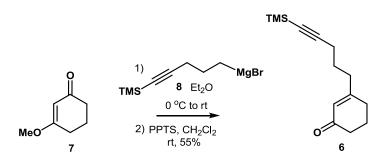
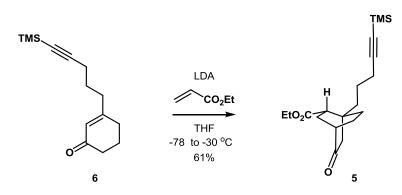
A New Route to Platencin via Decarboxylative Radical Cyclization

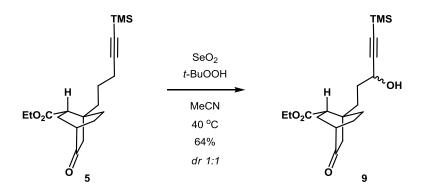

Gamal A. I. Moustafa, Yuki Saku, Hiroshi Aoyama, and Takehiko Yoshimitsu* Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan yoshimit@phs.osaka-u.ac.jp

Supplementary Information

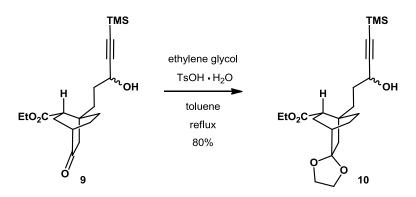
General: S2
Enone 6: S2-S3
Bicyclic ester 5: S3-S4
Alcohol 9: S4
Ketal 10: S5
Disilylated ketal 4: S6
Cyclized compounds 3 and 11: S7-S8
Determination of stereochemistry of major 11: S9
Chemical correlations of major 11 with minor 11: S10-S11
Ketal S3: S11
Hydroxyketone 13: S11-S12
Alcohol S4: S12-S13
Ketone 14: S13
Enone 2: S14
X-ray crystallographic analysis of compound 12: S15-S16
¹ H NMR and ¹³ C NMR spectra of synthesized compounds: S18-S49


General. All reagents were used as received from commercial suppliers unless otherwise noted. ¹H NMR spectra (500 or 300 MHz) and ¹³C NMR spectra (125 MHz) were measured in the specified solvents. Chemical shifts are reported in ppm relative to the residual solvent signal [chloroform-*d*: 7.26 ppm (¹H NMR), 77.0 ppm (¹³C NMR) or Benzene-*d*₆: 7.15 ppm (¹H NMR), 128.0 ppm (¹³C NMR)]. FT-IR spectra were recorded for samples loaded as neat films on NaCl plates. Mass spectra were obtained according to the specified technique. Analytical thin layer chromatography (TLC) was performed using Kieselgel 60 F₂₅₄, and compounds were visualized with UV light and stained with anisaldehyde solution or phosphomolybdic acid solution.

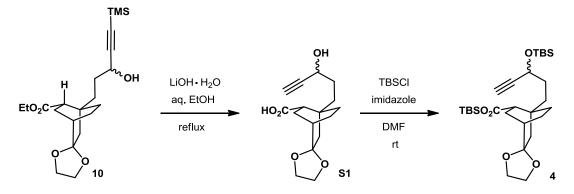
Experimental Section


Enone 6: To a stirred solution of 5-(trimethylsilyl)-4-pentynylmagnesium bromide **8**,¹ which was freshly prepared from 5-bromo-l-(trimethylsily1)pentyne (6.0 g, 27.4 mmol) and Mg (1.33 g, 54.8 mmol) in Et₂O (20 mL), at 0 °C was slowly added a solution of enone **7** (4.15 g, 32.9 mmol) in Et₂O (20 mL). The mixture was allowed to warm to room temperature and stirring was continued for 2 h. Upon quenching at 0 °C with sat. NH₄Cl, the mixture was transferred to a separatory funnel where it was extracted with Et₂O. The phases were separated and the organic layer was dried over MgSO₄, filtered, and concentrated. (*The TLC analysis showed that the crude mixture contained enone **6** as a major product along with a small amount of unidentified less polar material, which, upon treatment with PPTS as described below, gave desired enone **6**.) Then the residue was dissolved in CH₂Cl₂ (30 mL), and PPTS (50 mg) was added at room temperature. After 1 h of stirring at the same temperature, the mixture was quenched with sat. NaHCO₃ and transferred to a separatory funnel where it was extracted with CH₂Cl₂. The phases were separated and the organic layer was dried over MgSO₄, filtered, and concentrated to a separatory funnel where it was extracted. The phases were desired enone **6**.) Then the residue was dissolved in CH₂Cl₂ (30 mL), and PPTS (50 mg) was added at room temperature. After 1 h of stirring at the same temperature, the mixture was quenched with sat. NaHCO₃ and transferred to a separatory funnel where it was extracted with CH₂Cl₂. The phases were separated and the organic layer was dried over MgSO₄, filtered, and concentrated. The

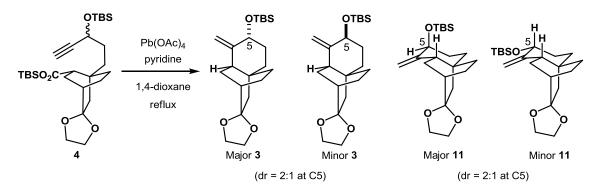
residue was purified by flash silica gel column chromatography (EtOAc/*n*-hexane 1:5 v/v) to afford enone **6** (3.51 g, 55% in 2 steps) as a pale yellow oil. **Enone 6:** IR (neat) v 2174, 1670 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.83 (s, 1 H), 2.33-2.23 (m, 6H), 2.21 (t, J = 6.9 Hz, 2H), 1.95 (quintet, 2H, J = 6.9 Hz), 1.67 (quintet, 2H, J = 6.9 Hz), 0.10 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 199.6, 165.2, 125.9, 106.0, 85.4, 37.2, 36.7, 29.6, 25.8, 22.6, 19.3, 0.0; HRMS (MALDI) calcd for C₁₄H₂₃OSi (M+H)⁺: 235.1513, found: 235.1518.



Bicyclic ester 5: To a stirred solution of freshly prepared LDA (1.0 M in THF; 2.22 mL, 2.22 mmol) was slowly added a solution of enone 6 (400 mg, 1.71 mmol) in THF (10 mL) at -78 °C, and the mixture was stirred for 30 min at the same temperature. Following slow addition of ethyl acrylate (200 μ L, 1.88 mmol), the mixture was warmed to -30 $^{\circ}$ C and stirring was continued for an additional 1.5 h. Then the mixture was cooled to -78 °C and an additional amount of ethyl acrylate (10 µL, 0.094 mmol) was added before warming to -30 °C. After 1 h of stirring, again the mixture was cooled to -78 °C and an additional amount of ethyl acrylate (10 µL, 0.094 mmol) was added. After being warmed to -30 °C, the mixture was stirred for an additional 30 min. Upon quenching with sat. NH₄Cl, the mixture was transferred to a separatory funnel where it was extracted with Et₂O. The phases were separated and the organic layer was dried over MgSO₄, filtered, and concentrated. The residue was purified by flash silica gel column chromatography (EtOAc/n-hexane 1:10 v/v) to remove less polar impurity. Further elution with EtOAc/nhexane (1:6 v/v) gave bicyclic ester 5 (350 mg, 61%) as a pale yellow oil. Bicyclic ester 5: IR (neat) v 2174, 1730 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.19-4.08 (m, 2H), 2.70-2.63 (m, 2H), 2.35-2.32 (m, 1H), 2.21-2.15 (m, 2H), 2.07-2.02 (m, 2H), 1.97 (dd, J =


18.9, 1.7 Hz, 1H), 1.89-1.76 (m, 2H), 1.66-1.54 (m, 2H), 1.48-1.38 (m, 3H), 1.32 (dd, J = 12.3, 9.5 Hz,1H), 1.26 (t, J = 6.9 Hz, 3H), 0.13 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 215.2, 174.7, 106.6, 84.8, 60.4, 44.8, 43.9, 41.7, 38.3, 36.9, 29.8, 27.8, 22.9, 22.6, 20.3, 14.2, 0.0; HRMS (MALDI) calcd for C₁₉H₃₀O₃SiNa (M+Na)⁺: 357.1856, found: 357.1857.

Alcohol 9: To a stirred solution of enone 5 (340 mg, 1.01 mmol) in MeCN (15 mL) at room temperature were added SeO₂ (112 mg, 1.01 mmol) and TBHP (5.5 M in nonane, 367 µL, 2.02 mmol). Then the mixture was warmed to 40 °C and stirred at the same temperature for 3.5 h. Upon quenching with sat. NaHCO₃ and sat. Na₂S₂O₃, the whole mixture was transferred to a separatory funnel where it was extracted with EtOAc. The organic layer was separated, dried over MgSO₄, filtered, and concentrated. The residue was purified by flash silica gel column chromatography (EtOAc/n-hexane 1:4 v/v) to give unreacted starting material (74 mg, 22% recovered). Further elution with EtOAc/nhexane (2:5 v/v) gave alcohol 9 (229 mg, 64%) as a pale yellow oil. Alcohol 9 (1:1 diastereomeric mixture by ¹H NMR analysis): IR (neat) v 3422, 2172 (weak), 1728 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.33-4.24 (m, 1H), 4.16-4.10 (m, 2H), 2.71-2.63 (m, 2H), 2.35-2.31 (m, 1H), 2.08-2.02 (m, 3H), 1.97 (dd, J = 18.9, 3.4 Hz, 0.5H), 1.96 (dd, J =18.9, 3.4 Hz, 0.5H), 1.88-1.73 (m, 3H), 1.67-1.32 (m, 5H), 1.253 (t, J = 6.9 Hz, 1.5H), 1.249 (t, J = 6.9 Hz, 1.5H), 0.15 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 215.26, 215.24, 174.88, 174.86, 106.53, 106.48, 89.9, 63.05, 62.99, 60.8, 45.3, 45.2, 44.14, 44.12, 42.0, 38.39, 38.37, 33.2, 33.1, 31.9, 31.7, 30.1, 28.1, 23.2, 14.4, 0.0; HRMS (MALDI) calcd for $C_{19}H_{30}O_4SiNa (M+Na)^+$: 373.1806, found: 373.1802.



