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General Experimental Details. Starting materials were purchased from commercial suppliers
were used without further purification. Compounds 2,""! 3, S1 and $2! were prepared
according to the literature procedures. Melting points were measured on a Meltemp apparatus in
open capillary tubes and are uncorrected. IR spectra were recorded on a JASCO FT/IR 4100
spectrometer and are reported in cm™. NMR spectra were measured on spectrometers operating
at 400, 500, or 600 MHz for 'H and 100, 125, and 150 MHz for B3C NMR spectra. Diffusion-
ordered spectroscopy (DOSY) was done on a spectrometer operating at 600 MHz. Routine mass
spectrometry was performed using a JEOL AccuTOF electrospray instrument (ESI). Scanning
electron microscopy (SEM) was done on Hitachi SU-70 Analytical UHR. Transmission electron

microscopy (TEM) was done on JEOL JEM 2100.
Synthetic Procedures and Characterization Data.

N=—_ Compound 1. A mixture of azide-
N

//‘LN‘N O)/:lNI:\\ 9 ,/01?/\ S 3 CB[7] (2, 180 mg, 0.14 mmol) and
2o N-N TV TNV N propargyloxy-CB[6] (3, 160 m
( ( O{Oi]ifN’\\l:}/\o K |__< I ‘ p p gy y s g;
\}No\ro N}N \gyu\(g N %“h_’ 0.14 mmol), Pericas’ catalyst (10
Z O N 0 00 ©
NN\\NJOEN _/NZCE)?N mg, 0.017 mmol), and
N—,\KLIN_/

bisethylimidazolium bromide (133
mg, 0.28 mmol) were dissolved in H,O (10 mL). The mixture was stirred at 80 “C for 4-5 days.
The reaction solution was poured into MeOH (40 mL) which resulted in a white precipitate. The
mixture was centrifuged at 7200 rpm for 5 min. The supernatant was decanted and the
precipitate was washed with MeOH (40 mL x 3) and centrifuged at 7200 rpm for 5 min. The
precipitate was dried under high vacuum to give crude complex 1 bisethylimidazolium salt as
white powder (283 mg). The crude compound was directly used in the next step. A mixture of
crude compound (283 mg) and NH4PF¢ (68 mg, 0.42 mmol) were dissolved in CH,Cl, (60 mL).
The mixture was stirred and refluxed for 3 days. The mixture was centrifuged at 7200 rpm for 5
min. The supernatant was decanted and the precipitate was dried under high vacuum to give
crude 1 without bisethylimidazolium salt as white powder (300 mg, 69%). The crude solid was
dissolved in a solution of 88% formic acid/1.0 M HCI (1:1, v:v) (5§ mL). The solution containing

the crude solid was loaded onto a column (3 cm diameter) containing 25 cm Dowex 5S0WX2 ion-
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exchange resin pretreated with 88% formic acid/1.0 M HCI (1:1, v:v). The column was eluted
with a gradient solvent system (88% formic acid/1.0-6.0 M HCI (1:1, v:v)). The fraction purity
was assessed by 'H NMR using p-xylylenediamine (PXDA) as a probe. The appropriate factions
were combined and solvent was removed by rotary evaporation and dried under high vacuum.
The yellow solid was then washed with MeOH (40 mL) and centrifuged at 7200 rpm for 5 min.
The supernatant was decanted and the precipitate was dried under high vacuum to give
compound 1 as a white powder (58 mg, 0.024 mmol, 17.3%). M.p. > 300 °C. IR (KBr, cm™):
3002w, 2930w, 2332w, 1731s, 1475s, 1420m, 1377m, 1322m, 1295m, 1235s, 1193s, 968m. 'H
NMR (600 MHz, D,O, 3 equiv. PXDA): 8.16 (s, 1H), 7.62 (d, J = 8.6, 1H), 7.48 (s, unbound
PXDA), 7.48 (d,J = 2.4, 1H), 7.28 (dd, J = 2.4 and 8.6, 1H), 6.85 (s, 1H), 6.82 (s, 1H), 6.56 (s,
4H), 6.52 (s, 4H), 5.89 (d, J = 15.9, 2H), 5,75-5.40 (m, 38H), 5.33 (s, 2H), 5.28 (d, /= 9.1, 2H),
521(d,J=9.1,2H), 5.15(d,J=9.8, 2H), 4.99 (d, /= 9.8, 2H), 4.56 (d, /= 15.9, 2H), 4.49 (t, J
= 6.2, 2H), 4.41 (s, 2H), 4.39 (s, 2H), 4.30-4.10 (m, 18H), 4.18 (s, unbound 17), 4.01 (d, J =
15.1, 4H), 3.86 (s, 4H), 2.30-2.20 (m, 2H), 2.05-1.95 (m, 2H), 1.67 (s, 3H), 1.05-0.95 (m, 2H).
C NMR (125 MHz, D,0, 22 °C, dioxane as internal reference, 3 equiv. p-xylylenediammonium
ion): 160.0, 157.0, 156.6, 156.6, 156.5, 156.5, 156.4, 156.4, 156.0, 155.7, 155.7, 133.6, 133.6,
132.9, 132.6, 131.3, 129.6, 127.9, 125.7, 123.9, 123.8, 117.0, 116.9, 80.4, 78.6, 71.6, 71.5, 71.4,
71.3,71.2,71.2, 71.0, 70.7, 70.0, 69.8, 65.6, 64.4, 64.0, 61.5, 53.2, 52.9, 52.6, 52.5, 52.3, 51.4,
50.9, 50.0, 49.2, 48.8, 42.7, 42.4, 41.6, 28.6, 27.2, 19.0, 14.6 (only 56 of the 74 resonances
expected were observed). HR-MS: m/z 891.3204 ([1PXDA,]*", caled. for
[CoxHooNs50,7¢(CsH14N,),1>", 891.3233).

