Control of Absorption Properties of Tetrazaporphyrin Group 15 Complexes by Modification of their Axial Ligands

Taniyuki Furuyama, Mitsuo Asai and Nagao Kobayashi*

Department of Chemistry, Graduate School of Science, Tohoku University nagaok@m.tohoku.ac.jp

Supporting information

Table of Contents

General Comments and Crystallographic data collection		
Additional Experimental Results	S–3	
Full Experimental Procedures	S–9	
Full Computational Details	S-15	
References	S-24	

General Comments

Unless otherwise noted, solvents and reagents were purchased from Tokyo Kasei Co. and Wako Chemicals Co. and were used after appropriate purification (distillation or recrystallization).

Electronic absorption spectra were recorded on a JASCO V-570 spectrophotometer. Magnetic circular dichroism (MCD) spectra were obtained on a JASCO J-725 spectrodichrometer equipped with a JASCO electromagnet capable of producing magnetic fields of up to 1.03 T (1 T = 1 tesla) with both parallel and antiparallel fields. The magnitudes were expressed in terms of molar ellipticity per tesla ($[\theta]_M$ / deg dm³mol⁻¹cm⁻¹T⁻¹). NMR spectra were obtained on a Bruker AVANCE III 500 spectrometer. Unless otherwise noted, samples were recorded in CDCl₃. Chemical shifts are expressed in δ (ppm) values, and coupling constants are expressed in hertz (Hz). ¹H-NMR spectra were referenced to the residual solvent as an internal standard. ³¹P-NMR spectra were referenced to external 85% H₃PO₄ solution (0.0 ppm). The following abbreviations are used: s = singlet, d = doublet, and m = multiplet. High-resolution mass spectra (HRMS) were recorded on a Bruker Daltonics Apex-III spectrometer.

Crystallographic data collection

A needle shaped and green single crystal of $6\cdot H_2 O$ 0.20 × 0.05 × 0.05 mm, was selected for measurements. The diffraction data were collected using a Bruker APEXII CCD diffractometer with Bruker Helios multilayered confocal mirror monochromatized MoK α radiation ($\lambda = 0.71073$ Å) at – 173°C. The structures were solved by a direct method (SIR2004)ⁱ and refined using a full-matrix least square technique (SHELXL-97).ⁱⁱ Yadokari-XG 2009 software was used as a GUI for SHELXL-97.ⁱⁱⁱ All non-hydrogen atoms were refined anisotropically. Positions of all hydrogen atoms were calculated geometrically, and refined by applying riding models. The peripheral *tert*-butyl substituents were severely disordered despite the low measurement temperature. Therefore, the structure was refined under thermally and positionally restrained conditions, using DFIX, SIMU, ISOR, and DELU commands. Some large electron peaks due to solvent chloroform molecules (maybe 3 molecules) were found in the unit cell. As we failed to model them properly, the rest molecules were refined without the effect of the solvent molecules by the Platon squeeze technique.^{iv} CCDC-1024678 contains the supplementary crystallographic data for $6\cdot H_2O$. Its data can be obtained free of charge from Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Empirical formula	C ₁₂₈ H ₁₆₈ MgN ₈ O ₆
Formula weight	1859.01
Temperature	100 K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	<i>Pccn</i> (No. 56)
Unit cell dimensions	$a = 22.085(9) \text{ Å}$ $\alpha = 90^{\circ}$
	$b = 35.163(14) \text{ Å}$ $\beta = 90^{\circ}$
	$c = 18.194(7) \text{ Å}$ $\gamma = 90^{\circ}$
Volume	14129(10) Å ³
Ζ	4
Density (Calcd.)	0.874 Mg/m ³
Absorption coefficient	0.055 mm ⁻¹
<i>F</i> (000)	4048
Crystal size	0.20 x 0.05 x 0.05 mm ³
Theta range for data collection	1.09 to 25.00°
Index ranges	-26<=h<=26, -41<=k<=24, -19<=l<=21
Reflections collected	65956
Independent reflections	12441 [$R(int) = 0.2149$]
Completeness to theta = 25.00°	100%
Refinement method	Full-matrix least-squares on F^2
Data / restraints /parameters	12441 / 108 / 678
Goodness-of-fit on F^2	0.898
Final R indices $[I > 2 \operatorname{sigma}(I)]$	$R_1 = 0.0967, wR_2 = 0.2113$
R indices (all data)	$R_1 = 0.2129, wR_2 = 0.2546$
Largest diff. peak and hole	0.654 and -0.248 e.Å ⁻³
CCDC No.	1024678

Table S1. Crystal data and structure refinement for 6•H₂O.

Additional Experimental and Computational Results

Scheme S1. Synthesis of TAP precursor 5. *Reagents and conditions*: (i) NBS (1 eq), benzoyl peroxide (3 mol%), CCl₄, reflux, 1 h, 97%; (ii) NaCN (1.2 eq), DMSO, rt, 24 h, 65%; (iii) I₂ (2 eq), MeONa (5 eq), Et₂O, 0°C, 1 h, 36%; (iv) MeONa (10 mol%), NH₃ (gas), ethylene glycol, 115°C, 6 h, 69%.

Figure S1. X-ray crystal structure of 6•H₂O. The thermal ellipsoids were scaled to the 50% probability

level. H atoms have been omitted for clarity. (a) Top view; (b) side view.

Figure S2. UV-vis absorption spectra of 1–4 in CH₂Cl₂.

Figure S3. Photograph of PTAP 1 solutions under acidic and basic conditions.

Figure S4. UV-vis absorption spectra of 1+Et₃N (excess.) (red), 6 (blue), and ZnTAP (green) in toluene.