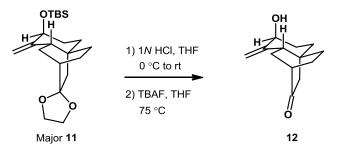
Ketal 10: In a flame-dried flask connected to a Dean–Stark apparatus were placed alcohol 9 (1.45 g, 4.14 mmol) and toluene (80 mL). To this solution at room temperature were added ethylene glycol (2.78 mL, 49.68 mmol) and TsOH·H₂O (236 mg, 1.24 mmol). Then the mixture was heated under reflux for 2 h, cooled, and quenched slowly with sat. NaHCO₃. The whole mixture was transferred to a separatory funnel where it was extracted with EtOAc. The organic layer was separated, dried over MgSO₄, filtered, and concentrated. The residue was purified by flash silica gel column chromatography (EtOAc/n-hexane 1:3 v/v) to give ketal 10 (1.30 g, 80%) as a pale yellow oil. Further elution with EtOAc/n-hexane (1:1 v/v) gave unreacted starting material (149 mg, 10% recovered). Ketal 10 (1:1 diastereomeric mixture by ¹H NMR analysis): IR (neat) v 3452, 2170 (weak), 1728 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.27-4.19 (m, 1H), 4.14-4.08 (m, 2H), 3.98-3.80 (m, 4H), 2.41-2.35 (m, 1H), 2.32 (d, J = 14.3 Hz, 1H), 2.07-2.00 (m, 1H), 1.99-1.95 (m, 1H), 1.91-1.83 (m, 2H), 1.81-1.74 (m, 1H), 1.73-1.53 (m, 3H), 1.48-1.26 (m, 5H), 1.242 (t, J = 6.9 Hz, 1.5H), 1.237 (t, J = 6.9 Hz, 1.5H), 0.14 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 175.4, 110.6, 106.8, 106.7, 89.5, 64.1, 64.0, 63.34, 63.30, 60.29, 60.27, 44.14, 44.12, 41.1, 36.05, 36.03, 33.4, 33.3, 32.8, 32.0, 31.8, 29.6, 27.08, 27.06, 21.4, 14.5, 0.0; HRMS (MALDI) calcd for $C_{21}H_{34}O_5SiNa$ (M+Na)⁺: 417.2068, found: 417.2066.

Disilylated ketal 4: To a solution of ketal **10** (87 mg, 0.22 mmol) in EtOH-H₂O (5 mL; 1:1 v/v) at room temperature was added LiOH·H₂O (138 mg, 3.3 mmol). After being stirred under reflux for 1.5 h, the mixture was cooled, concentrated, and acidified with acetic acid. The mixture was diluted with EtOAc and then transferred to a separatory funnel where it was partitioned between EtOAc and water. The organic layer was separated, dried over MgSO₄, filtered, and concentrated to give the crude but sufficiently pure hydroxy acid **S1** (75 mg) as a pale yellow oil. **Hydroxy acid S1** (crude): IR (neat) v 3412, 3288, 2114 (weak), 1705 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.00 (brs, 1H), 4.34-4.25 (m, 1H), 4.01-3.82 (m, 4H), 2.50-2.41 (m, 2H), 2.28 (d, *J* = 14.3 Hz, 1H), 2.10-2.02 (m, 1H), 1.92-1.79 (m, 2H), 1.78-1.60 (m, 3H), 1.59-1.25 (m, 6H).

The above-mentioned crude hydroxy acid **S1** was dissolved in DMF (4 mL) and imidazole (68 mg, 1.0 mmol) and TBSCl (151 mg, 1.0 mmol) were added at room temperature. After being stirred at the same temperature for 1 h, the mixture was cooled to 0 °C, diluted with water, and transferred to a separatory funnel where it was extracted with Et₂O. The organic layer was separated, dried over MgSO₄, filtered, and concentrated to give the crude disilylated ketal **4** (120 mg) that was sufficiently pure and somewhat unstable on silica gel column chromatography. Therefore, the crude disilylated ketal **4** (crude; 1:1 diastereomeric mixture by ¹H NMR analysis): Pale yellow oil; IR (neat) v 3312, 2114 (weak), 1709 cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ 4.35-4.27 (m, 1H), 3.55-3.45 (m, 2H), 3.42-3.35 (m, 2H), 2.71-2.63 (m, 1H), 2.37-2.26 (m, 2H), 2.06-2.03 (m, 1H), 1.96-1.87 (m, 1H), 1.83-1.45 (m, 7H), 1.16-1.10 (m, 2H), 1.012 (s, 4.5H), 1.008 (s, 4.5H), 0.996 (s, 4.5H), 0.987 (s, 4.5H), 0.354 (s, 1.5H), 0.347 (s, 3H), 0.344 (s, 1.5H), 0.20 (s, 3H), 0.14 (s, 1.5H), 0.13 (s, 1.5H).

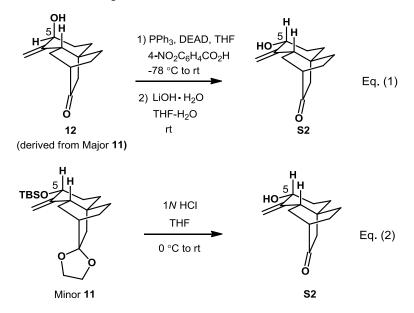
Cyclized compounds 3 and 11: To a stirred solution of the above-mentioned crude disilylated ketal 4 (120 mg, 0.23 mmol) in 1,4-dioxane (8 mL) were added pyridine (186 µL, 2.30 mmol) and lead tetraacetate (>80%, 510 mg, 0.92 mmol) at room temperature. The mixture was heated under reflux for 10 min and cooled to room temperature at which temperature an additional amount of lead tetraacetate (255 mg, 0.46 mmol) was added. After being stirred under reflux for 5 min, the mixture was again cooled to room temperature, and additional amounts of lead tetraacetate (255 mg, 0.46 mmol) and pyridine (93 µL, 1.15 mmol) were added. Stirring was continued for further 5 min under reflux, and the mixture was again cooled to room temperature. To this was added lead tetraacetate (127.5 mg, 0.23 mmol), and the mixture was heated for further 5 min under reflux. The reaction mixture was then cooled to room temperature and quenched with ethylene glycol and water. The whole mixture was diluted with Et₂O and transferred to a separatory funnel where the organic layer was washed 5 times with water. The organic phase was separated, dried over MgSO₄, filtered, and concentrated. The residue was purified by passing it through a short column of silica gel eluting with EtOAc/n-hexane (1:12 v/v) to afford the cyclized compounds 3 (dr = 2:1) and 11 (dr = 2:1) (48 mg, 60% in 3 steps from ketal **10**) as a colorless oil consisting of four diastereomers whose ratio was determined by ¹H NMR analysis. The spectrum is provided in page S28.

N.B.: Flash silica gel column chromatography (Et₂O/*n*-hexane 1:35 v/v) of the products obtained from a large scale reaction, in which ketal **4** (1.20 g, 2.30 mmol), lead tetraacetate (>80%, 11.48 g, 20.7 mmol) and pyridine (2.6 mL, 32.2 mmol) were reacted in refluxing 1,4-dioxane (80 mL) in the same manner as described above, allowed us to separate and characterize all the four diastereomers as described below:


Major 3: Colorless oil; IR (neat) v 2951, 2928 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.94 (s, 1H), 4.79 (s, 1H), 4.27-4.23 (m, 1H), 3.99-3.84 (m, 4H), 2.58-2.51 (m, 1H), 1.88-1.55 (m, 11H), 1.43-1.35 (m, 1H), 1.05 (dt, *J* = 13.2, 2.9 Hz, 1H), 0.86 (s, 9H), 0.02 (s, 3H) - 0.02 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 152.0, 111.2, 107.7, 74.0, 63.9, 63.8, 49.5, 36.9, 35.7, 33.1, 31.5, 31.1, 25.8, 23.7, 23.6, 21.9, 18.1, -4.6, -5.1; HRMS (MALDI) calcd for C₂₁H₃₇O₃Si_(M+H)⁺: 365.2506, found: 365.2506.

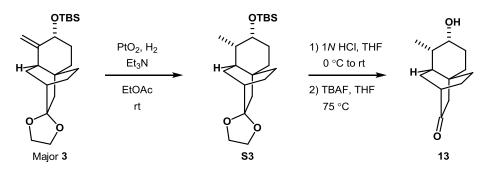
Major 11: Colorless waxy solid; IR (neat) v 2951, 2928 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.98 (s, 1H), 4.82 (s, 1H), 4.28-4.24 (m, 1H), 3.95-3.80 (m, 4H), 2.47-2.41 (m, 1H), 1.97-1.90 (m, 2H), 1.89-1.77 (m, 2H), 1.73-1.68 (m, 1H), 1.62-1.48 (m, 4H), 1.47-1.40 (m, 1H), 1.34-1.27 (m, 1H), 1.14 (dd, J = 14.3, 1.7 Hz, 1H), 1.08 (dt, J = 13.2, 2.9 Hz, 1H), 0.87 (s, 9H), 0.03 (s, 3H), -0.01 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 151.4, 111.4, 108.9, 74.0, 63.9, 63.7, 40.4, 36.3, 35.2, 33.7, 33.1, 31.6, 31.0, 25.8, 24.0, 21.8, 18.1, -4.7, -5.1; HRMS (MALDI) calcd for C₂₁H₃₇O₃Si (M+H)⁺: 365.2506, found: 365.2498.

Minor 3: Colorless oil; IR (neat) v 2953, 2928 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.30 (s, 1H), 4.90 (s, 1H), 4.00-3.80 (m, 5H), 2.06-1.97 (m, 1H), 1.93-1.81 (m, 1H), 1.79-1.31 (m, 10H), 0.95-0.80 (m, 2H), 0.91 (s, 9H), 0.06 (s, 3H), 0.05 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 151.7, 111.0, 104.0, 74.3, 63.9, 63.8, 49.2, 41.4, 35.8, 35.7, 33.2, 33.0, 25.9, 24.3, 24.0, 21.7, 18.4, -4.96, -4.98; HRMS (MALDI) calcd for C₂₁H₃₇O₃Si (M+H)⁺: 365.2506, found: 365.2492.


Minor 11: Colorless oil; IR (neat) v 2951, 2928 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.35 (s, 1H), 4.93 (s, 1H), 3.92-3.79 (m, 5H), 2.12-2.05 (m, 1H), 1.99-1.92 (m, 2H), 1.89-1.81 (m, 1H), 1.75-1.69 (m, 2H), 1.58 (ddd, J = 13.7, 10.3, 3.4 Hz, 1H), 1.51-1.30 (m, 5H), 1.27-1.20 (m, 1H), 1.13 (dd, J = 14.3, 1.7 Hz, 1H), 0.91 (s, 9H), 0.06 (s, 3H) 0.05 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 151.1, 111.2, 105.1, 74.3, 63.8, 63.7, 40.9, 40.6, 36.1, 35.5, 33.5, 33.3, 33.2, 25.9, 24.6, 21.6, 18.4, -4.9, -5.0; HRMS (MALDI) calcd for C₂₁H₃₇O₃Si (M+H)⁺: 365.2506, found: 365.2501.

