Supporting Information

Enantioselective Synthesis of Arylglycine Derivatives by Direct C–H Oxidative

Cross-coupling

Xiao-Hong Wei,[†]Gang-Wei Wang,[†] Shang-Dong Yang*^{†‡}

[†]State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.

^{*}State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.

Contents:

General	2
Experimental Section	2
1. Synthesis of Ethyl N-Aryl Glycine Esters 1a	2
2. Synthesis of T^+BF4^-	2
3. Synthesis of 3a and 3b	3
4. Optimization of Reaction Conditions	4
5. Synthesis of compound 1A	5
6. General procedure for the Pd-catalyzed synthesis of 2a-2z, 3b	and
4b	7
7. Analytical Data of Products	7
8. Crystal structure for 2z	28
¹ H and ¹³ C NMR spectra of Products	28

General

All reactions involving air- or moisture-sensitive reagents were carried out under an argon atmosphere. All solvents were distilled under Ar before use. All chemicals were purchased from Aldrich and J&K Chemical and used without further purification. Thin-layer chromatography (TLC) was performed using 60 mesh silica gel plates visualized with short-wavelength UV light (254 nm). Silica gel 60 (230 - 400 mesh) was used for column chromatography. ¹H and ¹³C NMR spectra were recorded using CDCl₃ solvent on a Bruker 400 MHz spectrometer at 298 K. The chemical shift is given indimensionless δ values and is frequency referenced relative to TMS in ¹H and ¹³C NMR spectroscopy. Mass data were measured with a Thermo Scientific DSQ II mass spectrometer. Enantiomeric excess is determined by HPLC analysis (waters 600-2996). IR spectra were recorded on an FT-IR spectrometer and only major peaks are reported in cm⁻¹.

Experimental Section

1. Synthesis of Ethyl N-Aryl Glycine Esters 1a¹

To the solution of ethyl bromoacetate (20.0 mmol) in anhydrous ethanol (3.0 mL) was added substituted benzenamine (20.0 mmol) and anhydrous NaOAc (20.0 mmol). The reaction mixture was refluxed for 6-10 h under N₂. Then, the mixture was filtered, and the filtrate was cooled at ice bath to precipitate. The precipitation was recrystallized from ethanol-hexane, giving the desired ethyl N-aryl glycine ester **1a**.

2. Synthesis of T+BF4-2

In a 250 mL round bottom flask, an aqueous solution of HBF₄ (48% aqueous solution, 10.9 mL, 83.2 mmol) was added to the heterogeneous solution of 1 (11.367g, 72.8 mmol) in purified water (31.15 mL). The reaction mixture was stirred at room temperature for 30 min to give a yellow orange mixture. In ice bath, an aqueous solution of NaOC1 (5% aqueous solution, 48.5mL, 35.7 mmol) was added to the solution for 2 h. The mixture is filtered with grass filter and the yellow solid was washed with cooled water (4 °C, 4 × 20 mL) and dichloromethane (3 × 30 mL). After

¹ J. Xie and Z-Z. Huang, Angew. Chem. Int. Ed. 2010, 49, 10181.

² Y. Yonekuta, K. Oyaizu and H. Nishide, Chem. Lett. 2007, 36, 866.

dried under high vacuum at room temperature overnight, the product is obtained as a bright yellow solid.

3. Synthesis of 3a and 3b³

2-Bromoacetyl bromide (2.4 g, 1.2 mmol) in CH₂Cl₂ (10 mL) was added dropwise to a mixture of MeNH₂ (1.0 g, 30 wt% in H₂O, 1.0 mmol) and K₂CO₃ (1.66 g, 1.2 mmol) in CH₂Cl₂/H₂O (30 mL/10 mL) at 0 °C. The mixture was then allowed to warm up to room temperature and stirred for 6 h. Then, the organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (3*5 mL). The organic layers were combined and dried over Na₂SO₄, and CH₂Cl₂ was removed in vacuo. Subsequently, EtOH (5 mL), *p*-anisidine (1.23 g, 1 mmol), and NaOAc (0.84 g, 1 mmol) were added to the residue. The resulting mixture was refluxed for 6 h and was filtered. The solvent of the filtrate was removed in vacuo. Recrystallization (CH₂Cl₂/hexanes) gave the pure product 2-(4-methoxyphenylamino)-*N*-methylacetamide (**3a**).

SOCl₂ (3.6 g, 30 mmol) was added slowly to EtOH (30mL) at 0 °C. After stirring at this temperature for 10 min, glycine (0.75 g, 10 mmol) was added to the solution. Then, the reaction was stirred at 70 °C for 3 h. EtOH was removed in vacuo. The resulting solid was then mixed with CH₂Cl₂ (30 mL) and NEt₃ (2.2 g, 22 mmol). The reaction mixture was cooled to -78 °C, and BrCH₂COBr (2.0 g, 10 mmol) was added dropwise to the solution at this temperature. The solution was allowed to warm up to room temperature and the stirring was continued for 6 h. After that, the solution was washed with H₂O (10 mL). The organic layer was dried over Na₂SO₄, and CH₂Cl₂ was removed in vacuo to afford BrCH₂CONHCH₂CO₂Et (1.8 g, 81%). NaOAc (0.50 g, 6 mmol), p-anisole (0.74 g, 6 mmol), and BrCH₂CONHCH₂CO₂Et (1.1 g, 5 mmol) were successively added to EtOH (4 mL). The reaction tube was heated at 80 °C for 6 h. EtOH was removed in vacuo and the residue was dissolved in CH₂Cl₂ (20 mL) and washed with H₂O (5 mL). The organic layer was dried over Na₂SO₄, and CH₂Cl₂ was removed in vacuo. Flash column chromatography on silica gel by using ethyl acetate/hexanes (1:1)furnished the final product *N*-(*N*-*p*-methoxyphenylglycyl)-glycine ethyl ester (**4a**).

³ L. Zhao, O. Basl éand C-J. Li, Proc. Natl. Acad. Sci. USA, 2009, 106, 4107.

4. Optimization of Reaction Conditions

Entry	Cat/L	Oxidant	Solvent	Temp	Yield	Ee
					^{a,b} (2a)	^c (%)
1	Pd(OAc) ₂ /bpy	BQ	CH ₃ NO ₂	60	24%	
2	Pd(OAc) ₂ /bpy	TBHP	CH ₃ NO ₂	60	trace	
3	Pd(OAc) ₂ /bpy	$K_2S_2O_8$	CH ₃ NO ₂	60	10%	
4	Pd(OAc) ₂ /bpy	$(NH_4)_2S_2O_8$	CH ₃ NO ₂	60	19%	
5	Pd(OAc) ₂ /bpy	Selectflour	CH ₃ NO ₂	60	17%	
6	Pd(OAc) ₂ /bpy	PhI(OAc) ₂	CH ₃ NO ₂	60	NR	
7	Pd(OAc) ₂ /bpy	IBX	CH ₃ NO ₂	60	trace	
8	Pd(OAc) ₂ /bpy	$T^+BF_4^-$	CH ₃ NO ₂	60	32%	
9	Pd(OAc) ₂ /bpy	$T^+BF_4^-$	PhCH ₃	60	9%	
10	Pd(OAc) ₂ /bpy	$T^+BF_4^-$	CH ₃ CN	60	11%	
11	Pd(OAc) ₂ /bpy	$T^+BF_4^-$	THF	60	32%	
12	Pd(OAc) ₂ /bpy	$T^+BF_4^-$	DME	60	46%	
13	Pd(OAc) ₂ /bpy	$T^+BF_4^-$	DMF	60	61%	
14	Pd(OAc) ₂ /bpy	$T^+BF_4^-$	DCE	60	70%	
15	Pd(OAc) ₂ /bpy	$T^+BF_4^-$	DCM	60	34%	
16	Pd(OAc) ₂ /bpy	$T^+BF_4^-$	DCE	30	32 %	
17	Pd(OAc) ₂ /bpy	$T^+BF_4^-$	DCE	40	45 %	
18	Pd(OAc) ₂ /bpy	$T^+BF_4^-$	DCE	50	61 %	
19	Pd(OAc) ₂ /bpy	$T^+BF_4^-$	DCE	70	52 %	
20	-/bpy	$T^+BF_4^-$	DCE	60	trace	
21	Pd(OAc) ₂ /-	$T^+BF_4^-$	DCE	60	NR	
22	_/_	$T^+BF_4^-$	DCE	60	NR	
23	Pd(OAc) ₂ /L1	T^+BF_4	DCE	60	33%	0
24	Pd(OAc) ₂ /L2	$\mathbf{T}^{\!+}\mathbf{BF}_4$	DCE	60	31%	0
25	Pd(OAc) ₂ /L3	T^+BF_4	DCE	60	12%	26%
26	Pd(OAc) ₂ /L4	$\mathbf{T}^{\!+\!}\mathbf{BF_4}$	DCE	60	30%	6%
27	Pd(OAc) ₂ /L5	T^+BF_4	DCE	60	58%	51%

