 1699, 1459, 1431, 1363, 1173, 740, 696 cm-1; ESI FTMS exact mass calcd for (C₄₀H₃₀ClN₃O-H)⁻ requires m/z 602.1998, found m/z 602.2024. Enantiomeric excess: 96%, determined by HPLC (Daicel Chirapak IC, hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 3.853 min (minor), t_R = 4.260 min (major).

(1R,2R,3R)-1'-benzyl-3-(3-methyl-1H-indol-2-yl)-2-(p-tolyl)-3,4-dihydro-2H-spir o[cyclopenta[b]indole-1,3'-indolin]-2'-one (3af):

(Flash column chromatography eluent, petroleum ether/ethyl acetate = 7/1); Reaction time = 12 h ; yield: 99% (29.1 mg); >95:5 dr; white solid; m.p. 176–177 °C; $[\alpha]_D^{20}$ = -524.5 (c 0.548, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 7.96 (s, 1H), 7.47 (t, *J* = 8.2 Hz, 2H), 7.26 – 7.18 (m, 3H), 7.18 – 7.13 (m, 2H), 7.13 – 7.05 (m, 7H), 6.96 – 6.93 (m, 3H), 6.80 (d, *J* = 7.9 Hz, 1H), 6.54 (dd, *J* = 7.6, 2.8 Hz, 3H), 5.86 (d, *J* = 9.8 Hz, 1H), 5.03 (d, *J* = 16.0 Hz, 1H), 4.55 (d, *J* = 9.8 Hz, 1H), 4.37 (d, *J* = 16.0 Hz, 1H), 2.31 (s, 3H), 2.18 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 177.3, 144.8, 143.2, 140.4, 137.2, 135.6, 135.3, 132.5, 132.3, 130.8, 129.4, 129.1, 128.9, 128.4, 127.0, 126.6, 123.5, 123.0, 122.8, 121.8, 120.1, 119.3, 118.6, 118.5, 118.0, 112.1, 110.6, 109.7, 109.2, 70.3, 60.4, 43.6, 41.1, 21.2, 8.7. IR (KBr): 3552, 3475, 3414, 3236, 3056, 2919, 1697, 1638, 1616, 1488, 1464, 1172, 1012, 740, 621 cm⁻¹; ESI FTMS exact mass calcd for (C₄₁H₃₃N₃O-H)⁻ requires m/z 582.2545, found m/z 582.2563. Enantiomeric excess: 98%, determined by HPLC (Daicel Chirapak IC, hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 4.453 min (minor), t_R = 5.453 min (major).

(1R,2R,3R)-1'-benzyl-2-(4-fluorophenyl)-3-(3-methyl-1H-indol-2-yl)-3,4-dihydro-2H-spiro[cyclopenta[b]indole-1,3'-indolin]-2'-one (3ag):

(Flash column chromatography eluent, petroleum ether/ethyl acetate = 7/1); Reaction time = 12 h; yield: 99% (29.2 mg); >95:5 dr; white solid; m.p. 188–189 °C; $[\alpha]_D^{20} =$ -355.9 (c 0.54, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.95 (s, 1H), 7.47 (dd, J = 18.3, 7.4 Hz, 2H), 7.26 - 7.24 (m 1H), 7.24 - 7.20 (m, 3H), 7.18 - 7.17 (m, 7.18), 7.18 - 7.18 (m, 7.18), 7.18 - 7.17 (m, 7.18), 7.18 - 7.18 (m, 7.18), 7.18 - 7.17 (m, 7.18), 7.18 - 7.18 (m, 7.18), 7.18 - 7.17 (m, 7.18), 7.18 (m, 7.2H), 7.16 - 7.13 (m, 3H), 7.13 - 7.10 (m, 2H), 7.09 - 7.07 (m, 1H), 6.96 (t, J = 7.5 Hz, 1H), 6.82 (t, J = 8.5 Hz, 3H), 6.63 – 6.54 (m, 3H), 5.82 (d, J = 9.7 Hz, 1H), 4.99 (d, J= 15.9 Hz, 1H), 4.52 (d, J = 9.7 Hz, 1H), 4.40 (d, J = 16.0 Hz, 1H), 2.16 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 177.2$, 163.7, 161.3, 144.4, 143.2, 140.5, 135.6, 135.2, 132.16, 131.17, 131.14, 130.89, 130.81, 130.46, 129.36, 128.66, 128.54, 127.29, 126.51, 123.49, 122.0, 123.9, 122.0, 122.0, 120.2, 119.4, 118.6, 118.5, 118.0, 115.2, 115.0, 112.2, 110.7, 109.8, 109.3, 69.8, 60.3, 43.6, 41.3, 8.7. IR (KBr): 3428, 3266, 3056, 2922, 2360, 2341, 1694, 1609, 1509, 1458, 1216, 739, 696 cm⁻¹; ESI FTMS exact mass calcd for (C₄₀H₃₀FN₃O-H)⁻ requires m/z 586.2294, found m/z 586.2329. Enantiomeric excess: 97%, determined by HPLC (Daicel Chirapak IC, hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): $t_R = 4.037$ min (minor), $t_R = 4.467$ min (major).