Figure S5. Spectral changes of 3 solution by (a) adding Et_3N (0~230 eq) and (b) adding DBU (~ 1 eq) in CH_2Cl_2 .

Figure S6. UV-vis absorption (bottom) and MCD (top) spectra of (a) 1-acidic and (b) 1-basic in CH₂Cl₂.

Compound	λ (nm)	f	Composition (%)	Assignment
1'•acidic	672	0.20	239->258 (6%), 255->258 (7%), 256->257 (77%)	Q
			256->258 (8%)	
	670	0.20	239->257 (7%), 255->257 (7%), 256->257 (8%)	Q
			256->258 (77%)	
	401	0.12	252->257 (36%), 253->257 (7%), 254->258 (27%)	СТ
			255->258 (6%), 255->259 (4%)	
	397	0.35	252->258 (13%), 253->257 (13%), 253->258 (8%)	СТ
			254->258 (4%), 254->259 (4%), 255->258 (40%)	
			256->257 (4%)	
	392	0.41	252->257 (10%), 252->258 (5%), 253->257 (24%)	СТ
			253->258 (4%), 253->259 (4%), 255->257 (34%)	
			256->258 (4%)	
	351	0.80	239->257 (3%), 252->257 (15%), 253->257 (16%)	Soret
			253->258 (3%), 255->257 (47%), 256->258 (5%)	
	348	0.70	239->258 (2%), 252->257 (4%), 252->258 (7%)	Soret
			253->257 (2%), 253->258 (35%), 254->257 (5%)	
			255->258 (31%), 256->257 (4%)	
1'•basic	633	0.32	244->257 (2%), 256->257 (44%), 256->258 (45%)	Q
	626	0.32	244->258 (2%), 256->257 (45%), 256->258 (43%)	Q
	352	0.10	244->257 (3%), 244->258 (2%), 252->257 (27%)	СТ
			252->258 (16%), 253->257 (12%), 253->258 (5%)	
			254->257 (3%), 255->259 (9%)	
	345	0.19	244->258 (3%), 252->257 (18%), 252->258 (27%)	СТ
			253->257 (8%), 253->258 (9%), 253->259 (2%)	
			254->258 (5%), 254->259 (7%)	

Table S2. Calculated excited wavelengths (λ) and oscillator strengths (*f*) for components of selected transition energies.

308	1.43	244->257 (12%), 244->258 (2%), 245->257 (2%)	Soret
		245->258 (3%), 249->257 (2%), 249->258 (3%)	
		250->257 (3%), 252->258 (2%), 253->257 (25%)	
		253->258 (9%), 254->257 (6%), 254->258 (5%)	
		256->257 (3%), 256->258 (7%)	
306	1.27	244->257 (3%), 244->258 (7%), 245->257 (3%)	Soret
		245->258 (5%), 246->257 (2%), 246->258 (4%)	
		247->258 (4%), 249->257 (3%), 249->258 (3%)	

253->257 (8%), 253->258 (18%), 254->257 (5%)

254->258 (8%), 256->257 (7%), 256->258 (4%)

Full Experimental Procedures

1-Bromomethyl-3,5-di-tert-butylbenzene (9)^v

A mixture of 3,5-di-*tert*-butyltoluene (**8**, 10.0 g, 49.0 mmol), NBS (9.0 g, 50.4 mmol) and benzoyl peroxide (0.4 g, 1.6 mmol) in 100 mL of CCl₄ was refluxed for 1 h. After cooling to rt, the mixture was filtered and the residue was washed with CCl₄, then the filtrate was concentrated *in vacuo*. The product was purified by silica gel column chromatography (ⁿhexane). Title compound was obtained as a white solid (13.5 g, 97%). 500 MHz ¹H NMR (CDCl₃): δ = 7.36 (t, *J* = 2.0 Hz, 1H), 7.23 (d, *J* = 2.0 Hz, 2H), 4.52 (s, 2H), 1.33 (s. 18H).

1,3-Di-tert-butyl-5-(cyanomethyl)benzene (10)^v

Compound **9** (5.0 g, 17.7 mmol) was added dropwise to a solution of sodium cyanide (1.43 g, 22.0 mmol) in 20 mL of DMSO. After additional 10 mL of DMSO was added to dissolve all precipitates, the mixture was stirred at rt for 24 h. Then, the reaction mixture was poured into 100 mL of water and extracted with ethyl acetate (50 mL X 3). The organic layer was washed with brine and dried over MgSO₄, filtered and concentrated *in vacuo*. The product was purified by silica gel column chromatography (ⁿhexane-ethyl acetate 98 : 2). Title compound was obtained as a white solid (2.74 g, 65%). 500 MHz ¹H NMR (CDCl₃): δ = 7.38 (t, *J* = 1.5 Hz, 1H), 7.15 (d, *J* = 1.5 Hz, 2H), 3.74 (s, 2H), 1.33 (s, 18H).

Bis(3,5-di-tert-butylphenyl)fumaronitrile (11)

Sodium methoxide (Na 0.26 g, 11.5 mmol) – methanol solution was slowly (over a period of 1 h) added to a solution of **10** (1.00 g, 4.19 mmol) and I₂ (1.06 g, 4.19 mmol) in 20 mL of dry diethyl ether at 0°C. The reaction mixture was stirred for 1 h at the same temperature. The title compound (0.34 g, 36%) as white solid was collected by filteration. 500 MHz ¹H NMR (CDCl₃): δ = 7.66 (d, *J* = 1.5 Hz, 4H), 7.58 (t, *J* = 1.5 Hz, 2H), 1.39 (s, 36H).