28	Pd(OAc) ₂ /L6	$T^{+}BF_{4}$	DCE	60	64%	31%
29	Pd(OAc) ₂ /L7	$\mathbf{T}^{+}\mathbf{BF}_{4}$	DCE	60	64%	89%
30	Pd(OAc) ₂ /L8	T^+BF_4	DCE	60	69%	90%
31	Pd(OAc) ₂ /L9	$\mathbf{T}^{+}\mathbf{BF}_{4}$	DCE	60	43%	62%
32	Pd(OAc) ₂ /L8	T^+BF_4	CH ₃ CN	60	trace	
33	Pd(OAc) ₂ /L8	T^+BF_4	THF	60	57%	75%
34	Pd(OAc) ₂ /L8	T^+BF_4	DME	60	61%	86%
35	Pd(OAc) ₂ /L8	$\mathbf{T}^{+}\mathbf{BF}_{4}$	DMF	60	40%	77%
36	Pd(OAc) ₂ /L8	$\mathbf{T}^{+}\mathbf{BF}_{4}$	CH ₃ NO ₂	60	16%	92%
37	Pd(OAc) ₂ /L8	$\mathbf{T}^{+}\mathbf{BF}_{4}$	DCM	60	58%	92%
38	PdCl ₂ /L8	$\mathbf{T}^{+}\mathbf{BF}_{4}$	DCE	60	trace	
39	Pd(TFA) ₂ /L8	$\mathbf{T}^{+}\mathbf{BF}_{4}$	DCE	60	42%	84%
40	$Pd(PPh_3)_2Cl_2/L8$	$\mathbf{T}^{\!+}\mathbf{B}\mathbf{F}_4$	DCE	60	trace	
41	Pd(CH ₃ CN) ₂ Cl ₂ /L8	$\mathbf{T}^{+}\mathbf{BF}_{4}$	DCE	60	trace	
42	Pd(PhCN) ₂ Cl ₂ /L8	$\mathbf{T}^{+}\mathbf{BF}_{4}$	DCE	60	trace	
43	Pd ₂ (dba) ₃ /L8	$\mathbf{T}^{+}\mathbf{BF}_{4}$	DCE	60	ND	
44	Pd(OAc) ₂ /L8	T^+BF_4	DCE	50	58%	92%
45	Pd(OAc) ₂ /L8	T^+BF_4	DCE	70	50%	89%

^a Reaction conditions: 1a (0.3 mmol), 4-Tolylboronic acid (0.36 mmol, 1.2 equiv), $Pd(OAc)_2$ (0.03 mmol, 0.1 equiv), bpy (0.03 mmol, 0.1 equiv), Oxidant (0.33 mmol, 1.1 equiv), solvent (2.5 mL) under Ar, 16 h. ^b Isolated yield by column chromatography.^c Enantiomeric excess of the major isomer was indicated, which was analyzed by chiral HPLC. bpy = 2,2'-bipyridine; $T^+BF_4^{-=}$ 2,2,6,6-tetramethylpiperidine-1-oxoammonium tetra-fluoroborate.

In an initial study, we chose para-methoxyphenyl-(PMP)-protected glycine ester **1a** and para-methyphenyl boric acid as model substrates to identify suitable reaction conditions. We first selected achiral 2,2-bipyridine as ligand and 10 mol % Pd(OAc)₂

as catalyst to screen different oxidants(entries 1–7), To our delight, this reaction works with BQ as oxidant and affords the desired product **2a** in 24% yield (entries 1). Encouraged by this result, we further optimized the reaction conditions. First, we introduced these oxidant(BQ, $K_2S_2O_8$, $(NH_4)_2S_2O_8$, Selectflour). As a result, the yield of **2a** in low yield (entries 2-7). Subsequently, we evaluated a variety of oxidant for their potential in this transformation in the presence of 10 mol % Pd(OAc)₂ in CH₃NO₂ at 60 °C. Results indicate that T⁺BF₄⁻ is the best choice; the product of **2a** improves to 32% yield (entry 8). We further investigated the different of solvent. To our delight the desired product of racemic **2a** was obtained in 70% yield by using the DCE as the solvent at 60 °C.

5. Synthesis of compound 1A⁴

The mixture solution of (S, S)-isopropyl bisoxazoline compound **L8** (110 mg, 0.49 mmol) and PdCl₂(CH₃CN)₂ (127 mg, 0.49 mmol) in dichloromethane (4 mL) was stirred for 5 hours with exclusion of light at room temperature. The mixture was filtered through a celite pad and the solution was concentrated to ca. 1 mL in vacuo. The crude substrate was precipitated with hexane (2 mL). The resulting solid was filtered and washed with diethyl ether to give product **L8-1** as an orange solid. And then AgOAc (110 mg, 0.66 mmol) was added to a dichloromethane (4 mL) solution containing **L8-1** (132 mg, 0.33 mmol) in a aluminum foiled 10 mL vial. The vial was capped and the mixture was left to stir at room temperature for 35 min. The yellow solution was filtered through Celite and dried in vacuo to afford yellow/orange powder **1A**.

1A(0.03 mmol, 0.1 equiv), *N*-aryl α -imino ester (0.3 mmol, 1.0 equiv), arylboronic acid (0.36 mmol, 1.2 equiv) and 2,2,6,6-tetramethylpiperidine-1-oxoammonium tetra-fluoroborate (T⁺BF₄) was added to an oven-dried 10 mL screw-capped vial and purged with Ar three times. Then, DCE (2.50 mL) was added *via* syringe. and heated to

^{4 (}a) A. G. D. Crisci, K. Chung, A. G. Oliver, D. Solis-Ibarra and R. M. Waymouth, *Organometallics* **2013**, *32*, 2257. (b) K. S Yoo, C. P. Park, C. H. Yoon, S. Sakaguchi, J. O. Neill and K. W. Jung, *Org. Lett*, **2007**, *9*, 3933.

 $60 \,^{\circ}$ C in an oil bath until the starting material has disappeared (monitored by TLC). And then the solvent was removed in vacuo and residue was purified on a silica gel column using EA/PE as eluent to afford the desired product **2a** (50% and 81% ee).

6. General procedure for the Pd-catalyzed synthesis of 2a-2z, 3b and 4b

An oven-dried 10 mL screw-capped vial containing Pd(OAc)₂ (0.03 mmol, 0.1 equiv), (S, S)-isopropyl bisoxazoline L (0.03 mmol, 0.1 equiv) evacuated and purged with Ar three times. Then, DCE (2.50 mL) was added via syringe. The reaction mixture was stirred at room temperature for 1 h. Then, N-aryl α -imino ester (0.3 mmol, 1.0 equiv), arylboronic acid (0.36)mmol. 1.2 equiv) and 2,2,6,6-tetramethylpiperidine-1-oxoammonium tetra-fluoroborate (T^+BF_4) was added to the solution and heated to $60 \,^{\circ}$ in an oil bath until the starting material has disappeared (monitored by TLC). And then the solvent was removed in vacuo and residue was purified on a silica gel column using EA/PE as eluent to afford the desired product 2a. The ee value of the product was determined by chiral HPLC analysis and compared with the racemate.

7. Analytical Data of Products

Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 7.9 Hz, 2H), 6.70 (d, *J* = 7.9 Hz, 2H), 6.53 (d, *J* = 6.1 Hz, 2H), 4.96 (s, 1H), 4.61 (s, 1H), 4.26 – 4.15 (m, 1H), 4.15 – 4.03 (m, 1H), 3.68 (s, 3H), 2.31 (s, 3H), 1.19 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.14, 152.37, 140.29, 137.83, 134.83, 129.41, 127.05, 114.77, 114.68, 61.53, 61.37, 55.59, 21.05, 13.99. IR v_{max} (cm⁻¹) 3398, 2985,

2930, 1736, 1512, 1240, 1174, 1033, 820, 792, 762. MS (EI), m/z: 299[M]⁺, 226, 211, 182, 167, 134, 107, 91, 77, 64, 50. Enantiomeric excess is 90% determined by HPLC analysis: Chiralcel AD-H (hexane/iPrOH = 98/2, flow rate = 1.0 mL/min, 242.1 nm), *t* r-minor 26.485 min, *t* r-major 28.930 min. [α]_D²⁰ = 80 (c = 0.2, CHCl₃).