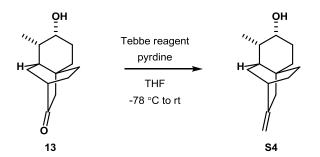
Determination of stereochemistry of major 11:

To a stirred solution of major 11 (13.2 mg, 0.036 mmol) in THF (2 mL) at 0 °C was added 1N HCl (165 µL, 0.165 mmol). The mixture was warmed to room temperature and stirred for 3.5 h. Then the mixture was cooled to 0 °C, quenched with sat. NaHCO₃, and transferred to a separatory funnel where it was extracted with EtOAc. The organic layer was separated, dried over MgSO₄, filtered, and concentrated. The residue was dissolved in THF (1.5 mL) and TBAF (1.0 M in THF, 53 µL, 0.053 mmol) was added at room temperature. The mixture was warmed to 75 °C and stirring was continued for 75 min. Then the mixture was cooled to room temperature, quenched with sat. NH₄Cl, and transferred to a separatory funnel where it was extracted with EtOAc. The organic layer was separated, dried over MgSO₄, filtered, and concentrated. The residue was purified by flash silica gel column chromatography (EtOAc/n-hexane 1:2 v/v) to give alcohol 12 (6.9 mg, 93% in 2 steps) as a colorless solid. The stereochemistry of this material was determined by X-ray crystallographic analysis. The details are given in page S15-S16. Alcohol 12: Colorless cubic crystals of mp 110-111 °C (*n*-hexane); IR (neat) v 3420, 1705 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.13 (d, J = 2.3 Hz, 1H), 4.79 (d, J = 2.3 Hz, 1H), 4.40 (dd, J = 2.9, 2.3 Hz, 1H), 2.79 (dddd, J = 8.0, 8.0, 4.0, 2.3 Hz, 1H), 2.36 (dd, J= 18.6, 2.9 Hz, 1H), 2.33 (quintet, J = 2.9 Hz, 1H), 1.99-1.80 (m, 6H), 1.71-1.60 (m, 3H), 1.53 (ddd, J = 13.2, 10.9, 5.7 Hz, 1H), 1.45 (bsr, 1H), 1.27 (ddd, J = 13.7, 4.0, 2.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 216.9, 150.0, 110.9, 73.3, 43.2, 42.7, 37.6, 36.6, 33.5, 30.4, 29.4, 25.1, 23.4; HRMS (MALDI) calcd for C₁₃H₁₉O₂ (M+H)⁺: 207.1380, found: 207.1378.

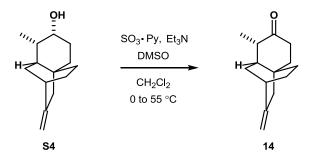

Chemical correlations of major 11 with minor 11:

To a stirred solution of alcohol 12 (1.8 mg, 0.0087 mmol) in THF (0.75 mL) at -78 °C (a dry ice-acetone bath) were sequentially added Ph₃P (13.6 mg, 0.052 mmol), DEAD (40% w/v in toluene; 28 µL, 0.072 mmol) and 4-nitrobenzoic acid (12.2 mg, 0.072 mmol). The dry ice-acetone bath was removed and the mixture was stirred at room temperature for 3.5 h. Then, sat. NaHCO₃ was added and the mixture was transferred to a separatory funnel where it was extracted with Et₂O. The organic layer was separated, dried over MgSO₄, filtered, and concentrated. The residue was purified by passing it through a short column of silica gel eluting with EtOAc/n-hexane (1:3 v/v) to afford benzoate. The benzoate was dissolved in THF-H₂O (2 mL; 1:1 v/v) and LiOH·H₂O (9 mg, 0.22 mmol) was added at room temperature. After being stirred at the same temperature for 1 h, the mixture was diluted with Et₂O and transferred to a separatory funnel where it was extracted with Et₂O. The organic layer was separated, dried over MgSO₄, filtered, and concentrated. The residue was purified by flash silica gel column chromatography $(Et_2O/n$ -hexane 3:2 v/v) to give alcohol S2 (1.3 mg, 72% in 2 steps) as a colorless solid whose spectral data were identical to those of the product obtained in equation (2) by deketalization/desilylation of minor **11** (The spectra are provided in page S39).

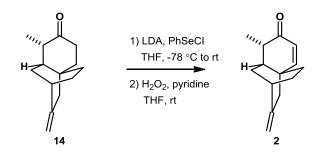
Procedure for transformation of minor 11 to alcohol S2 (equation 2): To a stirred solution of minor **11** (8.5 mg, 0.023 mmol) in THF (2 mL) at 0 °C was added 1*N* HCl


(115 μ L, 0.115 mmol). The mixture was warmed to room temperature and stirred for 3.5 h. Then the mixture was cooled to 0 °C, quenched with sat. NaHCO₃, and transferred to a separatory funnel where it was extracted with EtOAc. The organic layer was separated, dried over MgSO₄, filtered, and concentrated. The residue was purified by flash silica gel column chromatography (EtOAc/*n*-hexane 1:2 v/v) to give alcohol **S2** (4.2 mg, 88%) as a colorless solid The mentioned transformations in equations (1) and (2) allowed us to confirm that major **11** and minor **11** produced by the radical cyclization of disilylated ketal **4** (page S7) shared the same molecular architecture except the stereochemistry at C5.

To a stirred solution of major **3** (71.5 mg, 0.20 mmol) in EtOAc (5 mL) at room temperature were added Et₃N (140 µL, 1.0 mmol) and PtO₂ (7.2 mg, 10% w/w). The mixture was stirred at the same temperature under hydrogen atmosphere for 1 h and then filtered through a pad of Celite. The filtrate was concentrated under reduced pressure to give sufficiently pure ketal **S3** that was used for the next step without purification. **Ketal S3** (crude): Colorless oil; IR (neat) v 2951, 2928 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.00-3.82 (m, 4H), 3.71-3.67 (m, 1H), 2.02-1.94 (m, 1H), 1.89-1.74 (m, 2H), 1.70-1.62 (m, 2H), 1.61-1.39 (m, 6H), 1.34-1.26 (m, 1H), 1.01-0.90 (m, 3H), 0.89 (s, 9H), 0.86 (d, *J* = 6.9 Hz, 3H), 0.01 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 111.5, 71.4, 64.0, 63.6, 50.1, 39.7, 36.1, 33.08, 33.06, 31.2, 29.34, 29.28, 25.9, 24.1, 22.7, 18.2, 15.9, -4.5, -4.9; HRMS (MALDI) calcd for C₂₁H₃₉O₃Si (M+H)⁺: 367.2663, found: 367.2663.


To a stirred solution of the crude ketal **S3** (72 mg) in THF (5 mL) at 0 $^{\circ}$ C was added 1*N* HCl (1.0 mL, 1.0 mmol). The mixture was warmed to room temperature and stirred for 3 h. Then the mixture was cooled to 0 $^{\circ}$ C, quenched with sat. NaHCO₃, and then transferred to a separatory funnel where it was extracted with EtOAc. The organic layer was separated, dried over MgSO₄, filtered, and concentrated. The residue (65 mg) was

dissolved in THF (3.5 mL) and TBAF (1.0 M in THF, 0.80 mL, 0.80 mmol) was added at room temperature. The mixture was warmed to 75 °C, stirred for 4 h, and then cooled to room temperature. The reaction was quenched with sat. NH₄Cl, and transferred to a separatory funnel where it was extracted with EtOAc. The organic layer was separated, dried over MgSO₄, filtered, and concentrated. The residue was purified by flash silica gel column chromatography (EtOAc/*n*-hexane 1:1 v/v) to give hydroxyketone **13** (40 mg, 98% in 3 steps) as a colorless oil. **Hydroxyketone 13**: IR (neat) v 3412, 1717 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 3.80-3.77 (m, 1H), 2.28-2.22 (m, 1H), 2.14-2.06 (m, 1H), 2.13 (d, *J* = 18.9 Hz, 1H), 2.06-1.99 (m, 1H), 1.92 (dd, *J* = 18.9, 2.9 Hz, 1H), 1.82-1.73 (m, 2H), 1.71-1.60 (m, 4H), 1.54-1.45 (m, 2H), 1.29-1.17 (m, 2H), 1.16-1.09 (m, 1H), 0.98 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 217.4, 70.4, 52.5, 42.9, 38.9, 37.2, 35.2, 30.8, 30.3, 28.7, 23.9, 23.7, 15.3; HRMS (MALDI) calcd for C₁₃H₂₁O₂ (M+H)⁺: 209.1536, found: 209.1536.



Alcohol S4: To a stirred solution of hydroxyketone **13** (27 mg, 0.13 mmol) in THF (4 mL) at -78 °C were added pyridine (84 μ L, 1.04 mmol) and Tebbe reagent (0.5 M in toluene, 0.572 mL, 0.268 mmol). After being stirred for 10 min at the same temperature, the mixture was warmed to room temperature and stirring was continued for an additional 20 min. The mixture was then cooled to 0 °C, quenched with sat. NaHCO₃, and transferred to a separatory funnel where it was extracted with Et₂O. The organic layer was separated, dried over MgSO₄, filtered, and concentrated. The residue was purified by flash silica gel column chromatography (EtOAc/*n*-hexane 1:12 v/v) to give alcohol **S4** (25 mg, 94%) as a colorless solid. **Alcohol S4:** Colorless solid of mp 78-79 °C, IR (neat) v 3404, 2928 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.72-4.69 (m, 1H), 4.58-4.55 (m, 1H), 3.77-3.73 (m, 1H), 2.20-2.12 (m, 2H), 1.99-1.91 (m, 2H), 1.87-1.80 (m, 1H), 1.70-1.62

(m, 2H), 1.61-1.56 (m, 2H), 1.55-1.28 (m, 4H), 1.13-1.04 (m, 2H), 1.02-0.96 (m, 1H), 0.95 (d, J = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 152.4, 104.5, 71.0, 44.5, 39.0, 37.5, 36.1, 34.2, 32.7, 30.9, 28.7, 26.9, 24.8, 15.3; HRMS (MALDI) calcd for C₁₄H₂₃O (M+H)⁺: 207.1743, found: 207.1732.

Ketone 14: To a stirred solution of alcohol **S4** (25 mg, 0.12 mmol) in CH₂Cl₂ (3.5 mL) at 0 °C were added Et₃N (169 µL, 1.20 mmol) and DMSO (256 µL, 3.60 mmol). Then, SO₃·Py (95 mg, 0.60 mmol) was added, and the mixture was allowed to warm to room temperature. After stirring for 1.5 h at the same temperature, additional amounts of Et₃N (100 μL, 0.71 mmol), DMSO (200 μL, 2.82 mmol) and SO₃·Py (47.5 mg, 0.30 mmol) were added. After 30 min, the mixture was heated to 55 °C and stirred at this temperature for further 75 min. Then, SO₃·Py (19 mg, 0.12 mmol) was added and stirring at 55 °C was continued for an additional 15 min. The mixture was then diluted with Et₂O and transferred to a separatory funnel where it was sequentially washed with sat. $NaHCO_3$ and water. The organic layer was separated, dried over MgSO₄, filtered, and concentrated. The residue was purified by flash silica gel column chromatography (EtOAc/n-hexane 1:20 v/v) to give ketone 14 (18.2 mg, 74%) as a pale yellow oil. Further elution gave unreacted alcohol S4 (2.7 mg, 11% recovered). Ketone 14: IR (neat) v 2932, 1711 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.78-4.75 (m, 1H), 4.62-4.59 (m, 1H), 2.47 (dddd, J = 14.3, 14.3, 5.7, 1.1 Hz, 1H), 2.30-2.18 (m, 5H), 1.98-1.91 (m, 2H), 1.75-1.66 (m, 3H), 1.55 (ddd, J = 14.0, 14.0, 4.6 Hz, 1H), 1.46-1.39 (m, 1H), 1.30-1.23 (m, 2H), 0.99 (d, J = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 213.2, 150.8, 105.4, 47.9, 46.5, 43.4, 37.8, 37.6, 35.6, 35.3, 33.0, 26.7, 24.9, 11.2; HRMS (MALDI) calcd for C₁₄H₂₁O (M+H)⁺: 205.1587, found: 205.1584.