Compound 4b. 1-Bromooctadecane (3.30 g, 10 mmol) and

H,
Hﬁ/\/\/\/g\/\cw% 1,6-hexanediamine (11.6 g, 100 mmol) were dissolved into
2P acetonitrile (100 mL) and heated at 35 °C for 12 h under

magnetic stirring. After cooling to room temperature and evaporating solvent, the crude product
was stirred in water (100 mL) for 10 min. Then the product was filtered and washed with water
to give a white solid. The white solid was dissolved in acetone (100 mL) and then aqueous HCI
solution (3 M, 20 mL) was added to give a precipitate which was filtered and dried to give
compound 4b as a white solid (4.2 g,95%). M. p. 268-272 °C.IR (KBr, cm™): 2951s, 2918s,
2844s, 2787s, 2562m, 2448m, 2020w, 1042w, 785w, 725w. 'H NMR (400 MHz, D,0, RT):
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2.95-3.01 (m, 6H), 1.60—-1.70 (m, 6H), 1.20—1.42 (m, 34H), 0.84 (t, J = 6.8 Hz, 3H). °C NMR
(125 MHz, D,0O, RT, dioxane as internal reference): 47.0, 43.4, 39.0, 31.2, 29.2, 29.0, 28.9, 28.7,
28.4, 26.0, 25.9, 25.1, 24.9, 24.9, 24.7, 21.9, 13.2. HR-MS: m/z 369.4185 ([4 — 2C]1 — H]"),
calcd. for [C4Hs3N,]", 369.4203).

Compound S1. Poly(ethylene glycol) methyl ether (M, = 5000, 10.0 g, 2
%O/\%?Z’\/\ oTs mmoIIJ) and p—toluen};sulf}(l)nyl cil}(])ride (3.8 };, 20 mmol) were dissolve(gi in
dichloromethane (100 mL) under nitrogen atmosphere and cooled in an ice-water bath. Then
triethylamine (3.0 mL, 21.5 mmol) was added dropwise. The resulting solution was stirred for 24
h. After that, the reaction mixture was washed with aqueous HCI solution (1 M, 100 mLx2) and
water (100 mLx2). The organic layer was dried over anhydrous Na,SO4 and the solvent was
removed to give a crude product. The crude product was dissolved in dichloromethane (25 mL)

and poured into Et;,O (250 mL) to give compound S1 as a while solid (6.2 g, 60%). The

spectroscopic data matches that reported in the literature.?

1 Compound S2. Poly(ethylene glycol) methyl ether (M, = 750, 1.5 g, 2
%O/\/O\/\OTS . : ;

‘15 mmol) and p-toluenesulfonyl chloride (3.8 g, 20 mmol) were dissolved in
dichloromethane (10 mL) under nitrogen atmosphere and cooled in an ice-bath. Then
triethylamine (3.0 mL, 21.5 mmol) was added and the reaction mixture was stirred for 24 h.
After that, the reaction mixture was washed with aqueous HCI solution (1 M, 100 mLx2) and
water (100 mLx2). The organic layer was dried over anhydrous Na,SO4 and the solvent was
removed by rotary evaporation to give a crude product. The crude product was dissolved in water
(25 mL) and washed with Et;O (20 mL x 3). The aqueous phase was collected, dried over
anhydrous Na,SO4 and concentrated to give compound S2 as a colorless liquid (1.2 g, 68%). The
spectroscopic data matches that reported in the literature.