(1R,2R,3R)-1'-benzyl-4-methyl-3-(3-methyl-1H-indol-2-yl)-2-phenyl-3,4-dihydro-2H-spiro[cyclopenta[b]indole-1,3'-indolin]-2'-one (3na):

(Flash column chromatography eluent, petroleum ether/ethyl acetate = 7/1); Reaction time = 4 h ; yield: 70.5% (20.6 mg); >95:5 dr; white solid; m.p. 210–212 °C; $[\alpha]_D^{20}$ = -190.3 (c 0.412, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.51 (t, *J* = 8.1 Hz, 2H), 7.35 – 7.27 (m, 2H), 7.26 – 7.21 (m, 3H), 7.21 – 7.14 (m, 5H), 7.13 – 7.08 (m, 5H), 6.97 (t, *J* = 7.5 Hz, 1H), 6.81 (d, *J* = 7.8 Hz, 1H), 6.64 – 6.44 (m, 3H), 5.94 (d, *J* = 8.8 Hz, 1H), 5.02 (d, *J* = 16.0 Hz, 1H), 4.61 (d, *J* = 9.0 Hz, 1H), 4.42 (d, *J* = 16.0 Hz, 1H), 3.40 (s, 3H), 2.24 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 177.2, 145.7, 143.2, 141.4, 135.3, 132.5, 130.9, 129.2, 128.6, 128.5, 128.2, 127.7, 127.0, 126.5, 123.5, 122.8, 122.6, 121.8, 121.4, 119.8, 119.3, 118.5, 118.1, 110.61, 109.9, 109.2, 70.5, 60.2, 43.6, 30.1, 8.6. IR (KBr): 3419, 3383, 2923, 1645, 1616, 1456, 1416, 1340, 1261, 1158, 1080, 1029, 741 cm⁻¹; ESI FTMS exact mass calcd for

 $(C_{41}H_{33}N_3O-H)^-$ requires m/z 582.2545, found m/z 582.2579. Enantiomeric excess: 73%, determined by HPLC (Daicel Chirapak IC, hexane/isopropanol = 80/20, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 4.553 min (major), t_R = 5.123 min (minor).

1'-benzyl-3-(3-methyl-1H-indol-2-yl)-2-phenyl-3,4-dihydro-2H-spiro[cyclopenta[b]indole-1,3'-indolin]-2'-one (3ai):