Enone 2: To a stirred solution of freshly prepared LDA (1.0 M in THF; 63 µL, 0.063 mmol) in THF (0.2 mL) at -78 °C was slowly added a solution of ketone 14 (9.8 mg, 0.048 mmol) in THF (1.2 mL). After 30 min, a solution of PhSeCl (11.1 mg, 0.058 mmol) in THF (1.2 mL) was slowly added, and the whole mixture was stirred for an additional 30 min. Then, the mixture was warmed to room temperature and stirring was continued for further 30 min before being quenched with sat. NH₄Cl. The whole mixture was transferred to a separatory funnel where it was extracted with Et₂O. The organic phase was separated, dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by passing it through a short column of silica gel eluting with EtOAc/n-hexane (1:40 v/v) to give a selenide. The resultant selenide was dissolved in THF (1.8 mL), and pyridine (84 μ L, 1.04 mmol) and H₂O₂ (30 % in H₂O, 34 μ L, 0.3 mmol) were added at room temperature. After being stirred at the same temperature for 2.5 h, the mixture was quenched with sat. NaHCO₃ and sat. Na₂S₂O₃ and transferred to a separatory funnel where it was extracted with Et₂O. The organic layer was separated, dried over MgSO₄, filtered, and concentrated. The residue was purified by flash silica gel column chromatography (EtOAc/n-hexane 1:60 v/v) to give enone 2 (6.5 mg, 67% in two steps) as a colorless oil. Enone 2: IR (neat) v 2934, 2864, 1680 cm⁻¹; ${}^{1}H$ NMR (500 MHz, CDCl₃) δ 6.49 (d, J = 10.0 Hz, 1H), 5.87 (d, J = 10.0 Hz, 1H), 4.83-4.81 (m, 1H), 4.68-4.66 (m, 1H), 2.39 (dt, J = 16.0, 2.9 Hz, 1H), 2.36-2.32 (m, 1H), 2.27 (sextet, J = 6.9 Hz, 1H), 2.16-2.11 (m, 1H), 2.03-1.96 (m, 1H), 1.83-1.68 (m, 4H), 1.53-1.47 (m, 1H), 1.29 (ddd, J = 13.2, 8.6, 1.7 Hz, 1H), 1.11 (d, J = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 202.1, 155.5, 148.9, 127.2, 106.7, 43.7, 42.6, 41.1, 36.0, 35.6, 34.3, 26.3, 24.9, 11.3; HRMS (MALDI) calcd for $C_{14}H_{19}O$ (M+H)⁺: 203.1430, found: 203.1429. The above-mentioned spectroscopic and analytical data were in good agreement with those reported in the literature.²

X-ray crystallographic analysis of compound 12:

A Suitable single crystal of compounds **12** were carefully selected under an optical microscope and glued to thin glass fibers. Single-crystal X-ray diffraction data were collected on a Rigaku AFC-7R diffractometer and Mercury CCD detector equipped with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) at 103K, installed at the institute of scientific and industrial research, Osaka University. The intensity data sets were reduced by *CrystalClear* software.³ The structures were solved by direct methods using *SIR2004* program⁴ and refined by full-matrix least squares on F^2 using *SHELXL-97* program⁵, implemented in program package WinGX.⁶ The final models include anisotropic refinement for the non-hydrogen atoms and an isotropic riding model for H atoms. Further details of the refinements are given table 1.

Crystallographic data for the structures reported in this paper have been deposited at the Cambridge Crystallographic Data Centre (CCDC-1022475).

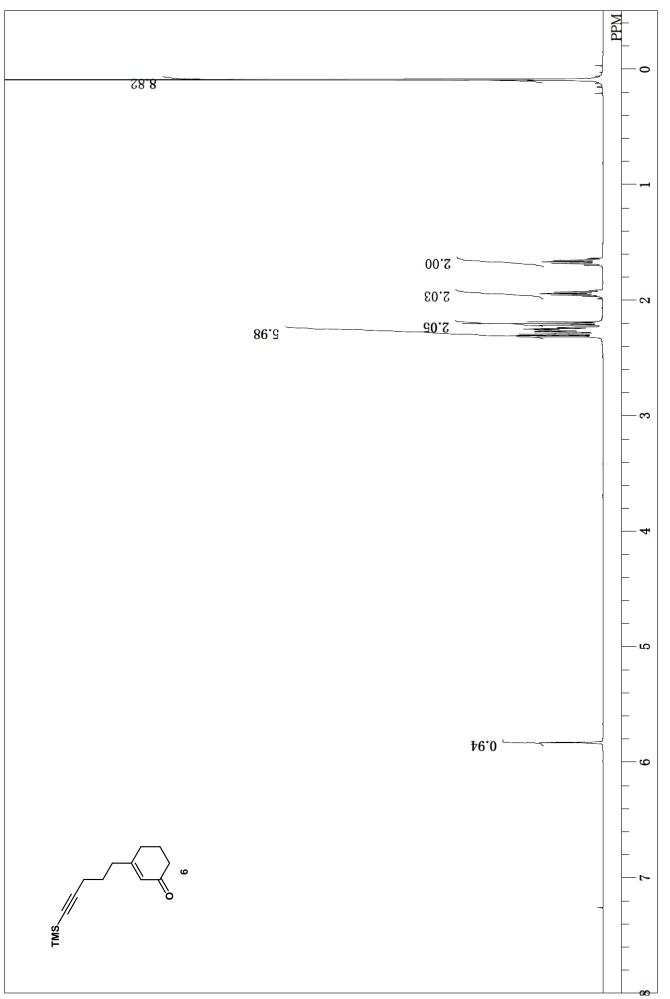
Compound	12
Empirical formula	C ₁₃ H ₁₈ O ₂
Formula weight	206.27
Temperature (K)	103
Crystal system	monoclinic
Space group	c2/c
a (Å)	9.001 (11)
b (Å)	11.207(13)
c (Å)	20.96 (2)
β (°)	90.919 (14)
V (Å 3)	2,114 (4)
Ζ	8
D_{calcd} (g/cm ³)	1.296
R_1^{a}	0.1327
wR_2^{b}	0.4116
Goodness-of-fit ^c	1.594

 Table 1. Crystallographic data for compounds 12

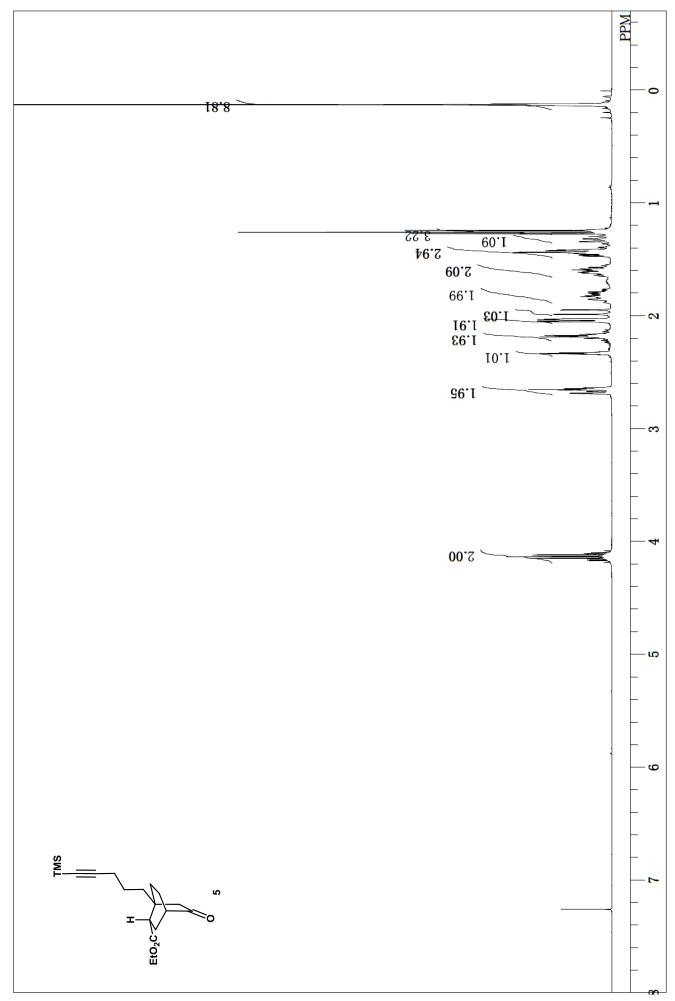
a
$$R1 = \frac{\Sigma ||Fo| - |Fc||}{\Sigma |Fo|}$$

b
$$wR2 = \left\{ \frac{\Sigma [w(Fo^2 - Fc^2)^2]}{\Sigma [w(Fo^2)^2]} \right\}^{\frac{1}{2}}$$

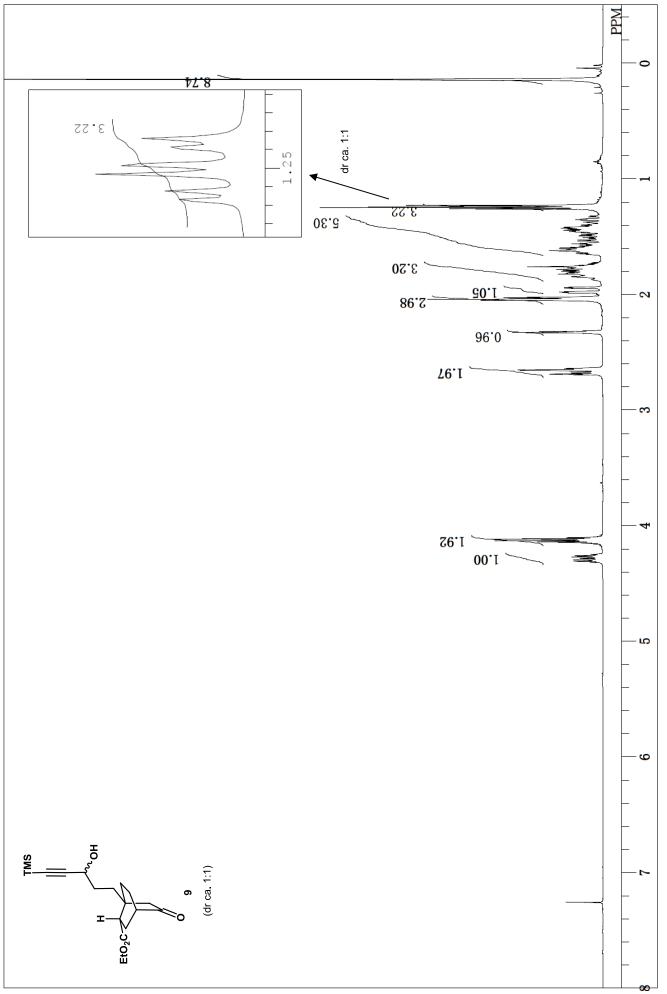
c
$$GOF = \left\{ \frac{\Sigma [w(Fo^2 - Fc^2)^2]}{n - p} \right\}^{\frac{1}{2}}$$