3,4-Bis-(3,5-di-tert-butylphenyl)pyrroline-2,5-diimine (5)

Compound 11 (0.52 g, 1.14 mmol) was suspended in 30 mL of ethylene glycol and heated to 115°C. Sodium (ca. 3 mg) was added to the solution and gaseous NH₃ was bubbled through the suspension for 6 h. Then, the hot solution was poured over iced water and a yellowish-green precipitate was collected by filtration. The title compound (0.37 g, 69%) was obtained as yellow powder after the precipitate was washed with water and dried under vacuum. 500 MHz ¹H NMR (CDCl₃): δ = 7.39 (t, *J* = 1.5 Hz, 2H), 6.97 (d, *J* = 1.5 Hz, 4H), 3.75 (br, 3H), 1.20 (s, 36H). ESI-MS Calcd for C₃₂H₄₅N₃Na [M+Na]⁺: 494.4. Found: 494.4.

MgTAP (6)

Mg (18.0 mg, 0.74 mmol) and a small crystal of I₂ in 1-butanol (7 ml) were heated to reflux. After Mg was consumed completely, **5** (370 mg, 0.78 mmol) was added to the resulting Mg(OⁿBu)₂ suspension and the reaction mixture was heated to reflux for an additional 15 h. After solvent was removed, the compound was purified by alumina column chromatography (chloroform), followed by recrystallization from CHCl₃/MeOH. **6** was obtained as a dark green solid. (300 mg, 83%) 500 MHz ¹H NMR (pyridine- d_5) δ (ppm): 8.00 (d, 16H, J = 1.5 Hz), 7.69 (t, 8H, J = 1.5 Hz), 1.37 (s, 144H).

LR-MALDI (*m/z*) Calcd for [M+H]⁺: 1842.3. Found: 1842.8.

UV-vis (toluene) λ_{max} nm ($\epsilon \ge 10^{-4}$): 627 (18.6), 575 (2.60), 379 (12.2).

H₂TAP (7)

6 (100 mg, 55.0 μ mol) was dissolved in 5 ml of trifluoroacetic acid and stirred for 3 h at room temperature. Then the solvent was neutralized by the addition of sat. NaHCO₃aq and the resulting precipitation was collected by filtration and washed by water. **7** was obtained as a dark green solid. (67.0 mg, 68%)

500 MHz ¹H NMR (CDCl₃) δ (ppm): 7.66 (d, 16H, J = 1.5 Hz), 7.41 (t, 8H, J = 1.5 Hz), 1.15 (s, 144H). HRMS-MALDI (*m/z*) Calcd for C₁₂₈H₁₇₀N₈ [M]⁺: 1820.3576. Found: 1820.3587. UV-vis (CHCl₃) λ_{max} nm (ε x 10⁻⁴): 656 (10.4), 592 (5.51), 453 (3.49), 366 (7.99).

PTAP (1, 2)

POBr₃ (200 mg, 0.70 mmol) was added to a solution of free-base TAP **7** (20.0 mg, 11.0 µmol) in 7 mL of pyridine. After the mixture was stirred for 20 h under reflux, 5 mL of water (for **1**) or methanol (for **2**) was added and stirred for 3 h under reflux. Then the solvent was removed and the residue was dissolved in CH₂Cl₂, and washed with 2 M HClaq and water. The organic layer was collected, dried over MgSO₄, filtered and concentrated *in vacuo*. To remove byproducts, SiO₂ open column chromatography (CHCl₃-MeOH 9:1) was performed and the purple band was collected and concentrated producing crude PTAP. Counteranion exchange was carried out by dissolving crude PTAP in CHCl₃/CH₃CN (1/1 v/v) and sodium perchlorate was added to the solution. After the mixture was stirred for 12 h at room temperature, the solvent was removed. The residue was dissolved in CHCl₃/nhexane (1/2 v/v) and the excess amount of insoluble salts was removed by filtration. Then the filtrate was concentrated, and pure PTAP was obtained as purple powder by removing solvent followed by recrystallization from CHCl₃/nhexane.

1: 500 MHz ¹H-NMR (CDCl₃) δ (ppm): (acidic form) 7.69 (brs, 16H), 7.51 (brs, 8H), 1.16 (s, 144H); (basic form) 7.66 (d, 16H, J = 1.5 Hz), 7.45 (t, 8H, J = 1.5 Hz), 1.15 (s, 144H). 200 MHz ³¹P-NMR (CDCl₃) δ (ppm): (acidic form) –193; (basic form) –177.

LR-MALDI (*m/z*) Calcd for [M]⁺: 1882.3. Found: 1882.6.

UV-vis (CH₂Cl₂) λ_{max} nm (ε x 10⁻⁴): (acidic form) 630 (6.20), 508 (4.63), 337 (4.26); (basic form) 617 (8.50), 569 (2.12), 479 (2.93), 364 (5.40).

2: 500 MHz ¹H-NMR (CDCl₃) δ (ppm): 7.68 (d, 16H, J = 1.5 Hz), 7.57 (t, 8H, J = 1.5 Hz), 1.17 (s, 144H), -1.76 (d, 6H, ${}^{3}J_{PH} = 31.0$ Hz). 200 MHz ${}^{31}P$ -NMR (CDCl₃) δ (ppm): -178. HRMS-MALDI (m/z) Calcd for C₁₃₀H₁₇₄N₈O₂P [M–ClO₄]⁺: 1910.3492. Found: 1910.3492. UV-vis (CH₂Cl₂) λ_{max} nm ($\epsilon \ge 10^{-4}$): 640 (5.95), 518 (6.12), 337 (5.01).