(Flash column chromatography eluent, petroleum ether/ethyl acetate = 7/1); Reaction time = 16 h ; yield: 29% (8.4 mg); >95:5 dr; white solid; m.p. 170–172 °C; $[\alpha]_D^{20}$ = -46.4 (c 0.168, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ = 8.31 (s, 1H), 8.00 (s, 1H), 7.47 (t, *J*=7.9, 2H), 7.32 (d, *J*=8.2, 1H), 7.25 – 7.22 (m, 2H), 7.21 – 7.19 (m, 2H), 7.18 – 7.16 (m, 2H), 7.16 – 7.14 (m, 2H), 7.14 – 7.10 (m, 3H), 7.10 – 7.04 (m, 3H), 6.95 (t, *J*=7.5, 1H), 6.79 (d, *J*=7.9, 1H), 6.51 (t, *J*=8.3, 3H), 5.91 (d, *J*=9.8, 1H), 5.01 (d, *J*=16.0, 1H), 4.57 (d, *J*=9.8, 1H), 4.40 (d, *J*=16.0, 1H), 2.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 177.0, 144.7, 143.3, 140.4, 135.6, 135.3, 132.4, 130.6, 129.3, 129.2, 128.6, 128.2, 127.7, 127.0, 126.5, 123.5, 123.0, 122.8, 121.9, 120.2, 119.3, 118.5, 118.11, 112.07, 110.6, 109.9, 109.2, 70.6, 60.3, 43.6, 40.9, 8.6. IR (KBr): 3544, 3385, 2961, 2922, 1698, 1614, 1456, 1363, 1261, 1157, 1082, 1030, 803, 742 cm⁻¹; ESI FTMS exact mass calcd for (C₄₀H₃₁N₃O-H)⁻ requires m/z 568.2388, found m/z 568.2416. Enantiomeric excess: 93%, determined by HPLC (Daicel Chirapak IC, hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t_R = 4.333 min (minor), t_R = 4.950 min (major).

6. Procedure and characterization data for the derivation of product 3ea

Under argon atmosphere, compound **3ea** (0.05 mmol), 4-chlorophenylboronic acid (0.075 mmol), CsCO₃ (0.1 mmol), Pd(OAc)₂ (0.0025 mmol) and butyldi-1-adamantylphosphine (0.003 mmol) were added to a dried tube. After adding DME (0.6 mL) to the reaction system, the reaction mixture was stirred at 80 °C for 15 h. Then, the reaction mixture was subjected to flash column chromatography (petroleum ether/ethyl acetate = 6/1) to give pure product **7**.

(1R,2R,3R)-1'-benzyl-6'-(4-chlorophenyl)-3-(3-methyl-1H-indol-2-yl)-2-phenyl-3, 4-dihydro-2H-spiro[cyclopenta[b]indole-1,3'-indolin]-2'-one (7):

(Flash column chromatography eluent, petroleum ether/ethyl acetate = 6/1); Reaction time = 15 h ; yield: 92% (31.2 mg); white solid; m.p. 141–143 °C; $[\alpha]_D^{20} = -91.3$ (c 0.624, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.75 (s, 1H), 8.41 (s, 1H), 7.64 – 7.51 (m, 2H), 7.47 – 7.40 (m, 2H), 7.37 (d, J = 4.5 Hz, 3H), 7.28 (s, 1H), 7.26 – 7.21 (m, 4H), 7.19 – 7.12 (m, 4H), 7.12-7.05 (m, 4H), 6.95 (t, J = 7.5 Hz, 1H), 6.85 (t, J = 8.7 Hz, 1H), 6.68 (s, 1H), 6.54 (d, J = 7.2 Hz, 2H), 5.90 (d, J = 9.8 Hz, 1H), 5.02 (d, J = 16.0 Hz, 1H), 4.62 (d, J = 9.7 Hz, 1H), 4.44 (d, J = 16.0 Hz, 1H), 2.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 177.3$, 145.0, 143.9, 140.6, 140.4, 139.3, 135.7, 135.4, 135.2, 133.5, 132.6, 130.3, 129.4, 129.3, 129.0, 128. 9, 128.6, 128.3, 128.3, 127.7, 127.1, 126.5, 123.9, 123.0, 121.8, 121.7, 121.6, 120.1, 119.2, 118.4, 118.3, 118.0, 112.3, 110.7, 109.6, 107.6, 70.5, 60.2, 43.6, 41.0, 8.7. IR (KBr): 3375, 3030, 2963, 2852, 1714, 1617, 1485, 1449, 1376, 1261, 1093, 1009, 810, 741, 698 cm⁻¹; ESI FTMS exact mass calcd for (C₄₆H₃₄ClN₃O-H)⁻ requires m/z 678.2311, found m/z 678.2308.