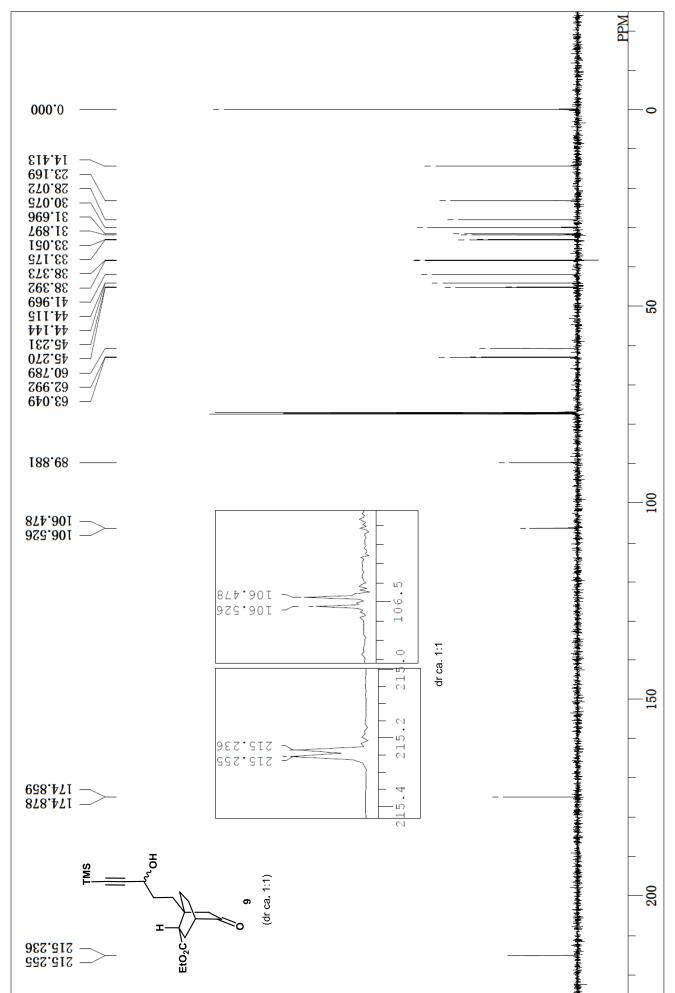

,where n = number of measured data and p = number

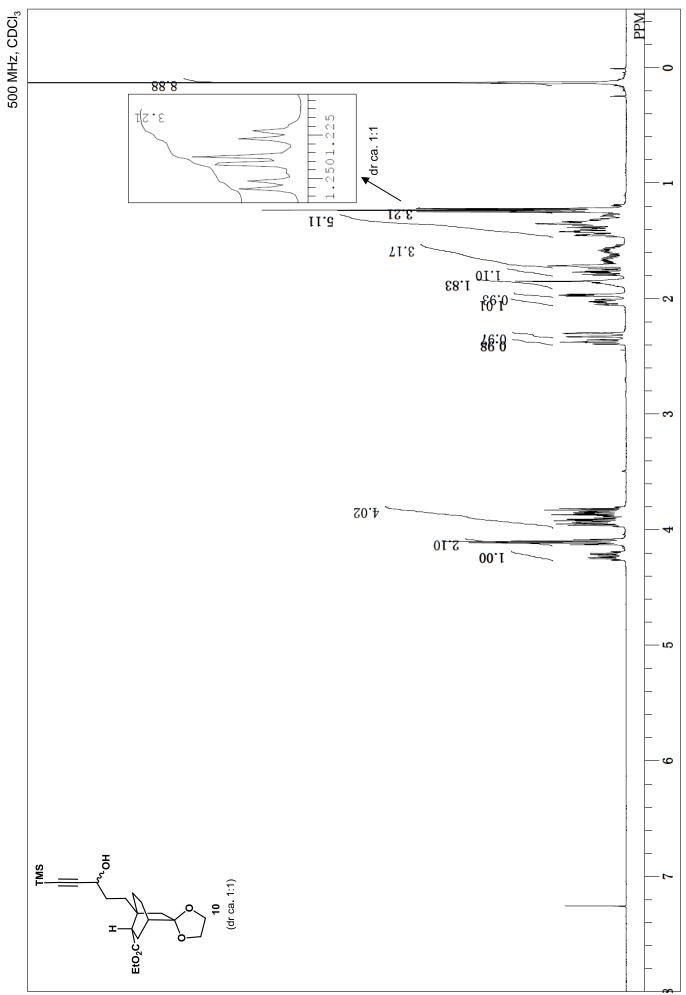
of parameters.

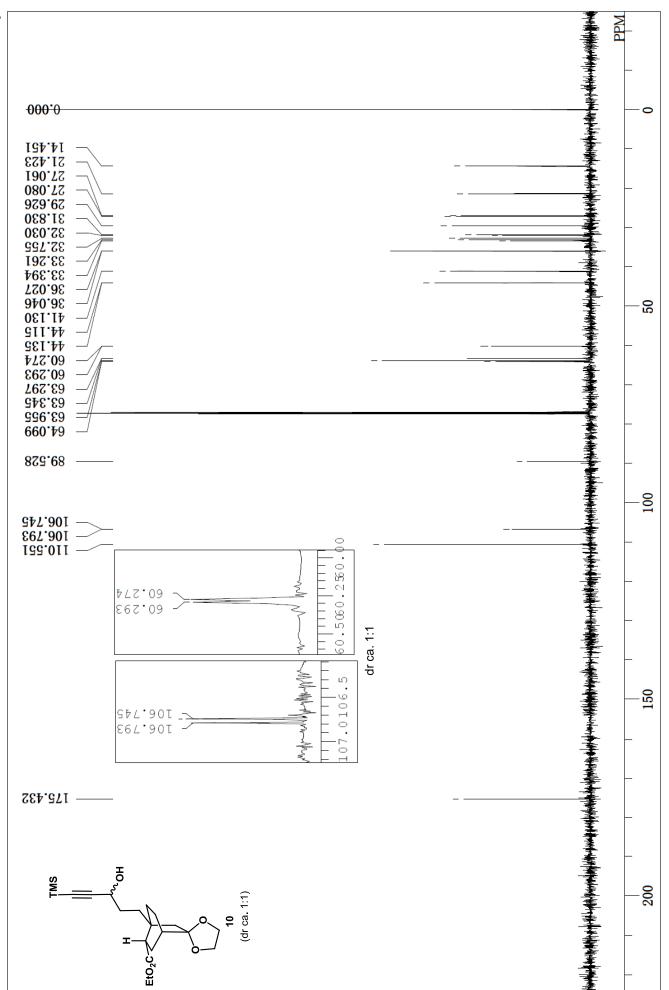

References

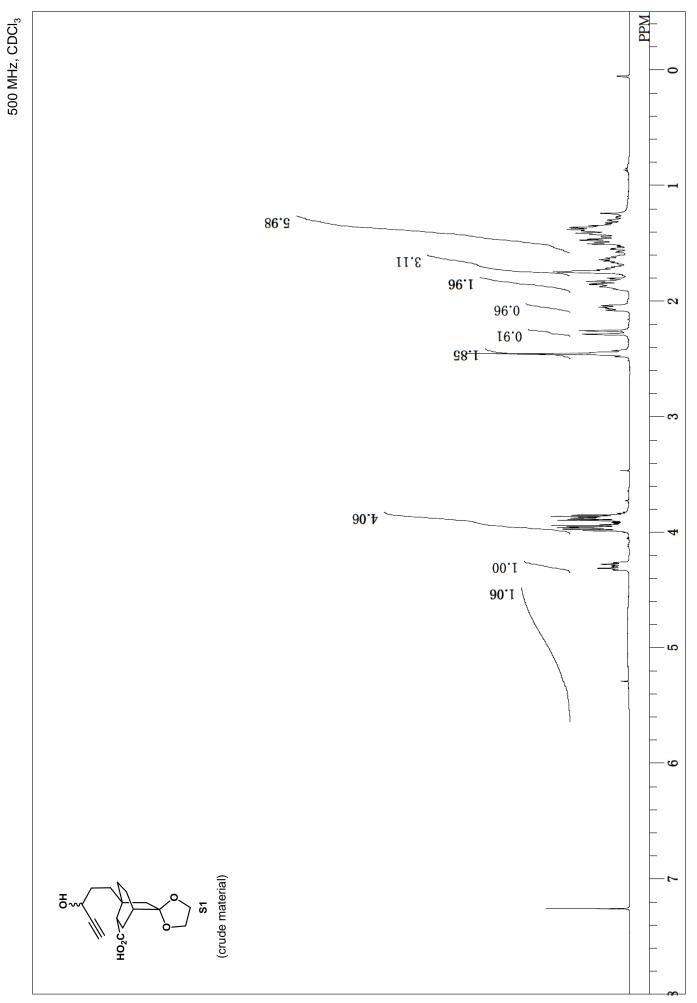
- (a) Shishido, Y.; Kibayashi, C. J. Org. Chem. 1992, 57, 2876. (b) Mao, B.; Fananas-Mastral, M.; Lutz, M.; Feringa, B. L. Chem. Eur. J. 2013, 19, 761.
- (a) Nicolaou, K. C.; Tria, G. S.; Edmonds, D. J. Angew. Chem., Int. Ed. 2008, 47, 1780.
 (b) Hayashida, J.; Rawal, V. H. Angew. Chem., Int. Ed. 2008, 47, 4373.
 (c) Nicolaou, K. C.; Tria, G. S.; Edmonds, D. J.; Kar, M. J. Am. Chem. Soc. 2009, 131, 15909.
 (d) Tiefenbacher, K.; Mulzer, J. J. Org. Chem. 2009, 74, 2937.
- 3. CrystalClear Rigaku Corporation, The Woodlands, Texas, USA (1999)
- Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidor, G.; Spagna, R. J. Appl. Crystallogr. 2005, 38, 381.

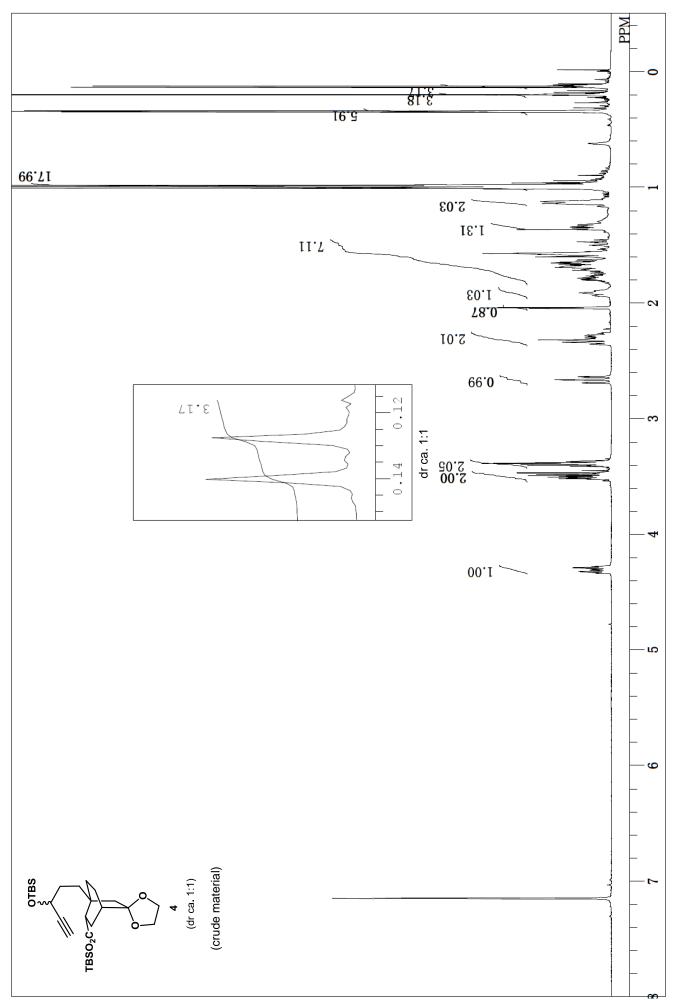

- 5. Sheldrick, G. M. Acta Cryst. 2008, A64, 112.
- 6. Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837.