样品名称: wxh-704-2-693-9, wxh-704-race-1 采集日期: 2014-3-26 11:17:44, 2014-3-26

处理通	道:PDA	242.1	纳米	
处理通道	保留时间 (分钟)	面积	% 面积	峰
PDA 242.1 纳米	26.485	234009	5.18	6

高

1	PDA 242.1 纳木	20.485	234009	5.18	0/3/
2	PDA 242.1 纳米	28.930	4282564	94.82	113351
3	PDA 242.1 纳米	29.315	5362773	49.95	132422
4	PDA 242.1 纳米	32.004	5373767	50.05	130267

Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 7.8 Hz, 2H), 7.15 (d, *J* = 7.8 Hz, 2H), 6.71 (d, *J* = 8.9 Hz, 2H), 6.52 (d, *J* = 8.9 Hz, 2H), 4.98 (s, 1H), 4.62 (s, 1H), 3.69 (d, *J* = 3.9 Hz, 6H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.63, 152.42, 140.21, 137.96, 134.72, 129.47, 127.08, 114.78, 114.68, 61.31, 55.60, 52.55, 21.05. IR v_{max} (cm⁻¹) 3399, 2952, 2927, 1739, 1513, 1311, 1239, 1175, 1037, 819, 737. MS (EI), m/z: 285[M]⁺, 226, 211, 182, 167, 134, 122, 107, 91, 77, 65, 50. Enantiomeric excess is 91% determined by HPLC analysis: Chiralcel OD-H (hexane/iPrOH = 98/2, flow rate = 1.0 mL/min, 241.0 nm), *t* r-minor 17.123 min, *t* r-major 15.011 min. [α]_D²⁰ = 125 (c = 0.2, CHCl₃).

样品名称: wxh-35-r-2, wxh-35-s-2 采集日期: 2014-5-28 15:10:19, 2014-5-28

处理通道: PDA 241.0 纳米

	处理通道	保留时间 (分钟)	面积	%面积	峰高
1	PDA 241.0 纳米	14.401	16496904	51.07	660139
2	PDA 241.0 纳米	15.011	10732563	95.41	430636
3	PDA 241.0 纳米	16.032	15803459	48.93	516849
4	PDA 241.0 纳米	17.123	516662	4.59	17507

Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 8.0 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 6.70 (d, *J* = 8.9 Hz, 2H), 6.51 (d, *J* = 8.9 Hz, 2H), 4.86 (s, 1H), 4.60 (s, 1H), 3.69 (s, 3H), 2.32 (s, 3H), 1.37 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.28, 152.24, 140.54, 137.52, 135.31, 129.29, 126.98, 114.79, 114.62, 82.00, 61.85, 55.69, 27.83, 21.10. IR v_{max} (cm⁻¹) 3400, 2978, 2928, 1727, 1513, 1239, 1153, 1038, 819, 791. MS (EI), m/z: 327[M]⁺, 271, 226, 210, 182, 167, 134, 107, 92 77, 57, 50. Enantiomeric excess is 96% determined by HPLC analysis: Chiralcel AD-H (hexane/iPrOH = 98/2, flow rate = 1.0 mL/min, 242.1 nm), *t* r-minor 17.063 min, *t* r-major 22.023 min. [α]_D²⁰ = 65 (c = 0.2, CHCl₃).

样品名称: wxh-36-r, wxh-36-s 采集日期: 2014-5-27 9:35:21, 2014-5-27

处理	通道:	PDA	242.1	纳米
----	-----	-----	-------	----

_					
	处理通道	保留时间 (分钟)	面积	% 面积	峰高
1	PDA 242.1 纳米	17.063	128823	2.11	5436
2	PDA 242.1 纳米	17.119	8684759	49.99	360474
3	PDA 242.1 纳米	22.023	5979255	97.89	194888
4	PDA 242.1 纳米	22.101	8686525	50.01	287222

Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 8.0 Hz, 2H), 7.32 – 7.24 (m, 3H), 7.20 – 7.10 (m, 4H), 6.69 (d, J = 8.9 Hz, 2H), 6.51 (d, J = 8.9 Hz, 2H), 5.12 (dd, J = 48.3, 12.4 Hz, 2H), 5.03 (s, 1H), 4.62 (s, 1H), 3.68 (s, 3H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.97, 152.35, 140.11, 137.90, 135.27, 134.50, 129.39, 128.36, 128.11, 127.77, 127.06, 114.71, 114.66, 67.02, 61.36, 55.54, 21.02. IR v_{max} (cm⁻¹) 3401, 2928, 2832, 1736, 1513, 1238, 1173, 1037, 909, 819, 733, 698. MS (EI), m/z: 361[M]⁺, 270, 226, 210, 182, 167, 134, 107, 92 77, 57, 50. Enantiomeric excess is 88% determined by HPLC analysis: Chiralcel AD-H (hexane/iPrOH = 98/2, flow rate = 1.0 mL/min, 241.0 nm), $t_{r-minor}$ 66.308 min, $t_{r-major}$ 74.591 min. [α]_D²⁰ = 70 (c = 0.2, CHCl₃).

样品名称: wxh-37-r, wxh-37-s 采集日期: 2014-5-27 10:34:13, 2014-5-27

处理通道: PDA 241.0 纳米

	处理通道	保留时间 (分钟)	面积	%面积	峰高
1	PDA 241.0 纳米	66.308	1191398	5.96	14238
2	PDA 241.0 纳米	67.018	9983467	50.14	108568
3	PDA 241.0 纳米	74.591	18784857	94.04	183090
4	PDA 241.0 纳米	75.902	9927730	49.86	96042

Colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 7.9 Hz, 2H), 6.92 (d, *J* = 8.2 Hz, 2H), 6.48 (d, *J* = 8.4 Hz, 2H), 5.00 (d, *J* = 5.2 Hz, 1H), 4.77 (s, 1H), 4.29 – 4.04 (m, 2H), 2.32 (s, 3H), 2.19 (s, 3H), 1.21 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.09, 143.76, 137.86, 134.79, 129.67, 129.45, 127.11, 127.06, 113.48, 61.62, 60.76, 21.11, 20.36, 14.04. IR v_{max} (cm⁻¹) 3404, 2923, 2862, 1735, 1521, 1250, 1178, 1137, 1022, 806, 738. MS (EI), m/z: 283[M]⁺, 210, 208, 194, 118, 105, 91, 77, 65, 50. Enantiomeric excess is 90% determined by HPLC analysis: Chiralcel OD-H (hexane/iPrOH = 99/1, flow rate = 0.5 mL/min, 244.5 nm), *t* r-minor 15.726 min, *t* r-major 21.272 min. [α]_D²⁰ = 120 (c = 0.2, CHCl₃).

样采	品名称: wxh-: 集日期: 2014- 处理通	2-r-3, wxh 4-20 22:16 〔道 :PD/	-2-s-3 3:44, 2014 \ 244.5	-4-20 纳米	
	处理通道	保留时间 (分钟)	面积	<mark>%</mark> 面积	峰高
4		45.700	500074	5.00	

1	PDA 244.5 纳米	15.726	539274	5.02	24242
2	PDA 244.5 纳米	15.803	10005670	50.11	418329
3	PDA 244.5 纳米	21.272	10196043	94.98	334180
4	PDA 244.5 纳米	21.297	9962501	49.89	336102

Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 7.9 Hz, 2H), 6.86 (d, J = 8.1 Hz, 1H), 6.43 (s, 1H), 6.30 (d, J = 10.4 Hz, 1H), 4.99 (s, 1H), 4.70 (s, 1H), 4.30 – 4.04 (m, 2H), 2.32 (s, 3H), 2.14 (s, 3H), 2.10 (s, 3H), 1.21 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.19, 144.22, 137.81, 137.24, 134.90, 130.19, 129.44, 127.05, 125.96, 115.31, 110.61, 61.56, 60.74, 21.11, 19.98, 18.66, 14.04. IR v_{max} (cm⁻¹) 3407, 2980, 2921, 1735, 1618, 1511, 1289, 1022, 803, 737. MS (EI), m/z: 297[M]⁺, 224, 132, 105, 91, 77, 65. Enantiomeric excess is 96% determined by HPLC analysis: Chiralcel AD-H (hexane/iPrOH = 98/2, flow rate = 1.0 mL/min, 244.5 nm), $t_{r-minor}$ 17.781 min, $t_{r-major}$ 19.408 min. [α]_D²⁰ = 20 (c = 0.2, CHCl₃).