AsTAP (3, 4)

AsCl₃ (0.3 mL, 460 eq) was added a solution of 7 (9.5 mg, 5.2 µmol) in a mixture of 5 mL of pyridine and stirred for 5 h under reflux. Then, HPyBr₃ (10 mg, 31.2 µmol) was added to the mixture and stirred for 30 min at room temperature. After the solvent was removed *in vacuo*, 5 mL of water (for **3**) or methanol (for **4**) was added and stirred for 15 min at the same temperature. To remove byproducts, SiO₂ open column chromatography (CHCl₃-MeOH 9:1) was performed and the purple band was collected and concentrated producing crude AsTAP. Counteranion exchange was carried out by dissolving crude PTAP in CHCl₃ and sodium perchlorate was added to the solution. After the mixture was stirred for 15 h at room temperature, the solvent was removed. The residue was dissolved in CHCl₃/nhexane (1/2 v/v) and the excess amount of insoluble salts was removed by filtration. Then the filtrate was concentrated, and pure PTAP was obtained as purple powder by removing solvent followed by recrystallization from CHCl₃/nhexane.

3: 500 MHz ¹H-NMR (CDCl₃) δ (ppm): (acidic form) 7.71 (d, 16H, J = 1.5 Hz), 7.53 (t, 8H, J = 1.5 Hz), 1.16 (s, 144H); (basic form) 7.69 (d, 16H, J = 1.5 Hz), 7.46 (t, 8H, J = 1.5 Hz), 1.15 (s, 144H).
LR-MALDI (*m/z*) Calcd for [M]⁺: 1926.3. Found: 1926.5.

UV-vis (CH₂Cl₂) λ_{max} nm: (acidic form) 647, 532, 339; (basic form) 629, 499, 376.

4: 500 MHz ¹H-NMR (CDCl₃) δ (ppm): 7.71 (d, 16H, J = 1.5 Hz), 7.60 (t, 8H, J = 1.5 Hz), 1.18 (s,

144H), -1.54 (s, 6H).

HRMS-MALDI (m/z) Calcd for C₁₃₀H₁₇₄AsN₈O₂ [M–ClO₄]⁺: 1955.3003. Found: 1955.3001.

UV-vis (CH₂Cl₂) λ_{max} nm (ε x 10⁻⁴): 648 (3.96), 532 (5.51), 340 (4.34).

Full Computational Details

Computational Details

Geometry optimization for all molecules was performed at the DFT level, by means of the hybrid Becke3LYPvi (B3LYP) functional as implemented in Gaussian 2009.vii The 6-31G* basis set was used for the all atoms. After the geometry optimization, the time-dependent (TD) DFT calculationsviii were performed to evaluate the stick absorption spectrum employing the BLYP functionals with the long-range correction (LC)^{ix} (LC-BLYP) with the same basis set. All stationary points were optimized without any symmetry assumptions and characterized by normal coordinate analysis at the same level of the theory (the number of imaginary frequency, Nimag, 0).

Cartesian Coordinates and Total Electron Energies

SCF Done:	E (RB3LYP)	= -3393.7	3882216	A.U.		
Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Type	X	Y	Z	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	6 6 6 6 7 7 6 6 7 6 7 6 6 7 6 6 7 6 7 6 6 7 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 7 6 6 7 7 6 6 7 7 6 6 7 7 6 6 7 7 6 6 7 6 7 6 6 7 6 7 6 6 7 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 7 6 6 7 6 7 6 6 7 6 6 7 6 7 6 6 7 6 7 6 6 7 6 6 7 6 7 6 6 7 6 6 7 6 7 6 6 7 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 7 6 6 7 6 6 7 6 7 6 6 7 6 6 6 7 6 6 6 7 6 6 7 6 7 6 6 7 6 6 6 7 6 7 6 6 7 6 7 6 6 7 6 7 6 7 6 7 6 6 7 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 6 7 7 6 6 7 6 7 6 7 6 7 6 6 7 6 7 6 7 6 7 6 7 6 6 7 6 6 7 6 7 6 6 7 6 7 6 6 7 6 6 7 6 7 6 6 7 6 6 6 7 6 7 6 6 7 7 6 6 7 6 6 6 6 7 6 6 7 6 6 6 7 6 6 6 6 7 6 7 6 6 7 6 7 6 6 7 6 6 6 7 6 7 6 6 7 6 6 6 7 6 6 6 7 6 7 6 6 7 7 6 6 7 6 7 6 6 7 6 6 7 7 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 6 7 6 7 6 7 6 7 6 7 6 7 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 6 7 7 6 6 7 7 6 7 6 7 6 7 6 7 6 6 7 7 6 7 6 7 6 7 6 7 6 6 7 7 6 6 7 7 6 6 7 7 6 6 7 7 6 6 7 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 6 7 6 7 6 7 8 7 8		2.754828 3.533713 2.644631 1.328721 1.403630 3.310135 2.607183 3.216073 1.227203 2.186636 0.953937 -0.237603 0.229648 -1.333849 -2.653798 -1.419602 -3.554841 -2.770329 -0.958883 -2.184419 -1.231816 -3.208440 -2.604134 -3.319983 -0.024694 -0.073580 -0.050033 -4.654338 -5.297680 -5.419465	$\begin{array}{c} 0.960841\\ 2.183871\\ 3.212732\\ 2.614070\\ 1.237819\\ -0.232220\\ -1.326070\\ -2.638155\\ -1.414135\\ -3.541811\\ -2.775406\\ -3.331908\\ 3.321786\\ -2.615724\\ -3.211591\\ -1.235017\\ -2.177890\\ -0.953126\\ 2.763551\\ 3.538464\\ 1.416138\\ 2.652610\\ 1.334636\\ 0.233915\\ -0.000249\\ 0.113188\\ -0.115272\\ 2.896858\\ 3.771833\\ 2.259960\\ \end{array}$	$\begin{array}{c} -0.252340\\ -0.241996\\ 0.019831\\ 0.114023\\ -0.084377\\ -0.270921\\ -0.075162\\ 0.012234\\ 0.083201\\ 0.202614\\ 0.191449\\ 0.229910\\ 0.266852\\ 0.092338\\ 0.034415\\ -0.018317\\ -0.111583\\ -0.145166\\ 0.187811\\ 0.159148\\ -0.019819\\ -0.118802\\ -0.185760\\ -0.266988\\ -0.009881\\ 1.660627\\ -1.680664\\ -0.233145\\ 0.662818\\ -1.227381\\ \end{array}$	
31	6	U	-6.66/456	4.000558	0.565730	
32	1	0	-4.722451	4.259811	1.442730	
33	6	0	-6.788689	2.500850	-1.326783	
34	1	0	-4.939023	1.582932	-1.924786	
35	6	0	-7.416535	3.369482	-0.431672	

