Supporting Information

Ammonium iodide-induced sulfonylation of alkenes with DMSO and water toward the synthesis of vinyl methyl sulfones

Xiaofang Gao, Xiaojun Pan, Jian Gao, Huawen Huang, Gaoqing Yuan*, and Yingwei Li*

School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China E-mail: gqyuan@scut.edu.cn, liyw@scut.edu.cn

1.	General information	SI-2
2.	General procedure for NH ₄ I-Induced sulphonylation of alkenes	SI-2
3.	Procedure for the scale up experiment in 10 mmol	SI-2
4.	Optimization of the sulphonylation of styrene	SI-3
5.	Preliminary mechanistic studies	SI-3
	5.1 Reaction profiles of styrene and DMSO	SI-3
	5.2 Radical trapping experiments	SI-5
	5.3 Isotope labeling experiments	SI-5
6.	Characterization data of products	SI-7
7.	References	SI-14
8.	NMR spectra of products	SI-14

1. General information

Unless otherwise stated, analytical grade commercial reagents and solvents were used as the received. H₂¹⁸O (97%) and DMSO-*d*₆ were purchased from Alfa Aesar Chemical Company. DMSO (99.8%) was purchased from Aldrich. 2,2-Difluoro-5-vinylbenzo[d][1,3]dioxole, and but-1-en-2-ylbenzene were synthesized from commercially available compounds by Witting reaction following literature procedures. ^[1] Other alkenes were bought from Alfa Aesar, Acros and Aldrich. Analytical thin layer chromatography (TLC) was performed by using commercially prepared 100–400 mesh silica gel plates (GF254) and visualization was effected at 254 nm. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance 400 MHz NMR spectrometer (400 MHz for ¹H, 100 MHz for ¹³C). CDCl₃ was used as the solvent with TMS as the internal standard, and the chemical shifts are referenced to signals at 7.26 and 77.0 ppm, respectively. Mass spectra were recorded on a Shimadzu GCMS-QP5050A spectrometer at an ionization voltage of 70 eV equipped with a DB-WAX capillary column (internal diameter: 0.25 mm, length: 30 m). HRMS analysis was performed in a MAT95XP high resolution mass spectrometer. IR spectra were obtained either as potassium bromide pellets or as liquid films between two potassium bromide pellets with a Bruker Vector 22 spectrometer. Melting points were measured with a Buchi B-545 melting point instrument.

2. General procedure for NH₄I-induced sulphonylation of alkenes

In a typical experiment, NH₄I (4 equiv), olefin (1 mmol), H₂O (0.5 g), and DMSO (1 mL) were added to a 10 mL seal tube in sequence. The seal tube was sealed with a Teflon lined cap, and the reaction mixture was stirred at 130 °C for the desired reaction time. After cooled to room temperature, the reaction mixture was decolorized with Na₂S₂O₃, and then washed with distilled water (50 mL) and extracted with ethyl acetate (4 mL \times 3). The organic layer was dried over MgSO₄ and concentrated under vacuum. The residue was purified by column chromatography on silica gel with petroleum ether-ethyl acetate (5:1) to give desired product.

3. Procedure for the scale up experiment in 10 mmol

 NH_4I (30 equiv), olefin (10 mmol), H_2O (5 g), and DMSO (15 mL) were added to a 50 mL round bottom flask in sequence. A condenser was connected to the flask, and the reaction mixture was stirred at 130 °C for 5 days. After cooled to room temperature, the reaction mixture was decolorized with $Na_2S_2O_3$, and then washed with distilled water (150 mL) and extracted with ethyl acetate (15 mL × 3). The organic layer was dried over $MgSO_4$ and concentrated under vacuum. The residue was purified by column chromatography on silica gel with petroleum ether-ethyl acetate (5:1) to give desired product.

	Ph + . 1a	S_{1}^{H} + H ₂ O <u>halide</u> temp.	→ Ph SO ₂ M 2a	Ле
Entry	Halide (equiv)	Solvent	Temp/°C	Yield/% ^b
1	KI (4)	DMSO/H ₂ O (2:1)	130	0
2	<i>n</i> -Bu ₄ NI (4)	DMSO/H ₂ O (2:1)	130	0
3	NaI (4)	DMSO/H ₂ O (2:1)	130	0
4	$NH_4Br(4)$	DMSO/H ₂ O (2:1)	130	0
5	NH ₄ Cl (4)	DMSO/H ₂ O (2:1)	130	0
6	NH ₄ I (4)	DMSO/H ₂ O (2:1)	130	98
7	NH ₄ I (3)	DMSO	130	12
8	NH ₄ I (4)	DMSO/H ₂ O (2:0.1)	130	35
9	NH ₄ I (4)	DMSO/H ₂ O (2:0.5)	130	88
10	NH ₄ I (4)	DMSO/H ₂ O (1:1)	130	75
11	NH ₄ I (4)	DMSO/H ₂ O (2:3)	130	45
12	NH ₄ I (4)	DMSO/H ₂ O (1:2)	130	0
13	NH ₄ I (1)	DMSO/H ₂ O (2:1)	130	0
14	NH ₄ I (2)	DMSO/H ₂ O (2:1)	130	56
15	NH ₄ I (5)	DMSO/H ₂ O (2:1)	130	99
16	NH ₄ I (4)	DMSO/H ₂ O (2:1)	100	0
17	NH ₄ I (4)	DMSO/H ₂ O (2:1)	110	0
18	NH ₄ I (4)	DMSO/H ₂ O (2:1)	115	5
19	NH ₄ I (4)	DMSO/H ₂ O (2:1)	120	39
20	NH ₄ I (4)	DMSO/H ₂ O (2:1)	135	94

4. Optimization of the sulphonylation of styrene^{*a*}

^a Reaction conditions: all of the reactions were performed with **1a** (1 mmol), DMSO (1 mL) in a 10 mL seal tube for 24 h. ^b Yield determined by ¹H NMR (internal standard: 1,3,5-trimethyl benzene).