样品名称: wxh-3-r, wxh-3-s 采集日期: 2014-4-19 21:47:35, 2014-4-19

处理通	道:	PDA	244.	5纳米
-----	----	-----	------	-----

	处理通道	保留时间 (分钟)	面积	%面积	峰高
1	PDA 244.5 纳米	17.781	226210	1.98	9062
2	PDA 244.5 纳米	17.868	3583823	50.00	143286
3	PDA 244.5 纳米	19.408	11208695	98.02	408532
4	PDA 244.5 纳米	19.538	3584375	50.00	130959

Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.30 (m, 4H), 7.16 (d, J = 7.9 Hz, 2H), 6.55 (d, J = 8.5 Hz, 2H), 5.31 (d, J = 5.6 Hz, 1H), 5.04 (d, J = 5.8 Hz, 1H), 4.28 – 4.07 (m, 2H), 2.33 (s, 3H), 1.22 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 171.39, 148.34, 138.31, 133.82, 130.89, 129.65, 126.97, 126.55 (q, J.C-F = 3.7 Hz), 124.81 (d, J C-F = 270.5 Hz), 112.57, 62.04, 59.92, 21.13, 14.01. IR vmax (cm⁻¹) 3402, 2983, 2926, 1735, 1618, 1321, 1136, 1111, 826, 790. MS (EI), m/z: 337[M]+, 318, 264, 172, 145, 118, 91, 77, 65, 50. Enantiomeric excess is 92% determined by HPLC analysis: Chiralcel AD-H (hexane/iPrOH = 98/2, flow rate = 1.0 mL/min, 253.9 nm), t r-minor 41.180 min, t r-major 49.723 min. [α]_D²⁰ = 95 (c = 0.2, CHCl3).

样品名称: wxh-4-r-6, wxh-4-s-6 采集日期: 2014-4-22 15:24:10, 2014-4-22 か 理 通 道: **PDA 253.9** 幼 米

	处理通道	保留时间 (分钟)	面积	%面积	峰高		
1	PDA 253.9 纳米	38.118	15131497	50.37	143310		
2	PDA 253.9 纳米	41.180	1471390	4.12	13256		
3	PDA 253.9 纳米	46.918	14911754	49.63	86338		
4	PDA 253.9 纳米	49.723	34243507	95.88	181102		

Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, *J* = 8.1 Hz, 2H), 7.16 (td, *J* = 9.2, 4.5 Hz, 4H), 6.41 (d, *J* = 8.7 Hz, 2H), 5.04 – 4.93 (m, 2H), 4.28 – 4.17 (m, 1H), 4.17 – 4.05 (m, 1H), 2.31 (s, 3H), 1.19 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.55, 144.90, 138.06, 134.08, 131.82, 129.51, 126.96, 114.91, 109.56, 61.78, 60.28, 21.05, 13.96. IR v_{max} (cm⁻¹) 3404, 2928, 2922, 1724, 1595, 1498, m1315, 1255, 1176, 1021, 842, 813, 739. MS (EI), m/z: 347[M]⁺, 274, 182, 155, 118, 103, 91, 76, 65, 50. Enantiomeric excess is 88% determined by HPLC analysis: Chiralcel AD-H

(hexane/iPrOH = 98/2, flow rate = 1.0 mL/min, 250.4 nm), $t_{\text{r-minor}}$ 20.623 min, $t_{\text{r-major}}$ 21.588 min. [α]_D²⁰ = 55 (c = 0.2, CHCl₃).

样品名称: wxh-7-r, wxh-743-15 采集日期: 2014-4-18 20:21:47, 2014-5-27

おちて田子	11日日本 11日日本 11日日本 11日日本 11日日本 11日日本 11日本		250 4	细业
AL 14 1		FUA	230.4	

	处理通道	保留时间 (分钟)	面积	%面积	峰高
1	PDA 250.4 纳米	20.623	2978877	6.66	105459
2	PDA 250.4 纳米	21.588	41720758	93.34	1425220
3	PDA 250.4 纳米	22.648	11519551	49.40	352257
4	PDA 250.4 纳米	23.943	11798910	50.60	353503

Colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, *J* = 8.0 Hz, 2H), 7.07 (d, *J* = 7.9 Hz, 2H), 6.97 (d, *J* = 8.7 Hz, 2H), 6.38 (d, *J* = 8.7 Hz, 2H), 4.89 (s, 2H), 4.23 – 3.96 (m, 2H), 2.25 (s, 3H), 1.13 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.65, 144.51, 138.11, 134.16, 129.54, 129.00, 126.99, 122.53, 114.44, 77.32, 60.42, 21.10, 14.00. IR v_{max} (cm⁻¹) 3404, 2981, 2925, 1734, 1601, 1501, 1314, 1254, 1176, 1021, 816, 739. MS (EI), m/z: 303[M]⁺, 230, 195, 138, 111, 91, 77, 65, 50. Enantiomeric excess is 85% determined by HPLC analysis: Chiralcel AD-H (hexane/iPrOH = 99/1, flow rate = 0.5 mL/min, 251.6 nm), *t* r-minor 47.883 min, *t* r-major 50.079 min. [α]_D²⁰ = 85 (c = 0.2, CHCl₃).

样品名称: wxh-6-r-1, wxh-6-s-1 采集日期: 2014-4-20 13:29:46, 2014-4-20 か 理通道・PDA 251 6 4 米

	处理通道,FDA ZJI.0 纳不							
	处理通道	保留时间 (分钟)	面积	%面积	峰高			
1	PDA 251.6 纳米	47.883	11251477	7.71	199830			
2	PDA 251.6 纳米	48.888	53726139	49.66	922556			
3	PDA 251.6 纳米	50.079	134684326	92.29	2254404			
4	PDA 251.6 纳米	51.258	54467122	50.34	918300			

Colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 7.9 Hz, 2H), 6.81 (t, *J* = 8.7 Hz, 2H), 6.48 (dd, *J* = 9.0, 4.4 Hz, 2H), 4.96 (d, *J* = 4.9 Hz, 1H), 4.82 (s, 1H), 4.28 – 4.05 (m, 2H), 2.32 (s, 3H), 1.20 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.93, 156.06 (d, *J* = 235.6 Hz), 142.45, 138.09, 134.50, 129.57, 127.09, 115.67 (d, *J* = 22.4 Hz), 114.27 (d, *J* = 7.4 Hz), 77.38, 77.06, 76.74, 61.78, 61.06, 21.15, 14.06. IR v_{max} (cm⁻¹) 3402, 2982, 2925, 1734, 1512, 1313, 1203, 1022, 820. MS (EI), m/z: 287[M]⁺, 214, 198, 122, 95, 75, 65, 50. Enantiomeric excess is 87% determined by HPLC analysis: Chiralcel AD-H (hexane/iPrOH = 99/1, flow rate = 0.5 mL/min, 235.1 nm), *t* r-minor 41.533 min, *t* r-major 43.324 min. [α]_D²⁰ = 80 (c = 0.2, CHCl₃).

样品名称: wxh-5-r-1, wxh-5-s-1 采集日期: 2014-4-20 11:48:44, 2014-4-20

处理	通道	PDA	235.1	纳米
----	----	-----	-------	----

	处理通道	保留时间 (分钟)	面积	%面积	峰高
1	PDA 235.1 纳米	41.239	25896636	49.60	556047
2	PDA 235.1 纳米	41.533	1354230	6.60	28561
3	PDA 235.1 纳米	42.988	26313496	50.40	532859
4	PDA 235.1 纳米	43.324	19160085	93.40	386169

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 8.1 Hz, 1H), 7.15 (d, *J* = 7.9 Hz, 1H), 6.93 (t, *J* = 8.0 Hz, 1H), 6.78 (d, *J* = 8.7 Hz, 1H), 6.70 (s, 1H), 6.44 (d, *J* = 8.2 Hz, 1H), 5.04 (d, *J* = 5.9 Hz, 1H), 4.98 (d, *J* = 6.0 Hz, 1H), 4.30 – 4.04 (m, 1H), 2.32 (s, 1H), 1.19 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.54, 147.22, 138.14, 134.01, 130.41, 129.56, 126.95, 123.06, 120.68, 116.05, 111.87, 61.87, 60.08, 21.09, 13.99. IR v_{max} (cm⁻¹) 3403, 2924, 2858, 1724, 1637, 1597, 1184, 804, 739. MS (EI), m/z: 347[M]⁺,

274, 182, 155, 103, 91, 77, 65, 50. Enantiomeric excess is 92% determined by HPLC analysis: Chiralcel AD-H (hexane/iPrOH = 98/2, flow rate = 1.0 mL/min, 246.9 nm), *t* r-minor 22.705 min, *t* r-major 16.497 min. $[\alpha]_D^{20} = 80$ (c = 0.2, CHCl₃).