[Ph₈TAPP(OH)₂]⁺ (1'•acidic)

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1		$\begin{array}{c} 2.596\\ 1.728\\ 3.387\\ 4.543\\ 2.172\\ 2.548\\ -3.666\\ -8.881\\ -8.484\\ -2.383\\ 3.579\\ 8.879\\ 8.879\\ 8.457\\ 0.408\\ 0.610\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09666 067558 23696 32714 098150 05724 462309 430139 554850 370191 91902 35984 585446 534061 139110	1.191912 1.887885 0.219307 -1.580034 2.000692 1.195560 0.507190 -0.721680 -0.509954 0.727842 0.266919 -0.701033 -0.659386 -2.095380 2.074166	
TD–DFT output HOMO: 256 , LUM Excited State 239 -> 258 255 -> 258 256 -> 257 256 -> 258 239 <- 258 This state for opti Total Energy, E(T Copying the excit	10: 257 : -0 (-0 (mization 'D-HF/T ed state c	Singlet-A 0.17977 0.19024 0.62132 0.19594 0.11220 and/or second D-KS) = -33 lensity for this	1.8441 eV -order correcti 84.42433853 state as the 1-	672.35 nm on. particle RhoC	f=0.2006 CI density.	<s**2>=0.000</s**2>	
Excited State 239 -> 257 255 -> 257 256 -> 257 256 -> 258 239 <- 257	2: -0 (((-0	Singlet-A .18142).19045).19613).62003 .11230	1.8497 eV	670.29 nm	f=0.2027	<s**2>=0.000</s**2>	
Excited State 237 -> 258 238 -> 257 252 -> 257 252 -> 258 252 -> 258 252 -> 259 253 -> 257 253 -> 258 254 -> 257 254 -> 258	3: -0 (((-0 (((((Singlet-A .14660).13199).21898).11699 .15326).29081).12531 .18177).44969	3.0427 eV	407.48 nm	f=0.0105	<s**2>=0.000</s**2>	
Excited State 237 -> 258 238 -> 257 252 -> 257 253 -> 257 254 -> 258 255 -> 258 255 -> 259	l: () () () () -0 -0 ()	Singlet-A).11249).13961).42202).18448).36580).17166).13300	3.0913 eV	401.08 nm	f=0.1204	<s**2>=0.000</s**2>	
Excited State 234 -> 258 236 -> 258 252 -> 258 253 -> 257 253 -> 258 254 -> 258 254 -> 258 254 -> 259 255 -> 258 256 -> 257	5: -0 ((((((((((((((((((Singlet-A .10132).10899).25321).25182 .20018 .14954 .14786).44818).14111	3.1239 eV	396.90 nm	f=0.3521	<s**2>=0.000</s**2>	

Excited State 6 236 -> 257 252 -> 257 252 -> 258 253 -> 257 253 -> 258 253 -> 259 255 -> 257 256 -> 258	: Singlet-A -0.12051 -0.22553 -0.15386 0.34500 0.14144 0.14171 0.41426 -0.14851	3.1634 eV	391.94 nm	f=0.4079	<s**2>=0.000</s**2>
Excited State 7 239 -> 257 252 -> 257 253 -> 257 253 -> 258 255 -> 257 256 -> 258	: Singlet-A -0.11883 0.27263 -0.28349 -0.11227 0.48341 -0.16427	3.5308 eV	351.15 nm	f=0.8036	<s**2>=0.000</s**2>
Excited State 8 239 -> 258 252 -> 257 252 -> 258 253 -> 257 253 -> 258 254 -> 257 255 -> 258 256 -> 257	: Singlet-A -0.10100 0.14180 -0.19239 -0.10418 0.41763 0.15081 0.39264 0.13920	3.5606 eV	348.21 nm	f=0.7007	<s**2>=0.000</s**2>
Excited State 9 237 -> 257 252 -> 258 254 -> 257 255 -> 258	: Singlet-A -0.10336 0.35400 0.52915 -0.10420	3.6209 eV	342.41 nm	f=0.0985	<s**2>=0.000</s**2>
Excited State 10 238 -> 258 252 -> 257 252 -> 258 253 -> 257 253 -> 258 254 -> 257 254 -> 258	: Singlet-A 0.11736 -0.14860 0.35700 -0.11813 0.39128 -0.30115 -0.18631	3.7141 eV	333.82 nm	f=0.0511	<s**2>=0.000</s**2>
Excited State 11 243 -> 257 245 -> 257 246 -> 257 248 -> 257 249 -> 257 250 -> 257 251 -> 257 251 -> 258 251 -> 259 256 -> 259	: Singlet-A 0.20393 0.11824 0.14944 -0.30521 0.11169 0.18326 0.32461 0.14698 -0.10192 -0.13611	4.2019 eV	295.07 nm	f=0.0134	<s**2>=0.000</s**2>
Excited State 12 235 -> 257 239 -> 257 241 -> 258 243 -> 257 245 -> 258 247 -> 257 248 -> 258 250 -> 258 251 -> 257 256 -> 259	: Singlet-A -0.20980 -0.24138 -0.12088 -0.18611 -0.14626 0.31689 -0.14078 0.16230 0.20323 0.13704	4.2296 eV	293.13 nm	f=0.0622	<s**2>=0.000</s**2>

