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Materials. [RuVI(N)(L)(MeOH)](PF6) and the 50% 15N-labeled complex were prepared by a 

literature method.1 L-Ascorbic acid (Aldrich) was purified by recrystallization from MeOH/Et2O. 

Trifluoroacetic acid (Aldrich, ≥99.0%), sodium acetate (Aldrich, ≥99.0%), acetic acid (Aldrich, 

99.8%), sodium phosphate monobasic dihydrate (Sigma, ≥99.0%), sodium phosphate dibasic 

dihydrate (Sigma, ≥99.0%), and deuterium oxide (Cambridge Isotope, 99.8 atom % D) were used 

as received. Water for kinetic experiments was distilled twice from alkaline permanganate. Ionic 

strength was maintained with sodium trifluoroacetate (Aldrich, 98%). The pH values of solutions 

used for kinetic experiments were determined either by direct titration with standard NaOH 

solutions or by using a pH meter (Mettler Toledo, FE 20). For D2O solutions, the pD values were 

obtained from a pH meter using the relationship pD = pHmeas + 0.4.

Instrumentation. Kinetic experiments were carried out using either an Agilent 8453 diode-array 

spectrophotometer for slow reactions, or an Applied Photophysics SX20 stopped-flow 

spectrophotometer for fast reactions. The temperature of the solutions was maintained with a 

PolyScience digital temperature controller connected to a circulating water bath. Electrospray 

ionization mass spectra (ESI-MS) were obtained on a PE SCIEX API 2000 mass spectrometer. 

The analyte solution was continuously infused with a syringe pump at a constant flow rate of 5 

μL min‒1 into the pneumatically assisted electrospray probe with nitrogen as the nebulizing gas. 

The declustering potential was typically set at 10 V. Cyclic voltammetry (CV) was performed 

with a CH Instruments Electrochemical Workstation CHI660C. A glassy carbon working 

electrode, a calomel reference electrode, and a Pt wire counter electrode. 1H NMR spectra were 

recorded on a Bruker (400 MHz) FT-NMR spectrometer. 

Kinetics. The concentrations of H2A were at least in 10-fold excess than that of RuVI(N). The 

reaction progress was monitored by observing absorbance changes at 640 nm. Pseudo-first-order 

rate constants, kobs, were obtained by nonlinear least-squares fits of At versus time t according to 

the equation At = A∞ + (A0 - A∞) exp(-kobst), where A0 and A∞ are the initial and final absorbances, 

respectively.2 
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Product analysis by ESI-MS. In a typical reaction, H2A (2.38 × 10‒4 M) was allowed to react 

with RuVI(N) (1.19 × 10‒4 M) in H2O (2 mL) at different pH at 25 oC. The resulting green 

solution was analysed by ESI-MS after 5 min (pH = 5.5) and 60 min (pH = 1.0). 

Product analysis by 1H NMR. In a typical reaction, a mixture containing H2A (6.16 × 10‒3 

mmol) and RuVI(N) (3.08 × 10‒3 mmol) in 20 mL H2O (pH = 5.5) was stirred for 15 min at 25 oC 

under argon atmosphere. At pH 1.0, H2A (6.52 × 10‒3 mmol) and RuVI(N) (3.26 × 10‒3 mmol) 

were used and the mixture was stirred for 60 min. The volatiles were then removed by reduced 

pressure at 25 oC. The residue was dissolved in 1 mL of D2O containing methanol (1.63 × 10‒3 

mmol) as internal standard, and the mixture was analyzed by 1H NMR. 
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Table S1. Representative second-order rate constants for the oxidation of H2A by 
RuVI(N) at 298.0 K and I = 0.1 M.

a Experiments were carried out in D2O.

pH/pD k2 / M‒1 s‒1

1.00 (3.87 ± 0.02)

1.00 a (1.39 ± 0.01)

2.12 (5.14 ± 0.01) × 101

2.12 a (2.08 ± 0.11) × 101

2.67 (1.20 ± 0.01) × 102

3.20 (3.82 ± 0.04) × 102

3.57 (7.99 ± 0.02) × 102

3.68 a (3.52 ± 0.01) × 102

3.94 (1.35 ± 0.01) × 103

3.99 (1.60 ± 0.01) × 103

4.03 a (6.74 ± 0.04) × 102

4.41 (2.56 ± 0.05) × 103

4.47 a (1.41 ± 0.04) × 103

4.80 a (2.32 ± 0.03) × 103

4.90 (3.52 ± 0.06) × 103

5.39 (4.36 ± 0.01) × 103

6.05 a (4.63 ± 0.10) × 103

6.16 (4.93 ± 0.11) × 103
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Table S2. Temperature dependence of the second-order rate constant for the oxidation of H2A 

by RuVI(N).

T / K pH k2 / M‒1 s‒1

292.0 1.00  (2.87 ± 0.04)

298.0 1.00  (3.87 ± 0.02)

305.5 1.00  (5.80 ± 0.04)

313.0 1.00  (8.82 ± 0.01)

291.0 5.39  (2.93 ± 0.01) × 103

298.0 5.39  (4.36 ± 0.18) × 103

305.9 5.39  (6.33 ± 0.12) × 103

313.0 5.39  (8.75 ± 0.06) × 103
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Fig. S1 UV-vis spectrum of pure [RuIII(L)(OH2)2]+ in 1 mM TFA (red) and the final UV-vis 

spectrum obtained for the decomposition (N···N coupling) of RuVI(N) (1.30 × 10‒4 M) in 1 mM 

TFA after 7 d (black). 
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Fig. S2 UV-vis spectral changes for the decomposition (N···N coupling) of RuVI(N) (1.30 × 10‒4 

M) in 1 mM TFA solution (data are collected at 0 h, 6 h, 13 h, 21 h, 42 h, 70 h, and 159 h, 

respectively). Inset shows the absorbance-time trace at 625 nm.
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Fig. S3 Temperature dependence for the reactions of RuVI(N) and H2A in pH = 1.00 and I = 0.1 

M (top) [slope = –(4.58 ± 0.14) × 103; y-intercept = (1.10 ± 0.05) × 101; r2 = 0.9973] and pH = 

5.39 and I = 0.1 M (bottom) [slope = –(4.20 ± 0.10) × 103; y-intercept = (1.68 ± 0.03); r2 = 

0.9983].
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Fig. S4 ESI mass spectrum of the reaction mixture of RuVI(N) and H2A in H2O (pH = 1.0) taken 
after 60 min. 
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Fig. S5 The expanded peak at m/z 635 for the reaction mixture of RuVI(N) and H2A carried out in 

D2O.
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Fig. S6 CV of the product solution taken at pH 4.9.
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Fig. S7 1H NMR spectrum in D2O of the residue obtained from the reaction of RuVI(N) (3.26  

10‒3 mmol) and H2A (6.52  10‒3 mmol) in H2O at pH 1.0. The amount of A produced and H2A 

remained were determined to be (1.74  0.04)  10‒3 mmol and (1.65  0.09)  10‒3 mmol, 

respectively.


