Electronic Supporting Information (ESI)

Li₃VO₄ Anchored on Graphene Nanosheets for Long-Life and High-Rate Lithium-Ion Batteries[†]

Zelang Jian,^a Mingbo Zheng,^b Yanliang Liang,^a Xiaoxue Zhang,^a Saman Gheytani,^a Yucheng Lan,^c Yi Shi^b and Yan Yao^{a,d}*

^a Department of Electrical and Computer Engineering and Materials Science and Engineering Program, University of Houston, Houston, Texas 77204, USA.

^b Nanjing National Laboratory of Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, ¹⁰ China.

^c Department of Physics and Engineering Physics, Morgan State University, Baltimore, MD 21251, USA ^d Texas Center for Superconductivity at the University of Houston, Houston, Texas 77204, USA E-mail: yyao4@uh.edu

Synthesis

- ¹⁵ Graphite oxide (GO) was prepared from natural graphite powders (universal grade, 99.985%) via a modified Hummers method. Dried GO was thermally exfoliated at 300 °C for 3 min in air. The sample was then treated at 900 °C for 3 h in Ar at a heating rate of 2 °C/min. The obtained product was denoted as GNS. V₂O₅ was first dissolved in a LiOH solution in deionized water and ethanol (3:1 v/v), into which GNS was added. And then, the mixture was sonicated for 10 min and stirred for 10 h. After
- ²⁰ deionized water and ethanol were evaporated, the black sediment was collected and treated at 40 °C for 24 h in a blast drying oven. The dried sediment composite was subsequently treated at 600 °C for 2 h. The obtained product was denoted as Li₃VO₄@GNS. Pristine Li₃VO₄ was prepared by the same method without adding GNS.

Characterization

²⁵ Pristine Li₃VO₄ and Li₃VO₄@GNS were structurally characterized by XRD using a Rigaku diffractometer using Cu Kα radiation (1.5405 Å). The morphology characterization was investigated using a scanning electron microscope (SEM, LEO Gemini 1525) and a transmission electron microscope (TEM, JEOL 2100F) operated at 200 keV. Raman spectra were obtained on a Micro Raman Spectrophotometer. Carbon content result was obtained using a thermogravimetric analysis ³⁰ (TGA).

A slurry containing 90 wt.% of Li₃VO₄@GNS composite and 10 wt.% of polyvinylidenefluofide (PVdF) was cast on an Cu foil and dried in vacuum at 100 °C for 10 hours. The coin cells were assembled with Li metal as counter electrode with 1 M LiPF₆ in EC: DEC (1:1) as electrolyte in an argon-filled glove box. Electrochemical measurements were performed using a MTI battery cycler. For

³⁵ pristine Li₃VO₄, GNS (26 wt.%, the same content in Li₃VO₄@GNS) was added as conductive additive. The electrochemical characterization for the pristine Li₃VO₄ and Li₃VO₄@GNS samples were performed in the voltage range of 0.2–3V vs Li/Li⁺. For the electrochemical impedance spectroscopy measurement, the amplitude of the AC signal was 5 mV and the frequencies were swept from 1 MHz to 10 mHz using a Bio-logic VMP3. Before cycling, the open-circuit voltages for the cells based on

⁴⁰ pristine Li_3VO_4 and Li_3VO_4 @GNS were 3.00 and 2.82 V vs Li/Li^+ , respectively. After the first cycle, the cells were left rest for 30 min prior to the EIS measurements.

Figure S1 Schematic structure diagram of Li₃VO₄.

^s Figure S2 TGA curves of Li₃VO₄@GNS in air.

Figure S3 SEM images of the (a) pristine Li_3VO_4 and (b) Li_3VO_4 @GNS composite.

^s **Figure S4** TEM images of the Li₃VO₄@GNS composite revealing smaller Li₃VO₄ particles with size around 10-30 nm.

Figure S5 SEM image of the Li₃VO₄@GNS composite revealing larger Li₃VO₄ particles with size around 500 nm.

Figure S6 Discharge and charge capacities of the pristine Li₃VO₄ and Li₃VO₄@GNS composite at different C-rates. The C rates indicate the same current used for measuring Li₃VO₄/GNS at the same rate. The capacities of graphene nanosheets are measured to be ~200 mAh/g at 0.5 C and ~100 mAh/g at 5C. When we consider the GNS content (26 wt.%) in the Li₃VO₄@GNS composite, GNS ¹⁰ contributes capacities of ~ 50 mAh/g at 0.5 C and 25 mAh/g at 5C. At a high rate of 50C, its contribution is only 8 mAh/g. Therefore, the majority of capacity (~90%) of the Li₃VO₄@GNS composite composite comes from Li₃VO₄.

Figure S7 SEM image of the $Li_3VO_4@GNS$ composite after 500 cycles at 5C rate. The composite has retained the original morphology as shown in Figure S3b, demonstrating excellent structure stability of this composite materials.