Excited State 13: 235 -> 258 239 -> 258 247 -> 258 248 -> 257 248 -> 258 250 -> 258 250 -> 258 250 -> 259 251 -> 258	Singlet-A -0.20633 -0.14658 0.30739 0.15418 -0.15592 0.30953 0.14142 -0.28878	4.2437 eV	292.16 nm	f=0.0305	<s**2>=0.000</s**2>
Excited State 14: 235 -> 257 239 -> 257 242 -> 258 243 -> 258 244 -> 258 245 -> 257 247 -> 258 248 -> 257 248 -> 257 248 -> 257 248 -> 257 251 -> 257 256 -> 259	Singlet-A 0.17952 0.20316 0.12450 0.11459 0.24383 0.15938 -0.22243 0.13049 -0.21348 0.12270 0.16018 0.14664	4.2844 eV	289.39 nm	f=0.0268	<s**2>=0.000</s**2>
Excited State 15: 248 -> 258 249 -> 257 249 -> 258 250 -> 257 250 -> 258 251 -> 257 251 -> 258 251 -> 258 251 -> 259	Singlet-A 0.27612 0.24008 -0.21733 0.12173 0.36038 -0.11366 0.21109 -0.12082	4.2884 eV	289.12 nm	f=0.0191	<s**2>=0.000</s**2>

Ph₈TAPP(O)(OH) (1'•basic) SCF Done: E(RB3LYP) = -3393.30899613 A.U.

Center Number	Atomic Number	Atomic Type	Coc X	ordinates (A Y	ngstroms) Z	
Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Number 6 6 6 6 7 6 7 6 7 6 6 6 6 6 6 6 7 7 6 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6	Type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x -5.127218 -4.073989 -4.191444 -5.406731 -2.831791 -1.920782 -2.638838 -2.153225 -0.858029 -0.322284 1.047627 2.075010 -1.150763 1.343354 0.170618 2.577023 2.837094 4.195845	Y -2.082294 -1.052342 0.317757 1.151518 0.853871 -0.174032 -1.339227 -2.566828 -2.819839 -4.179009 -4.055947 -5.114513 -5.395932 -2.627513 -1.908635 -2.155383 -0.860412 -0.318712	Z 0.016038 0.012372 0.054009 -0.004940 0.099456 0.096389 0.041715 0.048804 0.062151 0.029334 -0.011250 -0.005535 -0.029274 0.011596 0.061170 0.017803 0.046613 0.059160	
19 20 21 22 23 24 25 26 27	6 6 6 7 7 6 6 6	0 0 0 0 0 0 0 0 0	4.069641 5.115156 5.418480 2.632830 1.921104 2.148925 0.854030 0.320923 -1.052349	$\begin{array}{c} 1.051109\\ 2.088085\\ -1.141154\\ 1.332252\\ 0.160183\\ 2.561114\\ 2.821116\\ 4.176815\\ 4.057925\end{array}$	0.092964 0.041011 0.109907 0.104038 0.090779 0.091509 0.086694 -0.001562 0.022615	

28	6	0	-2.076469	5.109558	-0.115813
29	6	0	1.152116	5.393508	-0.029537
30	6	0	-1.345473	2.631969	0.123444
31	7	0	-0.172513	1.910302	0.194149
32	7	0	-2.575886	2.150572	0.110543
33	15	0	0.001106	-0.030983	-0.049370
34	8	0	-0.008403	0.055211	-1.565526
35	6	0	7.121457	4.059368	-0.094268
36 27		0	/.895962	4.820097	-0.145889
30	0	0	0.033243 5 957675	4.221/00 5 110305	U./04000 1 38510/
20 29	1 6	0	7 207227	2 914087	-0 890304
40	1	0	8 045590	2 782095	-1 569073
41	6	Õ	6.215929	1.938115	-0.823259
42	1	Õ	6.283016	1.056079	-1.451705
43	6	0	5.036802	3.248351	0.831980
44	1	0	4.191365	3.386357	1.495495
45	6	0	6.420742	-0.856659	1.054583
46	1	0	6.279774	-0.032858	1.747243
47	6	0	7.580367	-1.626341	1.114431
48	1	0	8.340950	-1.395701	1.855570
49 50	6	0	7.763022	-2.691394	0.228928
5U 51	1 6	0	8.008209	-3.291008	-0.712002
52 52	0	0	6 908771	-2.902994	-0.712902 -1.404637
53	6	0	5 610091	-2 218459	-0 770674
54	1	Õ	4.844570	-2.448505	-1.502801
55	6	Õ	3.110355	-5.125867	-0.954148
56	1	0	3.152595	-4.342208	-1.703051
57	6	0	4.067012	-6.140520	-0.946987
58	1	0	4.856501	-6.140389	-1.693876
59	6	0	4.011805	-7.152981	0.012839
60	1	0	4.760585	-7.940546	0.019699
61	6	0	2.989617	-7.147822	0.964902
62		0	2.9418/1	-7.929066	1./18/46
63 61	0 1	0	2.02/130	-6.140176	0.954136
65	1 6	0	-0 810007	-6 443331	-0 905282
66	1	0	0.062128	-6 342323	-1 542905
67	6	Õ	-1.587665	-7.597040	-0.971634
68	1	0	-1.311415	-8.391736	-1.659489
69	6	0	-2.719073	-7.729978	-0.162610
70	1	0	-3.324148	-8.631385	-0.213620
71	6	0	-3.069244	-6.696878	0.708679
72	1	0	-3.949106	-6.788727	1.339565
73	6	0	-2.295889	-5.538358	0.774718
74		0	-2.5/8294	-4./38142	1.448538
75	0	0	-3.013300 -1.138395	-3.244012	-0.769393 -1.389183
70	6	0	-6 020130	-4 210730	-0 752877
78	1	Õ	-5.914957	-5.100108	-1.368095
79	6	Õ	-7.150657	-4.040469	0.048278
80	1	0	-7.931893	-4.795979	0.059984
81	6	0	-7.270494	-2.893666	0.837593
82	1	0	-8.142499	-2.755234	1.471259
83	6	0	-6.270707	-1.924141	0.821610
84	1	0	-6.365933	-1.040988	1.444755
85 96	6	U	-6.366980	U.934260	-1.008133
86 07	L E	U	-0.198525 _7 510625	U.135U44 1 715002	-1./45UZI
0 / 8 8	0 1	0	-7.519625 -8 277809	1 538030	-1.000019 -1.855/72
89	± 6	0	-7 737163	2 721772	-0 124780
90	1	0	-8.637473	3.328603	-0.171275
91	6	õ	-6.790914	2.945153	0.877129
92	1	0	-6.954369	3.724247	1.617115
93	6	0	-5.632666	2.170754	0.934414
94	1	0	-4.900441	2.345016	1.715721