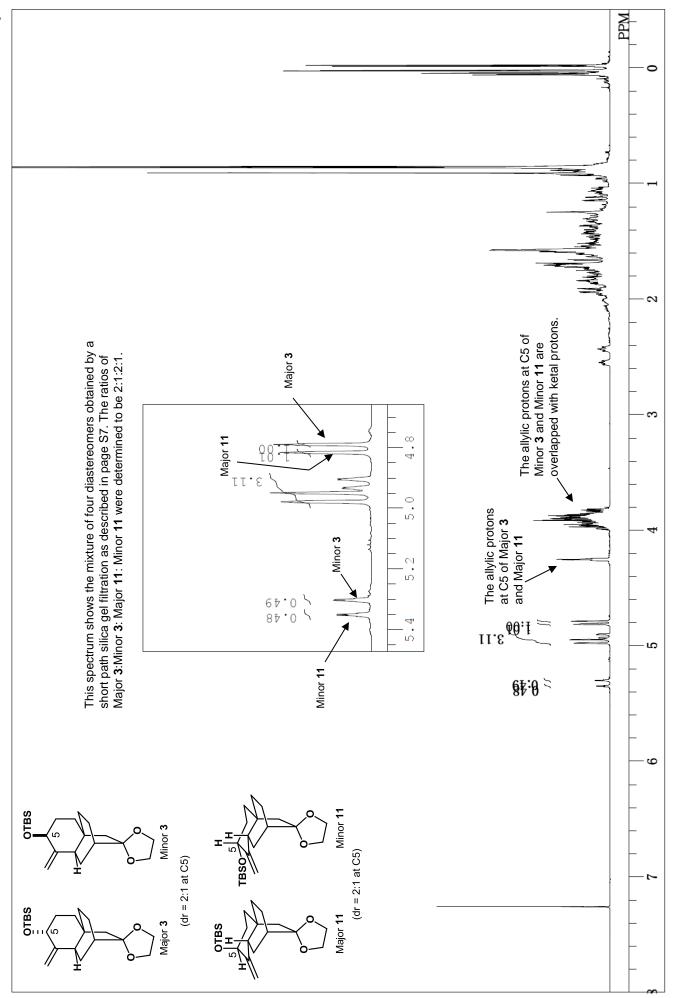


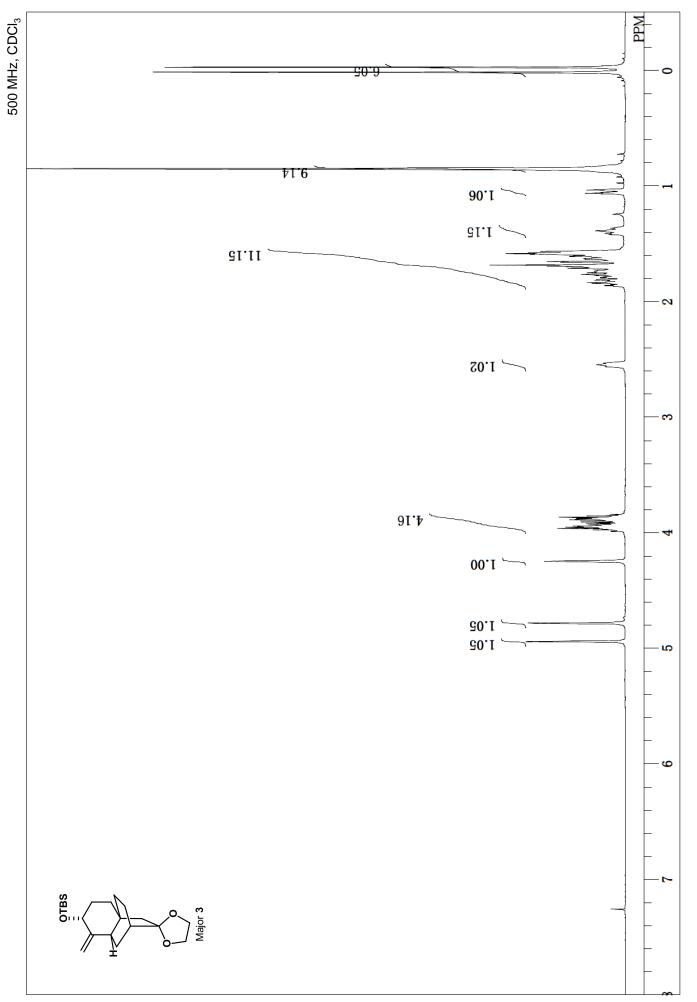

000.0		PPM 0
815.91 36.714 815.92 25.560 817.92 25.560 817.219 25.560		
		<u>-</u>
954.85		 100
719.351	_	
165.216		
910 391		
¥۲ ٤23.901 ——	°	- 200

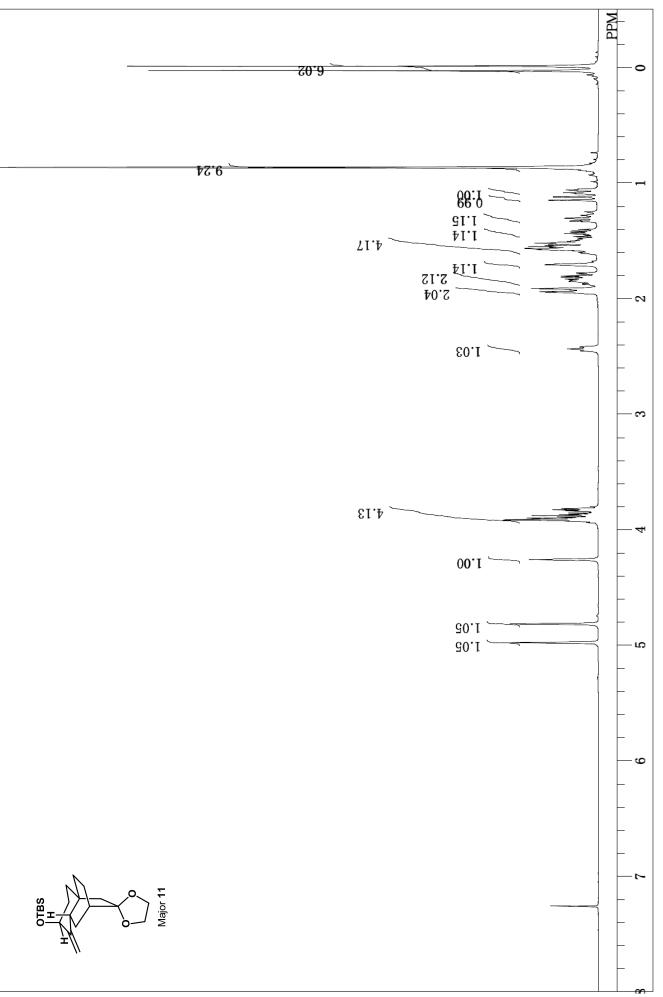


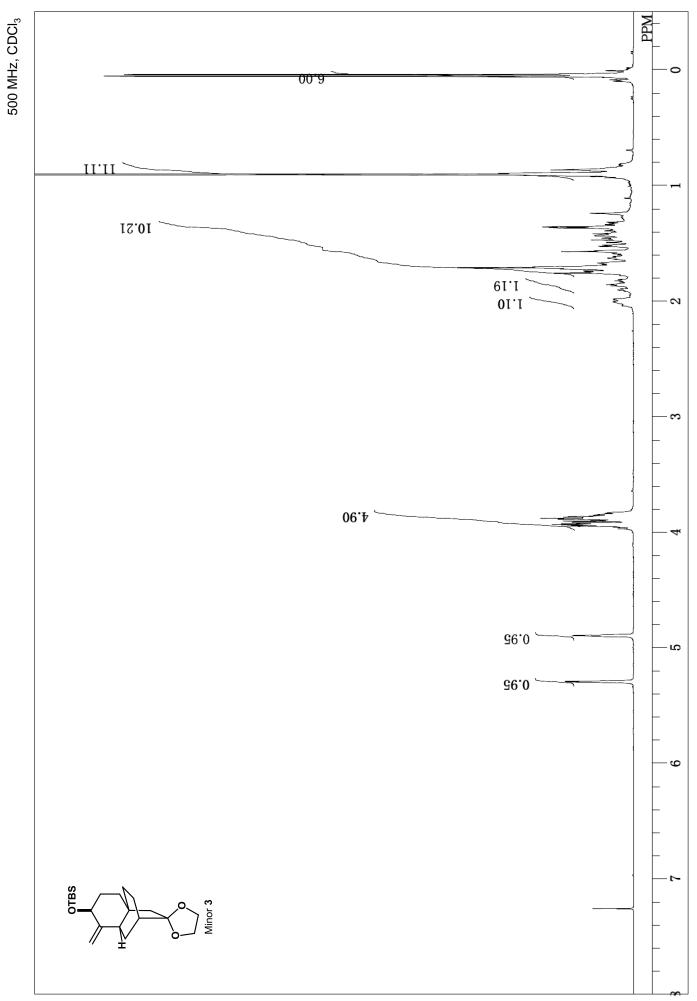

	M ⁻	
000.0	****	0
118.44 89.82 871.41 89.82 89.82 89.82 89.82 89.82 89.82 89.83 89.83 89.83 89.84 89.85 89.85 89.85 89.85 89.85 89.85 89.85 89.86 89.87		
244.09 ——	талініція 	20
\$82.\$8		
109.901 ———		100
	ike volke je vije i je volke je vol	150
<u>ت</u> ی 876.471 —		200
ີຍ ເດິດ ເຊິ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ ເຊີ່ງ เลิ เปิรา เลิ เลิ เลิ เลิ เลิ เลิ เลิ เลิ เลิ เลิ		