S22

3da --8.238 -6.497 $\int_{6.135}^{6.135}$ $\int_{6.129}^{5.886}$ 4.970 4.539 4.539 4.515 4.320 --2.169 --3.734 --7.953 7.225 7.151 77.105 7.086 -6.986 -6.949 -6.613 -6.607 -6.592 -6.587 -7.486 -7.467 Z7.358 -7.161 -7.113 -7.095 -7.069 --6.860 \6.840 -6.515 6.497 Mof 7.2 8 6 ġ 8 5 9 7.0 f1 (ppm) 7.4 . 6.8 6.6 4.5 4.0 f1 (ppm) 1-96.0 ±79.0 1.00 <u>↓</u> 1.014 3.15 ₫ 3.04⊣ 1.04 <u>∓</u> 2.07 ^J 000 £ 5 7.5 5.0 8.5 8.0 7.0 6.5 6.0 5.5 3.5 3.0 2.5 2.0 1.5 1.0 0.5 -177.724 ∠144.494 ∠144.433 —140.429 -112.127 -110.611 109.711 106.592 -97.292 7129.250 7127.659 7124.077 7121.864 7119.297 -118.083 -160.207 -70.609 -43.606 -40.867 100 90 f1 (ppm) 180 170 160 130 120 110 80 70 60 50 20 10 0 150 140 40 . 30

S23

3ea

3fa

3ga

3ha

3ia

3ja

3ka

3la

3ma

3aa

3ab

3ad

3ae

3af

3ag

3na

3ai

Compound 7

8. Chiral HPLC analyses of products 3

3ac

3ad

3af

3ag

3ba

3ca

3da

3ea

3fa

3ga

3ha

3ia

3ja

3ka

3la

3na

3ai

9. X-ray single crystal data for product 3ae

_chemical_formula_sum	'C40 H30 Cl N3 O'
_chemical_formula_weight	604.12
_symmetry_cell_setting	Orthorhombic
_symmetry_space_group_name_H	I-M P2(1)2(1)2(1)
_cell_length_a	12.3755(14)
_cell_length_b	12.5125(15)
_cell_length_c	22.536(3)
_cell_angle_alpha	90.00
_cell_angle_beta	90.00
_cell_angle_gamma	90.00
_cell_volume	3489.7(7)
_cell_formula_units_Z	4
_cell_measurement_temperature	296(2)
_cell_measurement_refIns_used	9919
_cell_measurement_theta_min	2.31
_cell_measurement_theta_max	22.93
_diffrn_ambient_temperature	296(2)
_diffrn_radiation_wavelength	0.71073

_diffrn_radiation_type	MoK\a
_diffrn_radiation_source	'fine-focus sealed tube'
_diffrn_radiation_monochromator	graphite
_diffrn_measurement_device_type	'CCD area detector'
_diffrn_measurement_method	'phi and omega scans'
_diffrn_reflns_number	47288
_diffrn_reflns_av_R_equivalents	0.0338
_diffrn_reflns_av_sigmaI/netI	0.0296
_diffrn_reflns_theta_min	1.81
_diffrn_reflns_theta_max	27.94
_reflns_number_total	8144
_reflns_number_gt	5829
_reflns_threshold_expression	>2sigma(I)
_refine_ls_abs_structure_details	
'Flack H D (1983), Acta Cryst. A3	9, 876-881'
_refine_ls_abs_structure_Flack	0.03(8)
_chemical_absolute_configuration	ad
_refine_ls_number_reflns	8144
_refine_ls_number_parameters	407
_refine_ls_number_restraints	0
_refine_ls_R_factor_all	0.0757
_refine_ls_R_factor_gt	0.0534
_refine_ls_wR_factor_ref	0.1593
_refine_ls_wR_factor_gt	0.1489
_refine_ls_goodness_of_fit_ref	1.079
_refine_ls_restrained_S_all	1.079
_refine_ls_shift/su_max	0.040
_refine_ls_shift/su_mean	0.006