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116	6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 8 1		-3.192 -3.305 -4.148 -5.004 -4.012 -4.760 -2.910 -2.800 -1.950 -1.099 0.808 -0.072 1.590 1.311 2.730 3.339 3.083 3.969 2.305 2.588 0.014	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	157257 404268 162639 186568 131181 911354 988954 333321 089887 056900 503482 453922 555732 499957 724227 524325 529238 571134 472104 524292 140548 753168	0.735540 1.507405 0.596775 1.266585 -0.399265 -0.508994 -1.257467 -2.041436 -1.116281 -1.789434 0.764616 1.396973 0.754975 1.379714 -0.050158 -0.059060 -0.840943 -1.468235 -0.830944 -1.443133 1.658434 2.032289	
TD–DFT outpu HOMO: 256 , LU Excited State 244 -> 257 256 -> 258 This state for op Total Energy, E Copving the ex	t JMO: 257 1: 57 7 00 7 -0. 3 0 ptimization : 2(TD-HF/TI cited state d	Singlet-A .10664 46653 .47206 and/or second- D-KS) = -338 ensity for this s	1.9593 eV order correcti 3.99244811 state as the 1-	632.79 nm on. particle Rho0	f=0.3199 CI density.	<s**2>=0.000</s**2>	
Excited State 244 -> 258 256 -> 257 256 -> 258	2: S 3 -0. 7 0 3 0	Singlet-A 10006 .47342 .46618	1.9817 eV	625.66 nm	f=0.3246	<s**2>=0.000</s**2>	
Excited State 249 -> 257 251 -> 257 251 -> 258 252 -> 259 254 -> 257 255 -> 257 255 -> 258	3: 5 7 0 7 0 8 0 9 -0. 7 0 7 0 8 0	Singlet-A .15405 .12219 .12666 11926 .24994 .38632 .37927	3.0218 eV	410.29 nm	f=0.0003	<s**2>=0.000</s**2>	
Excited State 247 -> 258 247 -> 258 249 -> 258 253 -> 257 253 -> 257 254 -> 258 254 -> 258 255 -> 257	4: 5 7 -0. 8 0 8 0 7 -0. 8 0 7 -0. 8 0 7 -0. 8 0 7 0	Singlet-A 12291 .13196 .11545 16026 .20914 23378 .41224 .28319	3.0893 eV	401.33 nm	f=0.0001	<s**2>=0.000</s**2>	
Excited State 246 -> 258 247 -> 257 247 -> 258 249 -> 257 249 -> 258 251 -> 258 253 -> 257 253 -> 258	5: 5: 5 3 -0. 7 -0. 3 -0. 7 -0. 3 0 7 -0. 3 0 7 -0. 3 0 7 -0. 3 0 7 -0. 3 0 7 -0. 3 0 7 -0. 3 0. 7 -0. 3 -0. 7 -0.	Singlet-A 10498 12335 15574 21924 .11883 .20494 13338 10819	3.4058 eV	364.04 nm	f=0.0002	<s**2>=0.000</s**2>	