样品名称: wxh-8-r, wxh-8-s 采集日期: 2014-4-18 21:20:58, 2014-4-18

	处理通道: PDA 246.9 纳米							
	处理通道	保留时间 (分钟)	面积	% 面积	峰高			
1	PDA 246.9 纳米	16.497	12431143	96.01	545113			
2	PDA 246.9 纳米	16.522	4400237	50.08	193174			
3	PDA 246.9 纳米	22.705	517118	3.99	16501			
4	PDA 246.9 纳米	22.719	4385357	49.92	133237			

Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 8.6 Hz, 2H), 6.94 (t, *J* = 8.0 Hz, 1H), 6.87 (d, *J* = 8.6 Hz, 2H), 6.79 (d, *J* = 8.0 Hz, 1H), 6.70 (d, *J* = 1.6 Hz, 1H), 6.44 (d, *J* = 8.1 Hz, 1H), 4.99 (dd, *J* = 25.8, 5.1 Hz, 2H), 4.31 – 4.04 (m, 2H), 3.78 (s, 3H), 1.21 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.61, 159.54, 147.18, 130.41, 128.92, 128.21, 123.06, 120.68, 116.04, 114.23, 111.90, 77.32, 77.00, 76.68, 61.85, 59.72, 55.21, 14.01. IR v_{max} (cm⁻¹) 3398, 2977, 2927, 1732, 1596, 1499, 1246, 1178, 1035,765, 738. MS (EI), m/z: 363[M]⁺, 292, 277, 211, 184, 155, 120, 107, 91, 77, 65, 50. Enantiomeric excess is 90% determined by HPLC analysis: Chiralcel AD-H (hexane/iPrOH = 98/2, flow rate = 0.6 mL/min, 242.1 nm), *t* r-minor 47.031 min, *t* r-major 44.771 min. [α]_D²⁰ = 100 (c = 0.2, CHCl₃).

拝品名称∶ wxh-	28-r-2, wx	h-28-s			
采集日期: 2014-5-13 15:47:11, 2014-5-13					
处理道	通道:PD/	A 242.1	纳米		
	保留时间				

	处理通道	保留时间 (分钟)	面积	%面积	峰高
1	PDA 242.1 纳米	44.672	12447410	49.90	231001
2	PDA 242.1 纳米	44.771	69513111	94.82	1239417
3	PDA 242.1 纳米	46.859	12498888	50.10	220593
4	PDA 242.1 纳米	47.031	3794847	5.18	71864

Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.06 (s, 2H), 7.01 – 6.92 (m, 2H), 6.80 (d, *J* = 7.9 Hz, 1H), 6.72 (d, *J* = 1.9 Hz, 1H), 6.45 (d, *J* = 8.1 Hz, 1H), 4.98 – 4.88 (m, 2H), 4.33 – 4.06 (m, 2H), 2.30 (s, 6H), 1.22 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.67, 147.43, 138.47, 136.94, 130.47, 130.15, 124.86, 123.11, 120.77, 116.11, 111.87, 61.84, 60.51, 21.31, 14.04. IR v_{max} (cm⁻¹) 3396, 2980, 2919, 1734, 1596, 1498, 1480, 1196, 1160, 1025, 853, 763, 681. MS (EI), m/z: 361[M]⁺, 288, 209, 184, 155, 117, 103, 91, 76, 65, 50. Enantiomeric excess is 92% determined by HPLC analysis: Chiralcel AD-H (hexane/iPrOH = 98/2, flow rate = 1.0 mL/min, 246.9 nm), *t* r-minor 16.842 min, *t* r-major 10.807 min. [α]_D²⁰ = 80 (c = 0.2, CHCl₃).

样品名称: wxh-33-r, wxh-33-s 采集日期: 2014-5-12 21:36:36, 2014-5-12

	处理通道: FUA 240.9 羽木							
	处理通道	保留时间 (分钟)	面积	%面积	峰高			
1	PDA 246.9 纳米	10.681	3026025	49.77	197529			
2	PDA 246.9 纳米	10.807	23239489	95.80	1482148			
3	PDA 246.9 纳米	16.659	3053978	50.23	127486			
4	PDA 246.9 纳米	16.842	1018191	4.20	44829			

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.22 (m, 2H), 7.18 (d, *J* = 12.0 Hz, 2H), 6.90 (d, *J* = 7.9 Hz, 2H), 6.48 (d, *J* = 8.9 Hz, 2H), 5.44 (d, *J* = 7.3 Hz, 1H), 4.93 (d, *J* = 7.1 Hz, 1H), 4.25 – 4.03 (m, 2H), 3.88 (s, 3H), 1.17 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.91, 157.10, 145.31, 131.78, 129.44, 127.92, 125.94, 120.97, 114.98, 111.13, 109.52, 61.52, 55.69, 54.65, 13.99. IR v_{max} (cm⁻¹) 3403, 2980, 2937, 1734, 1596, 1496, 1247, 1026, 814, 755, 737. MS (EI), m/z: 363[M]⁺, 292, 211, 184, 157, 121, 103, 91, 76, 65, 50. Enantiomeric excess is 66% determined by HPLC analysis: Chiralcel AD-H (hexane/iPrOH = 98/2, flow rate = 1.0 mL/min, 251.6 nm), *t* r-minor 36.214 min, *t* r-major 42.605 min. [α]_D²⁰ = 65 (c = 0.2, CHCl₃).

样品名称: wxh-11-r, wxh-11-s 采集日期: 2014-4-18 18:44:47, 2014-4-18

处理通	道:PD/	A 251.6	纳米

	处理通道	保留时间 (分钟)	面积	%面积	峰高
1	PDA 251.6 纳米	36.214	5364682	17.26	108389
2	PDA 251.6 纳米	36.304	7064026	50.05	143731
3	PDA 251.6 纳米	42.605	25721246	82.74	438301
4	PDA 251.6 纳米	42.637	7050328	49.95	121058

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.25 (t, *J* = 7.9 Hz, 1H), 7.17 (d, *J* = 8.9 Hz, 2H), 7.05 (d, *J* = 7.7 Hz, 1H), 7.02 – 6.98 (m, 1H), 6.83 (dd, *J* = 8.0, 2.2 Hz, 1H), 6.42 (d, *J* = 8.9 Hz, 2H), 5.02 (s, 1H), 4.97 (s, 1H), 4.31 – 4.05 (m, 2H), 3.77 (s, 3H), 1.21 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.28, 159.93, 144.83, 138.72, 131.85, 129.81, 119.42, 114.92, 113.65, 112.69, 109.66, 61.92, 60.54, 55.17, 13.98. IR v_{max} (cm⁻¹) 3402, 2981, 2937, 1733, 1596, 1495, 1311, 1199, 1046, 814, 738. MS (EI), m/z: 363[M]⁺, 292, 211, 184, 157, 103, 91, 76, 65, 50. Enantiomeric excess is 86%

determined by HPLC analysis: Chiralcel AD-H (hexane/iPrOH = 98/2, flow rate = 1.0 mL/min, 250.4 nm), $t_{\text{r-minor}}$ 37.183 min, $t_{\text{r-major}}$ 44.138 min. $[\alpha]_{\text{D}}^{20}$ = 45 (c = 0.2, CHCl₃).