{ ® Compound 5b. Compound S1 (1.03 g, 0.2 mmol) and I-
To/\+o\/\N ) ) )

115‘:\ Hy adamantanemethylamine (0.13 g, 0.8 mmol) were dissolved in DMF (10

|

- mL). Triethylamine (0.22 mL, 1.6 mmol) was added and the reaction
mixture was stirred at 70 °C for 12 h. Then the reaction mixture was poured into Et;O (80 mL) to

give a white precipitate which was collected and purified by flash column chromatography (SiO,,
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CHCIl;:CH30H:NH;3°H,O = 10:1:0.1) to give the free base which was dissolved in water, treated
with conc. HCI and concentrated to give compound 5 as a white solid (0.48 g, 46%). M.p. 54-56
°C. IR (KBr, cm'l): 2915m, 2883w, 2740w, 2687w, 1149m, 1103s, 1056w, 960w, 842w. 'H
NMR (400 MHz, D,0, 22 °C): 3.88 (t, J = 3.4 Hz , 4H), 3.58-3.85 (m, 596H), 3.52 (t, J = 3.4
Hz , 4H), 3.38 (s, 4H), 3.28 (t, J = 4.9 Hz, 2H), 2.80 (s, 2H), 2.01 (s, 3H), 1.73—1.77 (m, 3H),
1.59-1.67 (m, 9H). *C NMR (125 MHz, CDCls, RT): 72.7, 72.1, 70.7, 70.5, 61.9, 59.2, 40.2,
36.5, 28.1.

‘ ® Compound 5c. Compound S2 (052 g, 0.80 mmol) and 1-
\-O«Hs)\,c,/\”z@ adamantanemethylamine (0.53 g, 3.2 mmol) were first dissolved in DMF (4

i mL). Triethylamine (0.90 mL, 6.4 mmol) was added and the reaction
mixture was stirred at 70 °C for 12 h. Then the reaction mixture was poured into
dichloromethane (30 mL) and washed with 1 M aqueous HCI solution (30 mL x 2) and water (30
mL x 2). The organic layer was collected, dried over anhydrous Na,SO4 and purified by flash
column chromatography (Si0,, CHCIl;:CH3;OH:NH3*H,0 = 10:1:0.1) to give the free base which
was dissolved in water, treated with conc. HCI and concentrated to give to give compound 6 as a
colorless liquid (0.32 g, 58%). 'H NMR (400 MHz, D,0, 22 °C): 3.50-3.86 (m, 58H), 3.36 (s,
3H), 2.93 (t, J= 5.0 Hz, 2H), 2.46 (s, 2H), 1.96 (s, 3H), 1.70—1.74 (m, 3H), 1.61-1.65 (m, 3H),
1.50—-1.58 (m, 6H). B3C NMR (125 MHz, D,O, RT, dioxane as internal reference): 70.6, 69.1,
68.9, 60.0, 57.6, 48.1, 39.3, 35.9, 31.9, 27.5.
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Figure S1. 'H NMR spectrum recorded (600 MHz, D,O, RT) for a mixture of 1

PXDA.
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Figure S2. “C NMR spectrum recorded (125 MHz, D,0, RT) for a mixture of 1 and excess

PXDA. Internal reference = dioxane (*)
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Binding Study by '"H NMR.
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Figure §9. Partial '"H NMR (400 MHz, D,0, RT) of a) CB[6]; b) hexanediammonium 4a; ¢) 1.0
mM CBJ[6] and hexanediammonium 4a; d) 1.0 mM CBJ[6], CB[7], hexanediammonium 4a and
adamantanemethylammonium 5a; e) 1.0 mM CBJ[7] and adamatanemethylammonium 5a; f)

adamatanemethylammonium Sa and g) CBJ[7].
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Figure S10. Partial 'H NMR (400 MHz, D,0, RT) of a) 1.0 mM CB[6] and hexanediammonium
4a; b) 1.0 mM CBJ[7] and hexanediammonium 4a; c) 1.0 mM CBJ[6], CB[7] and 2.0 mM
hexanediammonium 4a; d) 1.0 mM CBJ6], CB[7], 2.0 mM hexanediammonium 4a and 1.0 mM
adamantanemethylammonium Sa; e¢) 1.0 mM CB[6], CB[7], hexanediammonium 4a and

adamantanemethylammonium Sa; f) 1.0 mM CBJ[7] and adamatanemethylammonium 5a. Here

‘C"’ C‘"”

and “I” denote protons binding with CB[6] and CB[7], respectively.
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0.5mM 1 and 1.0 mM 4b; ¢) 0.5 mM 1, 1.0 mM 4b and 0.5 mM 5¢; d) 0.5 mM 1, 4b and Sc.