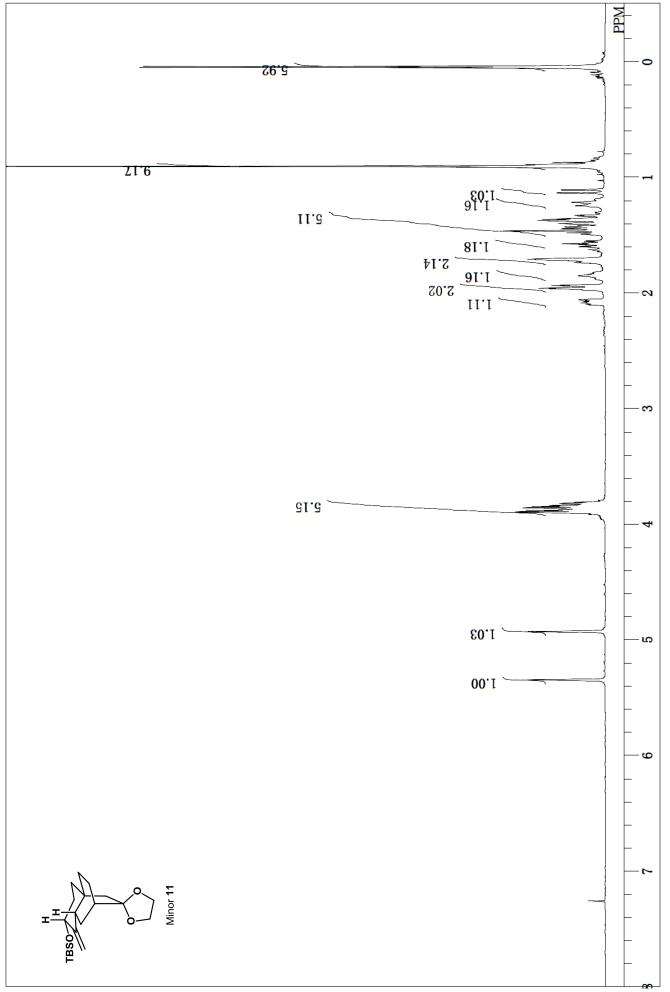


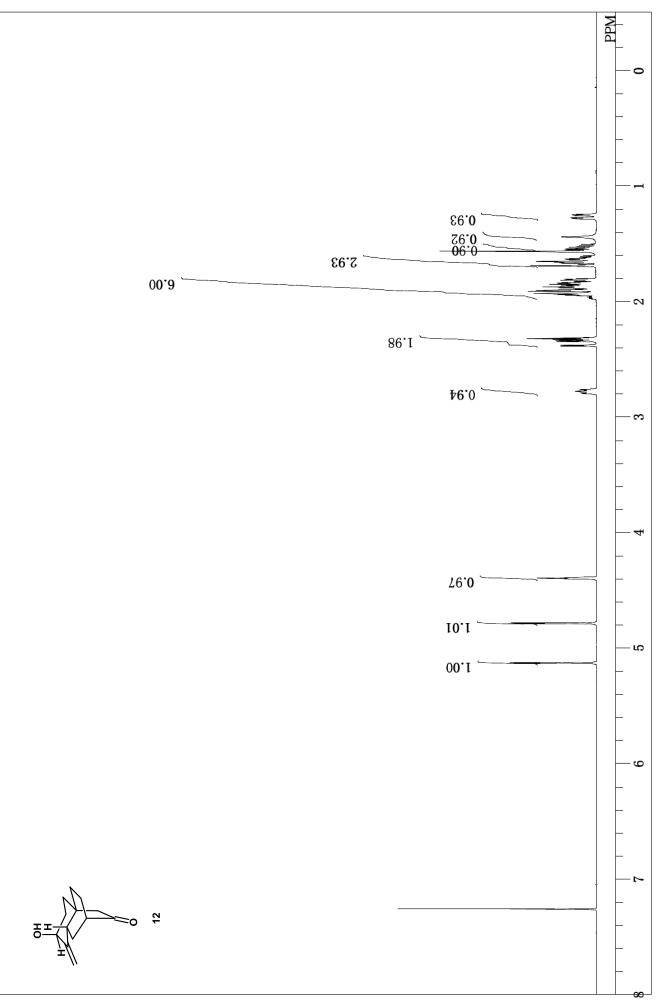


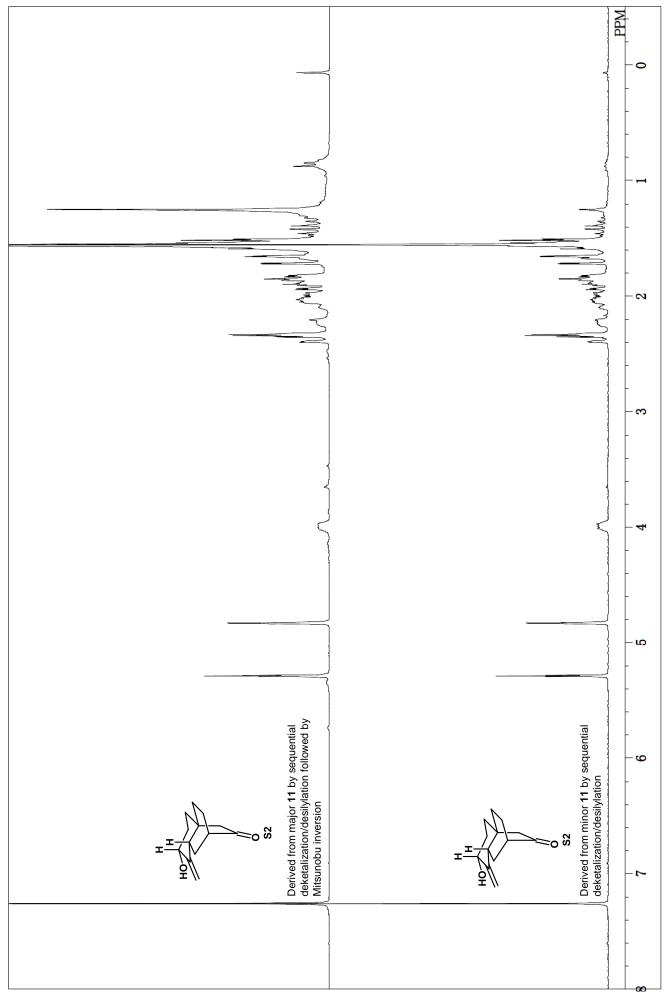


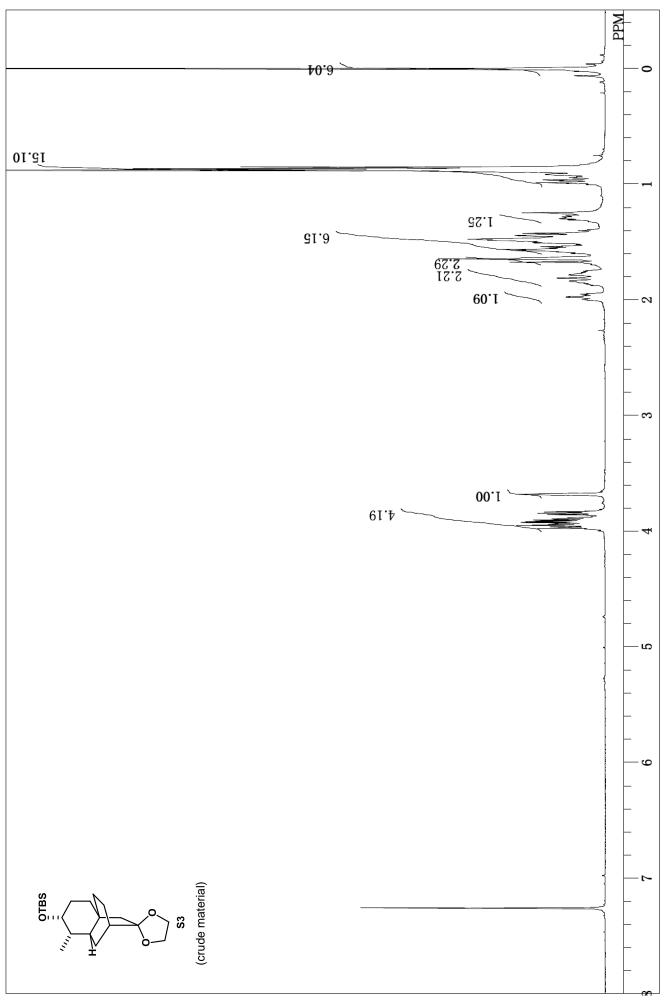

500 MHz, C₆D₆

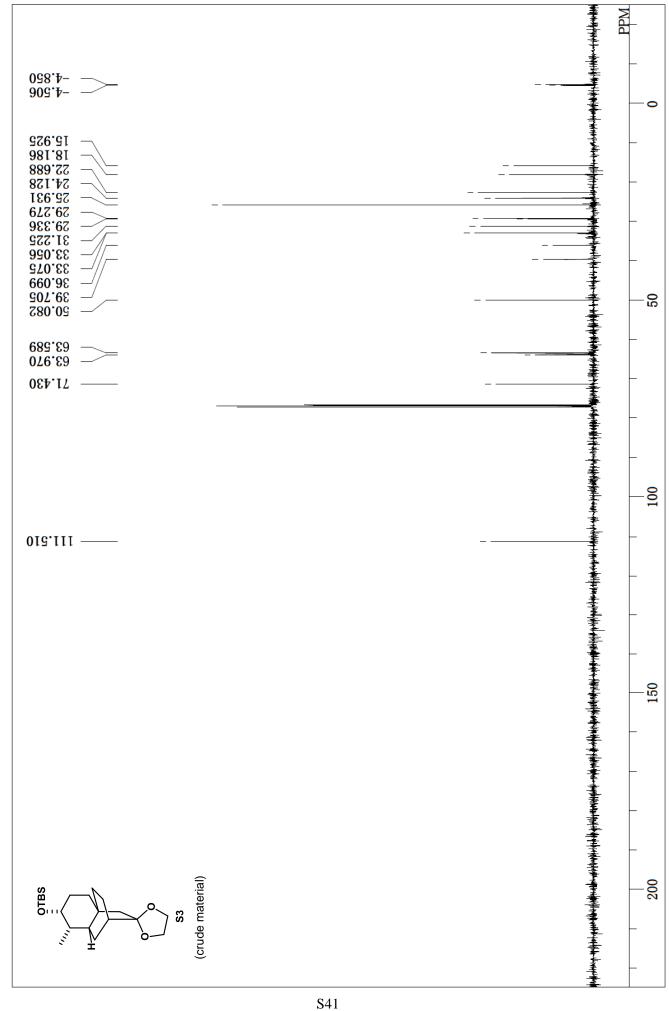


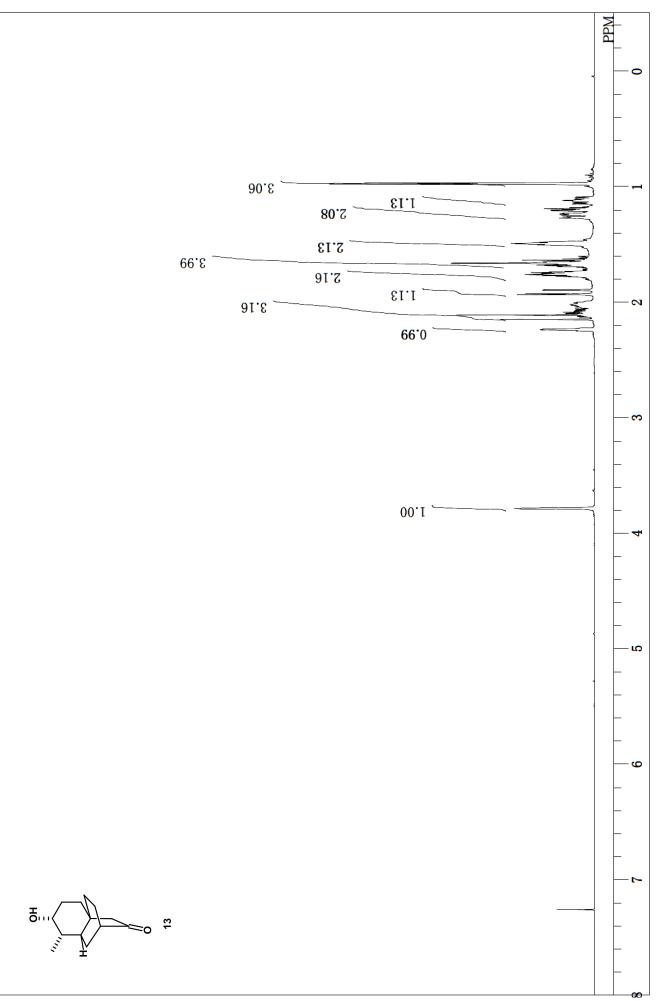

7
PPM
— o
_
_
20
_
- 100
_
150
 _
-
200

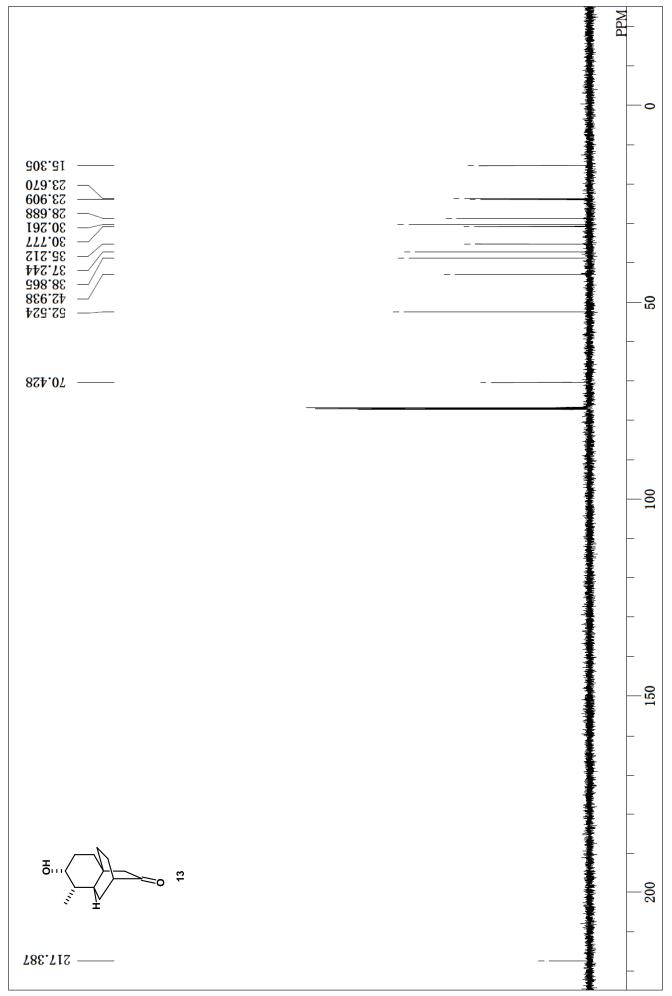

	V	PPM
620'9- 202' 1 -		
064.04 172.35 175.75		
93 [.] 69 ⁴		-
۷96 ⁻ ٤ <i>٤</i> ـــــــــــــــــــــــــــــــــــ		
88.801		- 100 -
168.181 ———		150
Major 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	y source so	200

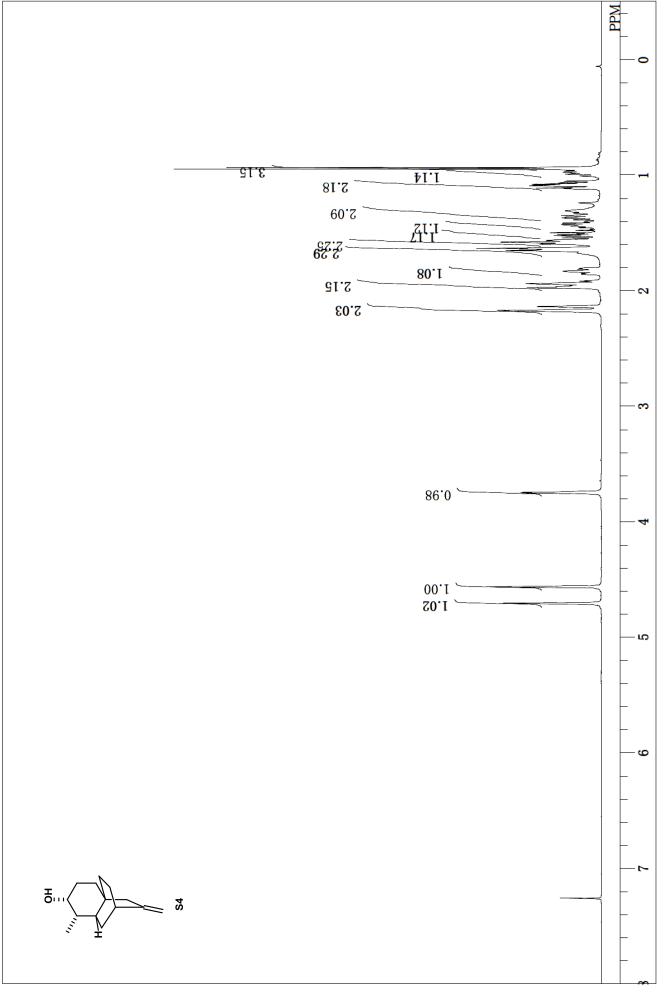

	Mdd
¥96.4-	
981.64 804.81 742.85 782.42 807.35 782.82	
81.94 64 65.65	
195.47	
200.111 210.401	
989.131	

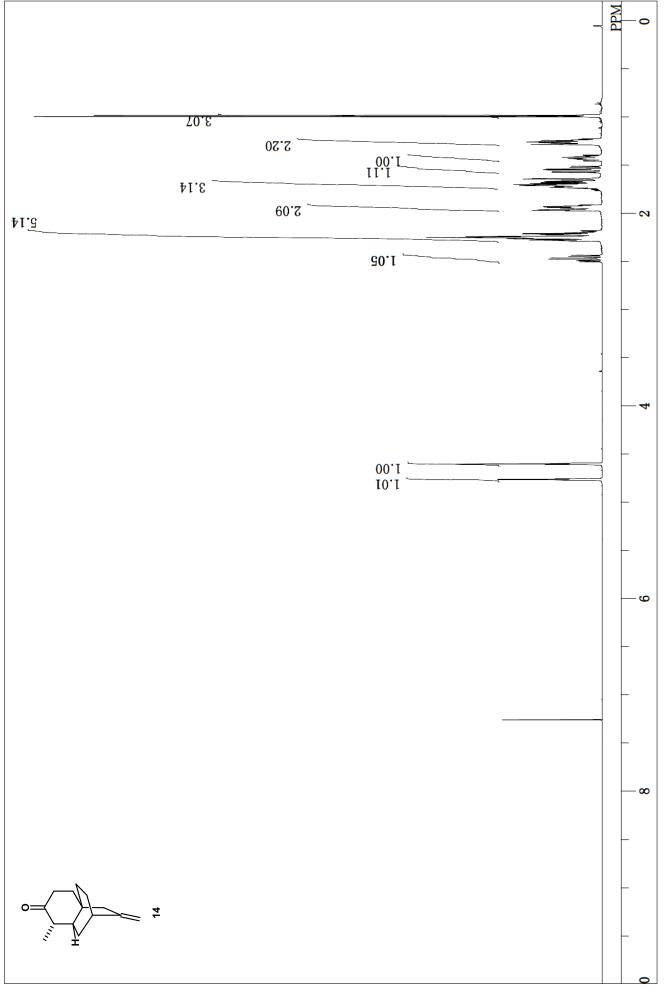


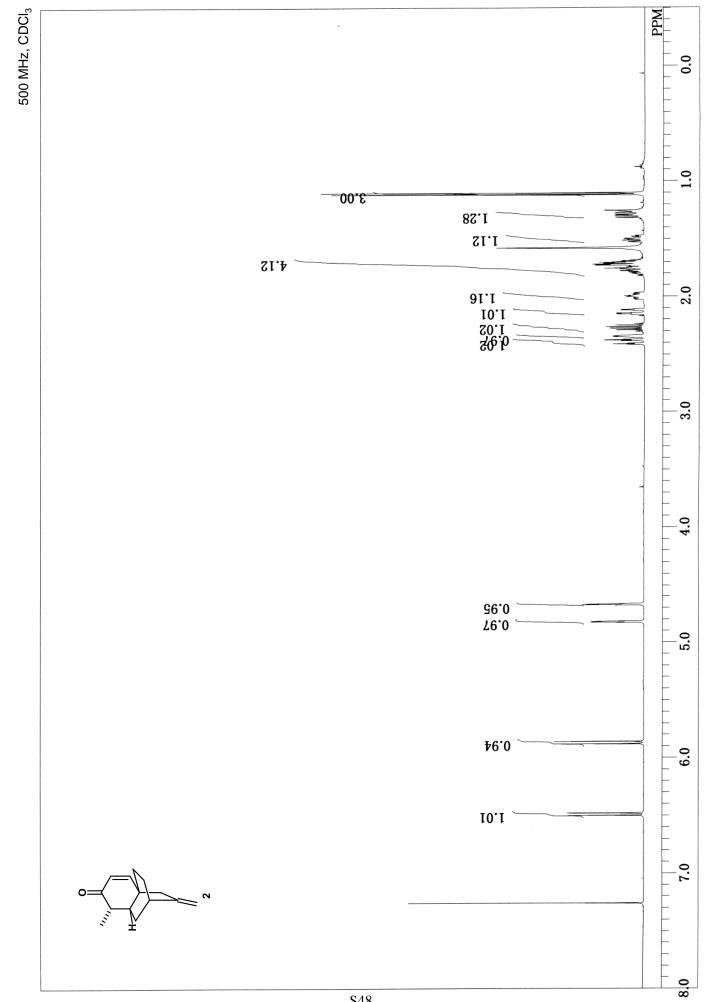