254 -> 257 255 -> 257 255 -> 258 256 -> 259	-0.30137 -0.15506 0.34494 0.10430				
Excited State 6: 234 -> 257 234 -> 258 244 -> 257 244 -> 257 252 -> 257 252 -> 258 253 -> 257 253 -> 258 254 -> 257 255 -> 259	Singlet-A -0.12922 -0.10139 -0.12690 -0.10052 0.36972 0.28722 -0.24235 -0.16147 0.11791 -0.20959	3.5234 eV	351.89 nm	f=0.0986	<s**2>=0.000</s**2>
Excited State 7: 232 -> 258 234 -> 258 244 -> 258 252 -> 257 252 -> 258 253 -> 257 253 -> 258 253 -> 258 253 -> 259 254 -> 258 254 -> 259	Singlet-A 0.10964 -0.11938 0.11823 -0.29985 0.36536 -0.19440 0.20926 0.10292 -0.15024 0.18131	3.5966 eV	344.73 nm	f=0.1891	<s**2>=0.000</s**2>
Excited State 8: 247 -> 257 249 -> 258 251 -> 257 251 -> 258 253 -> 257 253 -> 258 254 -> 257 254 -> 258 255 -> 257 255 -> 258	Singlet-A 0.17440 0.20542 -0.13883 0.10904 0.15076 0.13642 0.22661 0.31676 -0.31173 0.20661	3.7628 eV	329.50 nm	f=0.0046	<s**2>=0.000</s**2>
Excited State 9: 236 -> 257 236 -> 258 246 -> 257 247 -> 258 249 -> 257 249 -> 258 250 -> 257 251 -> 258 252 -> 259 255 -> 258	Singlet-A 0.17584 0.13318 -0.13196 -0.11969 0.32043 0.20734 0.13235 0.27636 0.21804 0.12505 -0.13541 -0.11801	3.8883 eV	318.87 nm	f=0.0257	<s**2>=0.000</s**2>
Excited State 10: 244 -> 257 244 -> 258 245 -> 257 245 -> 258 249 -> 257 249 -> 258 250 -> 257 252 -> 258 253 -> 257 253 -> 258 254 -> 257	Singlet-A -0.24925 -0.10221 0.10349 0.11479 0.10128 0.12685 -0.11415 0.10961 0.35572 0.21608 -0.17199	4.0195 eV	308.46 nm	f=1.4343	<s**2>=0.000</s**2>

254 -> 258 256 -> 257 256 -> 258	-0.16018 -0.12934 0.19360				
Excited State 11: 244 -> 257 244 -> 258 245 -> 257 245 -> 258 246 -> 257 246 -> 258 247 -> 258 249 -> 257 249 -> 258 253 -> 257 253 -> 258 254 -> 257 254 -> 258 256 -> 258	Singlet-A 0.12338 -0.18923 -0.13197 0.16344 -0.10007 0.14115 0.14008 -0.12827 0.12272 -0.20397 0.29617 0.15411 -0.19564 -0.18127 -0.13471	4.0558 eV	305.69 nm	f=1.2663	<s**2>=0.000</s**2>
Excited State 12: 233 -> 257 233 -> 258 244 -> 257 244 -> 257 244 -> 258 246 -> 257 247 -> 257 247 -> 258 249 -> 258 250 -> 258 253 -> 258 254 -> 257	Singlet-A -0.11521 0.14866 0.11358 -0.24044 0.10325 0.23106 -0.25278 -0.13932 -0.15845 0.25472 -0.11233	4.1149 eV	301.31 nm	f=0.1918	<s**2>=0.000</s**2>
Excited State 13: 235 -> 257 236 -> 258 247 -> 258 249 -> 257 249 -> 258 251 -> 258 254 -> 257 255 -> 257 255 -> 258 256 -> 259	Singlet-A 0.13108 0.10494 -0.17998 -0.15631 0.14886 0.18895 0.16273 0.15084 -0.28578 0.35962	4.3048 eV	288.01 nm	f=0.0024	<s**2>=0.000</s**2>
Excited State 14: 244 -> 257 244 -> 258 252 -> 257 252 -> 258 253 -> 257 253 -> 258 253 -> 258 254 -> 257	Singlet-A 0.23068 -0.24008 -0.21967 0.34675 0.17118 -0.19664 -0.10292	4.3402 eV	285.66 nm	f=0.0009	<s**2>=0.000</s**2>
Excited State 15: 235 -> 258 236 -> 257 246 -> 257 246 -> 258 247 -> 257 249 -> 258 251 -> 257 251 -> 258 255 -> 257 255 -> 258 256 -> 259	Singlet-A 0.22890 0.12881 -0.10057 0.11028 -0.11343 -0.18026 0.13718 -0.12518 -0.11950 0.11322 0.42041	4.3892 eV	282.47 nm	f=0.0048	<s**2>=0.000</s**2>

References for Supporting Information

ⁱ Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.;

Polidori, G.; Spagna, R. J. Appl. Cryst. 2005, 38, 381.

- ⁱⁱ Sheldrick, G. M. SHELXL-97, Program for the Solution and Refinement of Crystal Structures, University of Göttingen, Göttingen, Germany, **1997**.
- ⁱⁱⁱ (a) Wakita, K. Yadokari-XG, Software for Crystal Structure Analyses, 2001. (b) Kabuto, C.; Akine, S.; Nemoto, T.; Kwon, E. J. Cryst. Soc. Jpn. 2009, 51, 218.
- ^{iv} (a) Spek, A. L. Acta Crystallogr. Sect. A **1990**, 46, c34. (b) van der Sluis, P.; Spek, A. L. Acta Crystallogr. Sect. A **1990**, 46, 194.
- ^v Mayer, M. G.; Nakashima, S.; Zimmerman, S. C. Org. Lett. 2005, 7, 3005-3008.

^{vi} (a) Becke, A. D. *Phys. Rev.* **1988**, *A38*, 3098-3100. (b) Becke, A. D. *J. Chem. Phys.* **1993**, *98*, 1372-1377. (c) Becke, A. D. *J. Chem. Phys.* **1993**, *98*, 5648-5652. (d) Lee, C.; Yang, W.; Parr, R. G. *Phys. Rev.* **1988**, *B37*, 785-788.

^{vii} *Gaussian 09*, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

viii (a) Bauernschmitt, R. d.; Ahlrichs, R. Chem. Phys. Lett. 1996, 256, 454-464. (b) Dreuw, A.; Head-Gordon, M. Chem. Rev. 2005, 105, 4009-4037.

^{ix} Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. J. Chem. Phys. 2001, 115, 3540.