样品名称: wxh-10-r, wxh-10-s 采集日期: 2014-4-18 17:01:18, 2014-4-18

か理通う	溢・P∩/	A 250 /	幼米
	LE.FU/	1230.4	511 A

	处理通道	保留时间 (分钟)	面积	%面积	峰高
1	PDA 250.4 纳米	37.183	1926094	7.02	34729
2	PDA 250.4 纳米	37.527	8650516	49.62	156267
3	PDA 250.4 纳米	44.138	25521096	92.98	417587
4	PDA 250.4 纳米	44.631	8782516	50.38	142934

Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 6.7 Hz, 2H), 7.17 (d, J = 8.9 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 6.41 (d, J = 8.9 Hz, 2H), 4.95 (t, J = 7.0 Hz, 2H), 4.28 – 4.05 (m, 2H), 3.76 (s, 3H), 1.20 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.64, 159.55, 144.91, 131.83, 129.01, 128.21, 114.94, 114.21, 109.57, 61.77, 59.95, 55.18, 13.98. IR v_{max} (cm⁻¹) 3402, 2981, 2934, 1733, 1596, 1499, 1176, 1030, 814, 737. MS (EI), m/z: 363[M]⁺, 292, 211, 184, 157, 103, 91, 76, 65, 50. Enantiomeric excess is 62% determined by HPLC analysis: Chiralcel AD-H (hexane/iPrOH = 98/2, flow rate = 1.0 mL/min, 246.9 nm), $t_{r-minor}$ 38.130 min, $t_{r-major}$ 57.788 min. [α]_D²⁰ = 95 (c = 0.2, CHCl₃).

样品名称: wxh-9, wxh-9' 采集日期: 2014-4-17 17:57:38, 2014-4-17

处理通道: PDA 246.9 纳米

	无法地追口 的过去时的 利水							
	处理通道	保留时间 (分钟)	面积	% 面积	峰高			
1	PDA 246.9 纳米	38.130	5086638	18.78	93496			
2	PDA 246.9 纳米	38.394	13690853	49.98	252382			
3	PDA 246.9 纳米	57.623	13703984	50.02	162257			
4	PDA 246.9 纳米	57.788	22004184	81.22	245392			

Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (q, *J* = 8.6 Hz, 1H), 7.61 (s, 3H), 7.20 (d, *J* = 6.9 Hz, 2H), 6.39 (d, *J* = 8.8 Hz, 2H), 5.11 (s, 1H), 5.07 (s, 1H), 4.34 – 4.04 (m, 2H), 1.22 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.56, 144.36, 141.32, 132.04, 130.63 (q, *J*_{*C*-*F*} = 32.5 Hz), 127.62, 126.71 (q, *J*_{*C*-*F*} = 183.8 Hz), 125.85 (q, *J*_{*C*-*F*} = 3.7 Hz), 114.96, 110.13, 62.40, 60.26, 13.98. IR v_{max} (cm⁻¹) 3405, 2983, 2928, 1737, 1596, 1498, 1324, 1068, 1018, 8314, 739. MS (EI), m/z: 401[M]⁺, 330, 248, 182, 157, 145, 127, 104, 76, 63, 50. Enantiomeric excess is 94% determined by HPLC analysis: Chiralcel AD-H (hexane/iPrOH = 98/2, flow rate = 1.0 mL/min, 248.0 nm), *t* _{r-minor} 19.847 min, *t* _{r-major} 17.488 min. [α]_D²⁰ = 75 (c = 0.2, CHCl₃).

样品名称: wxh-15-r, wxh-15-s 采集日期: 2014-4-19 14:53:06, 2014-4-19

处理通道: PDA 248.0 纳米

处理通道	保留时间 (分钟)	面积	% 面积	峰高
PDA 248.0 纳米	17.488	9521486	96.83	380500
PDA 248.0 纳米	17.507	2580168	49.93	104028
PDA 248.0 纳米	19.839	2587556	50.07	91439
PDA 248.0 纳米	19.847	311384	3.17	9771
	处理通道 PDA 248.0 纳米 PDA 248.0 纳米 PDA 248.0 纳米 PDA 248.0 纳米	处理通道 保留时间 (分钟) PDA 248.0 纳米 17.488 PDA 248.0 纳米 17.507 PDA 248.0 纳米 19.839 PDA 248.0 纳米 19.847	处理通道 保留时间 (分钟) 面积 PDA 248.0 纳米 17.488 9521486 PDA 248.0 纳米 17.507 2580168 PDA 248.0 纳米 19.839 2587556 PDA 248.0 纳米 19.847 311384	处理通道 保留时间 (分钟) 面积 %面积 PDA 248.0 納米 17.488 9521486 96.83 PDA 248.0 纳米 17.507 2580168 49.93 PDA 248.0 纳米 19.839 2587556 50.07 PDA 248.0 纳米 19.847 311384 3.17

Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.2 Hz, 2H), 7.58 (d, *J* = 8.3 Hz, 2H), 7.18 (d, *J* = 8.7 Hz, 2H), 6.39 (d, *J* = 8.8 Hz, 2H), 5.09 (d, *J* = 18.4 Hz, 2H), 4.35 – 3.97 (m, 2H), 2.59 (s, 3H), 1.21 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.47, 170.61, 144.45, 142.52, 137.15, 132.00, 128.89, 127.38, 115.00, 110.06, 62.33, 60.44, 26.62, 13.97. IR v_{max} (cm⁻¹) 3396, 2982, 2926, 1736, 1684, 1595, 1497, 1265, 1177, 1018, 814, 737. MS (EI), m/z: 375[M]⁺, 306, 225, 182, 155, 135, 103, 93, 76, 65, 50. Enantiomeric excess is 93% determined by HPLC analysis: Chiralcel

AD-H (hexane/iPrOH = 98/2, flow rate = 1.0 mL/min, 250.4 nm), $t_{\text{r-minor}}$ 49.189 min, $t_{\text{r-minor}}$ 54.089 min. [α]_D²⁰ = 85 (c = 0.2, CHCl₃).

样品名称:	wxh-31-r_1, wxh-31-s
采集日期:	2014-5-13 19:48:00, 2014-5-13

如理 1月1日 「「UA 200.4 34」	友	、理	通	道	÷	PDA	250	.4	纳	X	e
------------------------	---	----	---	---	---	-----	-----	----	---	---	---

	处理通道	保留时间 (分钟)	面积	% 面积	峰高
1	PDA 250.4 纳米	49.189	1000994	3.70	13756
2	PDA 250.4 纳米	49.722	14626548	49.91	193049
3	PDA 250.4 纳米	54.089	26069557	96.30	339764
4	PDA 250.4 纳米	54.766	14680386	50.09	193284

Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 8.4 Hz, 2H), 7.55 (d, J = 8.3 Hz, 2H), 7.18 (d, J = 8.8 Hz, 2H), 6.39 (d, J = 8.8 Hz, 2H), 5.08 (dd, J = 22.4, 5.5 Hz, 2H), 4.44 – 4.31 (m, 2H), 4.30 – 4.08 (m, 2H), 1.38 (t, J = 7.1 Hz, 3H), 1.21 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.70, 166.11, 144.47, 142.19, 131.97, 130.61, 130.09, 127.13, 114.98, 109.99, 62.28, 61.04, 60.45, 14.30, 13.96. IR v_{max} (cm⁻¹) 3395, 1978, 1924, 1735, 1718, 1595, 1498, 1277, 1107, 814, 745. MS (EI), m/z: 405[M]⁺, 334, 304, 259, 224, 180, 152, 104, 89, 76, 63, 50. Enantiomeric excess is 94% determined by HPLC analysis: Chiralcel AD-H (hexane/iPrOH = 98/2, flow rate = 1.0 mL/min, 246.9 nm), $t_{r-minor}$ 42.703 min, $t_{r-major}$ 62.512 min. [α]_D²⁰ = 90 (c = 0.2, CHCl₃).