Minor 2	990.181 ——		263.857 263.8377 263.8377 263.8377 263.8377 263.83777 263.83777 263.8377777777777777777777777777777777777	878.04 90.630 90.630 90.630 91.631	₽96.₽- ₽96.₽-
200		100			PPM 0




	Mdd
83.25.24 83.25.24 93.432 93.543 93.543 93.55 93.543 93.543 93.543 93.543 93.55 93.55 93.56 93.56 93.56 93.56 93.56 93.56 93.56 93.56 93.56 93.56 93.56 93.56 93.56 93.56 93.56 93.56 93.57 93.56 93.57 93	20 -
829.011 ———————————————————————————————————	- - 100
150.017	150
ET 0 5	200
846.912 ——	







246.97		0 Mdd
474.47.4 650.30 650.30 76.050 76.0		1
166.07 ——		
66 ₺ .₽01 ——		0 100
152.449		150
P	S4 substantial data data data data data data data da	apul este en la la comparate de la compar La comparate de la comparate de

	PPM
242.11	 0
809.74 809.74 810.74	- 50
965.396	 100
7£8.0∂1 ———	 150
0 12.812	 200

682.11 ——	O
8 8	
227.301 ——	
874.331 —— 100.841 —— 281.721 ——	<pre></pre>
ی ۲وم.202.007 میں ایک میں کر میں	response of the second