C"” ‘6")’

Here “I” and “I"” denote protons binding with CB[6] and CB[7] moieties, respectively.
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Microscopy Images.

Figure S12. Scanning electron microscopy (SEM) images of 0.01 mM heterodimer 1,

hexanediamine derivative 4b and adamatanemethylamine derivative Sb.
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Figure S13. SEM images of 0.01 mM heterodimer 1 and 0.02 mM hexanediammonium 4b.
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Figure S14. SEM images of 0.01 mM heterodimer 1, 0.02 mM hexanediammonium derivative

4b and 0.01 mM adamatanemethylammonium derivative 5b.
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Figure S15. SEM images of 0.01 mM heterodimer 1, hexanediamonium derivative 4b and

adamatanemethylammonium derivative Sc.
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Figure §16. SEM images of 0.01 mM heterodimer 1, 0.02 mM hexanediammonium derivative

4b and 0.01 mM adamatanemethylammonium derivative Sc.
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Figure S§18. SEM images of 0.01 mM heterodimer 1 and 0.02 mM hexanediammonium 4a.
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50 nm

Figure §19. Transmission electron microscope (TEM) images of 0.01 mM heterodimer 1,

hexanediammonium derivative 4b and adamatanemethylammonium derivative 5b.
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DOSY Data.
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Figure $20. Plots of the change in intensity of the indicated NMR resonances in the DOSY
spectra as a function of magnetic field gradient recorded (600 MHz, D,0, 298 K) for 0.5 mM
heterodimer 1, hexanediammonium derivative 4b and adamatanemethylammonium derivative Sb.

Top inset: linearized form.
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Figure S21. Plots of the change in intensity of the indicated NMR resonances in the DOSY
spectra as a function of magnetic field gradient recorded (600 MHz, D,0, 298 K) for 0.5 mM

heterodimer 1, and 1.0 mM hexanediammonium derivative 4b. Top inset: linearized form.

S24



0.0

" = Peakat5.691 ppm
-0.5 - II:AA A Peakat3.631 ppm
IIAAA
l. A
-1.0 = Ta,
A
) n 4 A
S o151 A
= : [ ] A a
£ " . A,
-2.0 " N
| ]
-2.5 - .,
-3.0 T T T T T T T T "
0.00E+000 5.00E+009 1.00E+010 1.50E+010 2.00E+010
b(sm”)
(2)—a.u. | —
0.9-
0.8
0.7-
0.6
0.5-
0.4-
0.3-
0.2
o
i O
0.1 —(2)
0.0; ED%—B—H—H—DG—Q%—E*EB—H—H—BG%%—E—E—GD—B—S—Q—HEE
T T T !
10 15 20 25 30 G/cm

O

Peak No. 1 at 5.691 ppm, vargrad, I[0] = 9.078e-003, D = 1.565e-010 m2/s (1)
Peak No. 2 at 3.631 ppm, vargrad, I[0] = 9.814e-001, D = 1.147e-010 m2/s (2)

Figure S§22. Plots of the change in intensity of the indicated NMR resonances in the DOSY

spectra as a function of magnetic field gradient recorded (600 MHz, D,0, 298 K) for 0.5 mM

heterodimer

1,

1.0

mM

hexanediammonium

derivative 4b  and

adamatanemethylammonium derivative Sb. Top inset: linearized form.
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Figure $23. Plots of the change in intensity of the indicated NMR resonances in the DOSY
spectra as a function of magnetic field gradient recorded (600 MHz, D,0, 298 K) for 1.0 mM

hexanediamine derivative 4b. Top inset: linearized form.
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Figure $24. Plots of the change in intensity of the indicated NMR resonances in the DOSY
spectra as a function of magnetic field gradient recorded (600 MHz, D,0, 298 K) for 0.5 mM

adamatanemethylamine derivative Sb. Top inset: linearized form.
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Fig. S25 Dynamic light scattering (DLS) data for 0.5 mM heterodimer 1, hexanediamine

derivative 4b and adamatanemethylamine derivative 5b.
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Fig. S26 Dynamic light scattering (DLS) data for 0.5 mM heterodimer 1 and 1.0 mM

hexanediamine derivative 4b.
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Fig. S27 Dynamic light scattering (DLS) data for 0.5 mM heterodimer 1 and 1.0 mM
hexanediamine derivative 4b and 0.5 mM adamatanemethylamine derivative 5b.