样品名称: wxh-13-r-2, wxh-13-s-2 采集日期: 2014-4-21 9:40:04, 2014-4-21

处理通道: PDA 246.9 纳米

	处理通道	保留时间 (分钟)	面积	%面积	峰高
1	PDA 246.9 纳米	40.950	10847843	50.45	142836
2	PDA 246.9 纳米	42.703	1037101	2.72	14440
3	PDA 246.9 纳米	61.036	10652262	49.55	99832
4	PDA 246.9 纳米	62.512	37161740	97.28	331231

S20

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (q, J = 8.4 Hz, 6H), 7.40 (t, J = 7.5 Hz, 2H), 7.32 (t, J = 7.3 Hz, 1H), 7.23 – 7.15 (m, 2H), 6.44 (d, J = 8.8 Hz, 2H), 5.05 (q, J = 5.7 Hz, 2H), 4.29 – 4.07 (m, 2H), 1.21 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.35, 144.83, 141.22, 140.37, 136.08, 131.91, 128.73, 127.54, 127.49, 127.42, 127.00, 114.98, 109.73, 77.32, 77.00, 76.68, 61.98, 60.32, 14.00. IR v_{max} (cm⁻¹) 3405, 2982, 2927, 1735, 1596, 1497, 1315, 1264, 1177, 1022, 814, 737, 699. MS (EI), m/z: 409[M]⁺, 336, 257, 184, 155, 127, 115, 103, 76, 63, 50. Enantiomeric excess is 90% determined by HPLC analysis: Chiralcel AD-H (hexane/iPrOH = 98/2, flow rate = 1.0 mL/min, 255.1 nm), t r-minor 44.349 min, t r-major 41.823 min. [α]_D²⁰ = 135 (c = 0.2, CHCl₃).

样品名称: wxh-16-r, wxh-16-s 采集日期: 2014-4-19 15:47:24, 2014-4-19

处理	通道:	PDA 25	5.1 纠	9米

	处理通道	保留时间 (分钟)	面积	%面积	峰高
1	PDA 255.1 纳米	41.823	30872620	94.89	506141
2	PDA 255.1 纳米	41.880	5014363	50.16	82617
3	PDA 255.1 纳米	44.319	4983079	49.84	76417
4	PDA 255.1 纳米	44.349	1663274	5.11	25326

Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.43 (m, 2H), 7.22 (d, *J* = 6.8 Hz, 2H), 7.07 (t, *J* = 8.6 Hz, 2H), 6.43 (d, *J* = 8.9 Hz, 2H), 5.07 (s, 1H), 5.01 (s, 1H), 4.32 – 4.11 (m, 2H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.19, 162.63 (d, *J* = 247.2 Hz), 144.62, 132.89 (d, *J* = 3.2 Hz), 131.94, 128.75 (d, *J* = 8.3 Hz), 115.81 (d, *J* = 21.7 Hz), 115.64 (d, *J* = 21.6 Hz), 109.88, 62.07, 59.90, 13.98. IR v_{max} (cm⁻¹) 3402, 2982, 2930, 1735, 1596, 1505, 1311, 1226, 1178, 1019, 811. MS (EI), m/z: 351[M]⁺,

278, 198, 182, 155, 122, 107, 95, 76, 63, 50. Enantiomeric excess is 87% determined by HPLC analysis: Chiralcel AD-H (hexane/iPrOH = 98/2, flow rate = 1.0 mL/min, 249.2 nm), $t_{\text{r-minor}}$ 26.531 min, $t_{\text{r-major}}$ 23.438 min. [α]_D²⁰ = 80 (c = 0.2, CHCl₃).

样品名称: wxh-29-r, wxh-29-s 采集日期: 2014-5-12 12:45:34, 2014-5-12

			1.1. 10
处埋週追:	PDA	249.2	羽木

	处理通道	保留时间 (分钟)	面积	% 面积	峰高
1	PDA 249.2 纳米	23.438	49082516	93.28	1610534
2	PDA 249.2 纳米	24.131	11112470	46.96	353360
3	PDA 249.2 纳米	26.531	3537954	6.72	97608
4	PDA 249.2 纳米	27.191	12551420	53.04	322825

Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.5 Hz, 2H), 7.32 (d, *J* = 8.5 Hz, 2H), 7.19 (d, *J* = 8.8 Hz, 2H), 6.39 (d, *J* = 8.8 Hz, 2H), 5.05 (d, *J* = 5.3 Hz, 1H), 4.97 (d, *J* = 5.5 Hz, 1H), 4.31 – 4.06 (m, 2H), 1.22 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.94, 144.50, 135.73, 134.21, 131.97, 129.06, 128.45, 114.97, 109.95, 62.20, 59.97, 13.99. IR v_{max} (cm⁻¹) 3402, 2981, 2928, 1735, 1596, 1495, 1311, 1251, 1177, 1015, 813, 738. MS (EI), m/z: 367[M]⁺, 196, 260, 209, 184, 152, 138, 125, 105, 89, 76, 63, 50. Enantiomeric excess is 90% determined by HPLC analysis: Chiralcel AD-H (hexane/iPrOH = 98/2, flow rate = 1.0 mL/min, 248.0 nm), *t* r-minor 26.820 min, *t* r-major 23.299 min. [α]_D²⁰ = 105 (c = 0.2, CHCl₃).

样品名称: wxh-14-r, wxh-14-s 采集日期: 2014-4-19 13:43:26, 2014-4-19

处理通道: PDA 248.0 纳米

	处理通道	保留时间 (分钟)	面积	% 面积	峰高			
1	PDA 248.0 纳米	23.299	47021761	94.76	1447779			
2	PDA 248.0 纳米	23.420	9067009	50.04	283038			
3	PDA 248.0 纳米	26.820	2598254	5.24	72799			
4	PDA 248.0 纳米	26.903	9051541	49.96	244971			

Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.5 Hz, 2H), 7.35 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 8.8 Hz, 2H), 6.38 (d, J = 8.8 Hz, 2H), 5.05 (d, J = 5.2 Hz, 1H), 4.95 (d, J = 5.4 Hz, 1H), 4.30 – 4.07 (m, 2H), 1.21 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.84, 144.48, 136.28, 132.00, 131.96, 128.78, 122.35, 114.97, 109.96, 62.20, 60.03, 13.98. IR v_{max} (cm⁻¹) 3401, 2981, 2930, 1735, 1596, 1498, 1311, 1177, 1073, 1011, 813. MS (EI), m/z: 411[M]⁺, 340, 259, 182, 157, 103, 90, 76, 63, 50. Enantiomeric excess is 90% determined by HPLC analysis: Chiralcel AD-H (hexane/iPrOH = 98/2, flow rate = 1.0 mL/min, 248.0 nm), $t_{r-minor}$ 34.595 min, $t_{r-major}$ 30.853 min. [α]_D²⁰ = 115 (c = 0.2, CHCl₃).

样品名称: wxh-22, wxh-22-s 采集日期: 2014-5-12 9:52:40, 2014-5-12

か 理 通 道・ PPA 2/8 (1 4曲米

	处理通道	保留时间 (分钟)	面积	%面积	峰高
1	PDA 248.0 纳米	30.853	88847703	94.99	1984521
2	PDA 248.0 纳米	30.904	14899505	49.95	330470
3	PDA 248.0 纳米	34.560	14927419	50.05	297041
4	PDA 248.0 纳米	34.595	4684018	5.01	91430

Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 8.4 Hz, 2H), 7.19 (dd, J = 13.4, 8.6 Hz, 4H), 6.37 (d, J = 8.8 Hz, 2H), 5.03 (s, 1H), 4.93 (s, 1H), 4.28 – 4.05 (m, 2H), 1.21 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.83, 144.48, 137.96, 137.01, 131.98, 129.02, 114.97, 109.98, 94.06, 62.22, 60.15, 14.00. IR v_{max} (cm⁻¹) 3402, 2980, 2928, 1735, 1595, 1497, 1309, 1249, 1177, 1006, 812, 737. MS (EI), m/z: 459[M]⁺, 386, 307, 259, 182, 152, 134, 103, 90, 76, 63, 50. Enantiomeric excess is 94% determined by HPLC analysis: Chiralcel AD-H (hexane/iPrOH = 98/2, flow rate = 1.0 mL/min, 243.3

nm), $t_{\text{r-minor}}$ 35.549 min, $t_{\text{r-major}}$ 31.892 min. $[\alpha]_{\text{D}}^{20} = 110$ (c = 0.2, CHCl₃).

样品名称: wxh-30-r, wxh-30-s 采集日期: 2014-5-12 11:18:17, 2014-5-12

处理通道: PDA 243.3 纳米

	处理通道	保留时间 (分钟)	面积	%面积	峰高				
1	PDA 243.3 纳米	31.892	86192706	97.14	1950460				
2	PDA 243.3 纳米	35.104	17439556	49.93	350627				
3	PDA 243.3 纳米	35.549	2539977	2.86	50732				
4	PDA 243.3 纳米	38.790	17486579	50.07	323486				

Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, *J* = 8.8 Hz, 2H), 6.94 (s, 2H), 6.76 (d, *J* = 8.0 Hz, 1H), 6.41 (d, *J* = 8.8 Hz, 2H), 5.93 (d, *J* = 2.4 Hz, 2H), 5.01 (d, *J* = 4.9 Hz, 1H), 4.89 (d, *J* = 5.3 Hz, 1H), 4.27 – 4.06 (m, 2H), 1.22 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.39, 148.09, 147.62, 144.70, 131.86, 130.93, 120.69, 114.93, 109.67, 108.44, 107.26, 101.20, 61.94, 60.19, 14.00. IR v_{max} (cm⁻¹) 3402, 2981, 2899, 1733, 1595, 1500, 1489, 1318, 1244, 1039, 930, 813, 737. MS (EI), m/z: 377[M]⁺, 306, 225, 182, 155, 135, 103, 93, 76, 65, 50. Enantiomeric excess is 74% determined by HPLC analysis: Chiralcel AD-H (hexane/iPrOH = 98/2, flow rate = 1.0 mL/min, 249.2 nm), *t* r-minor 47.331 min, *t* r-major 62.358 min. [α]_D²⁰ = 80 (c = 0.2, CHCl₃).

样品名称: wxh-26-r, wxh-26-s 采集日期: 2014-5-12 16:20:43, 2014-5-12

か 理 诵 道 · PD∆ 249 2 幼 米

				211/12	
	处理通道	保留时间 (分钟)	面积	% 面积	峰高
1	PDA 249.2 纳米	47.331	8107574	12.80	101664
2	PDA 249.2 纳米	48.327	23151790	49.25	295425
3	PDA 249.2 纳米	62.358	55229922	87.20	611116
4	PDA 249.2 纳米	64.130	23857419	50.75	266946

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.81 (t, *J* = 8.0 Hz, 3H), 7.57 (d, *J* = 8.5 Hz, 1H), 7.51 – 7.42 (m, 2H), 7.16 (d, *J* = 8.8 Hz, 2H), 6.45 (d, *J* = 8.8 Hz, 2H), 5.15 (s, 2H), 4.30 – 4.03 (m, 2H), 1.18 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.37, 144.82, 134.59, 133.26, 133.21, 131.88, 128.74, 127.98, 127.65, 126.33, 126.32, 126.28, 124.70, 115.00, 109.72, 62.02, 60.74, 13.99. IR v_{max} (cm⁻¹) 3396, 2985, 2930, 1730, 1596, 1498, 1265, 1166, 1022, 813, 738. MS (EI), m/z: 383[M]⁺, 356, 310, 226, 182, 155, 127, 115, 103, 76, 63, 50. Enantiomeric excess is 95% determined by HPLC analysis: Chiralcel AD-H (hexane/iPrOH = 98/2, flow rate = 1.0 mL/min, 225.7 nm), *t* r-minor 33.524 min, *t* r-major 36.777 min. [α]_D²⁰ = 135 (c = 0.2, CHCl₃).

Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.30 (dd, J = 10.2, 5.2 Hz, 2H), 7.16 (d, J = 5.0 Hz, 1H), 6.74 (d, J = 8.9 Hz, 2H), 6.58 (d, J = 8.9 Hz, 2H), 5.12 (s, 1H), 4.51 (s, 1H), 4.20 (qd, J = 10.8, 5.4 Hz, 2H), 3.71 (s, 3H), 1.23 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.74, 152.70, 140.33, 138.49, 126.47, 126.25, 122.74, 114.96, 114.83, 61.66, 58.04, 55.66, 14.07. IR v_{max} (cm⁻¹) 3388, 2933, 2905, 1735, 1513, 1283, 1185, 1157, 1035, 820, 774. MS (EI), m/z: 291[M]⁺, 218, 174, 134, 122, 107, 92, 77, 64, 50. Enantiomeric excess is 66% determined by HPLC analysis:

Chiralcel OD-H (hexane/iPrOH = 98/2, flow rate = 1.0 mL/min, 241.0 nm), $t_{\text{r-minor}}$ 54.185 min, $t_{\text{r-major}}$ 44.047 min. $[\alpha]_{\text{D}}^{20} = 40$ (c = 0.2, CHCl₃).

样品名称: wxh-39-r-1, wxh-39-s-1 采集日期: 2014-5-28 9:53:47, 2014-5-28

<i>h</i> h	TH	いま	1¥ -	244	Δ	411 14
						2.0

	文 生地道 H BA Z H IO 别 术							
	处理通道	保留时间 (分钟)	面积	% 面积	峰高			
1	PDA 241.0 纳米	44.047	26529928	82.91	385844			
2	PDA 241.0 纳米	46.286	36675346	50.61	496853			
3	PDA 241.0 纳米	54.185	5467514	17.09	72841			
4	PDA 241.0 纳米	56.480	35786551	49.39	415433			

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, *J* = 8.0 Hz, 2H), 7.17 (d, *J* = 7.9 Hz, 2H), 6.85 (s, 1H), 6.76 (d, *J* = 8.9 Hz, 2H), 6.56 (d, *J* = 8.9 Hz, 2H), 4.63 (s, 1H), 4.43 (s, 1H), 3.72 (s, 3H), 2.80 (d, *J* = 4.9 Hz, 3H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.20, 153.01, 140.83, 138.21, 135.98, 129.73, 127.18, 114.86, 114.79, 64.55, 55.64, 26.22, 21.06. IR v_{max} (cm⁻¹) 3321, 2928, 2833, 1656, 1512, 1241, 1178, 1036, 820, 773, 737. MS (EI), m/z: 284[M]⁺, 226, 182, 168, 134, 119, 107, 77, 57, 51. Enantiomeric excess is 74% determined by HPLC analysis: Chiralcel AD-H (hexane/iPrOH = 90/10, flow rate = 1.0 mL/min, 242.1 nm), *t* r-minor 29.788 min, *t* r-major 43.583 min. [α]_D²⁰ = 95 (c = 0.2, CHCl₃).

样品名称: wxh-21-r, wxh-21-s-2 采集日期: 2014-4-18 14:40:51, 2014-5-14

处理通道: PDA 242.1 纳米

	处理通道	保留时间 (分钟)	面积	% 面积	峰高		
1	PDA 242.1 纳米	29.788	1718820	13.23	34423		
2	PDA 242.1 纳米	31.248	2683646	50.89	53105		
3	PDA 242.1 纳米	43.583	11271155	86.77	151742		
4	PDA 242.1 纳米	46.607	2589292	49.11	34316		

Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.32 (m, 3H), 7.18 (d, *J* = 7.9 Hz, 2H), 6.77 (d, *J* = 8.8 Hz, 2H), 6.60 (d, *J* = 8.9 Hz, 2H), 4.68 (s, 1H), 4.21 – 4.08 (m, 4H), 3.96 – 3.86 (m, 1H), 3.73 (s, 3H), 2.33 (s, 3H), 1.24 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.97, 169.49, 153.10, 140.70, 138.33, 135.64, 129.76, 127.31, 115.00, 114.75, 64.64, 61.38, 55.61, 41.18, 21.07, 14.02. IR v_{max} (cm⁻¹) 3368, 2986, 2934, 1744, 1666, 1512, 1241, 1202, 1035, 821, 735. MS (EI), m/z: 356[M]⁺, 226, 207, 168, 134, 119, 107, 91, 77, 56, 50. Enantiomeric excess is 54% determined by HPLC analysis: Chiralcel AD-H (hexane/iPrOH = 90/10, flow rate = 1.0 mL/min, 242.1 nm), *t* r-minor 44.281 min, *t* r-major 78.744 min. [α]_D²⁰ = 60 (c = 0.2, CHCl₃).

样品名称: wxh-20-race, wxh-20-s 采集日期: 2014-4-18 11:34:15, 2014-4-18

处理通道: PDA 242.1 纳米

	处理通道	保留时间 (分钟)	面积	% 面积	峰高
1	PDA 242.1 纳米	44.281	6331191	23.23	85869
2	PDA 242.1 纳米	45.713	11416965	51.16	146559
3	PDA 242.1 纳米	78.744	20926880	76.77	131441
4	PDA 242.1 纳米	81.946	10898313	48.84	69880

8. Crystal structure for 2z.

(S)-ethyl 2-((4-bromophenyl)amino)-2-(naphthalen-2-yl)acetate (CCDC 1005709)

¹H and ¹³C NMR spectra of Products

 $\overbrace{1.20}^{1.23}$

7, 15 16 7, 15 17, 15 16 17, 15 16 17, 15 16 17, 15 Å.å. Å.å.