5. Preliminary mechanistic studies

5.1 Reaction profiles of styrene and DMSO

$$\begin{array}{cccc}
& & & \\ & & & \\ Ph & + & S \\ & 1 \text{ mL} & 0.5 \text{ mL} \end{array} + H_2O \xrightarrow[130 \,^{\circ}C, t]{} & Ph & SO_2Me \\ \hline
& & & 1a & 2a \end{array}$$

A single factor parallel experimental method was adopted to obtain the reaction profile. NH_4I (4 equiv), olefin (1 mmol), H_2O (0.5 g), and DMSO (1 mL) were added to a 10 mL seal tube in sequence. The seal tube was sealed with a Teflon lined cap, and the reaction mixture was stirred at 130 °C for the different reaction times. An aliquot was taken from the reaction mixture at 4 h, 8 h, 10 h, 12 h, 16 h, 20 h and 24 h in the seven tubes in sequence and the product distributions of the corresponding reaction were analyzed by ¹H NMR (internal standard: 1,3,5-trimethyl benzene).

Figure S1. Reaction profile of the sulphonylation of styrene

In a typical experiment, NH₄I (4 equiv), **3a** or **4a** (1 mmol, isolated from the reaction mixture), H₂O (0.5 g), and DMSO (1 mL) were added to a 10 mL seal tube in sequence. The seal tube was sealed with a Teflon lined cap, and the reaction mixture was stirred at 130 °C for the desired reaction time. After cooled to room temperature, the reaction mixture was decolorized with Na₂S₂O₃ and then washed with distilled water (50 mL) and extracted with ethyl acetate (4 mL \times 3). The organic layer was dried over MgSO₄ and concentrated under

vacuum. The residue was purified by column chromatography on silica gel with petroleum ether-ethyl acetate (5:1) to give desired product.

5.2 Radical trapping experiments

In a typical radical trapping experiment, NH_4I (4 equiv), TEMPO or BHT (1 mmol), olefin (1 mmol), H_2O (0.5 g), and DMSO (1 mL) were added to a 10 mL seal tube in sequence. The seal tube was sealed with a Teflon lined cap, and the reaction mixture was stirred at 130 °C for 24 h. After cooled to room temperature, the reaction mixture was decolorized with $Na_2S_2O_3$, and then washed with distilled water (50 mL) and extracted with ethyl acetate (4 mL × 3). The organic layer was dried over MgSO₄ and concentrated under vacuum. The residue was analyzed by ¹H NMR (internal standard: 1, 3, 5-trimethyl benzene).

5.3 Isotope labeling experiments

---, ---

In a typical H₂¹⁸O labeling experiment, NH₄I (4 equiv, dehydration *via* dried at 100 °C), olefin (1 mmol), H₂¹⁸O (0.5 g), and DMSO (1 mL, 99.8%) were added to an oven-dried 10 mL seal tube in sequence in the glovebox. The seal tube was sealed with a Teflon lined cap, and then the tube was put into an oil bath at 130 °C under magnetic stirring for 24 h. After cooled to room temperature, the reaction mixture was decolorized with Na₂S₂O₃, and then washed with distilled water (50 mL) and extracted with ethyl acetate (4 mL × 3). The organic layer was dried over MgSO₄ and concentrated under vacuum. The residue was purified by column chromatography on silica gel with petroleum ether-ethyl acetate (5:1) to give desired product.

$$Ph \longrightarrow + \bigcup_{D_3C} S_{CD_3} + H_2O \xrightarrow{4.0 \text{ equiv } NH_4I} Ph \xrightarrow{O}_{D_3C} S_{CD_3} + H_2O \xrightarrow{II}_{130 \circ C, 24 \text{ h}} Ph \xrightarrow{O}_{D_3C} S_{CD_3}$$

In a typical DMSO-d₆ labeling experiment, NH₄I (4 equiv, dehydration via dried at 100 °C), olefin (1 mmol), H₂O (0.5 g), and DMSO-d₆ (1 mL) were added to an oven-dried 10 mL seal tube in sequence in the glovebox. The seal tube was sealed with a Teflon lined cap, and then the tube was put into an oil bath at 130 °C under magnetic stirring for 24 h. After cooled to room temperature, the reaction mixture was decolorized with Na₂S₂O₃, and then washed with distilled water (50 mL) and extracted with ethyl acetate (4 mL \times 3). The organic layer was dried over MgSO₄ and concentrated under vacuum. The residue was purified by column chromatography on silica gel with petroleum ether-ethyl acetate (5:1) to give desired product.

6. Characterization data of products

(*E*)-(2-Methanesulfonyl-vinyl)-benzene (2a); white solid; m.p. 81-82 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, *J*=15.6 Hz, 1H), 7.42–7.40 (m, 2H), 7.35–7.28 (m, 3H), 6.88 (d, *J*=15.6 Hz, 1H), 2.94 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 131.9, 131.1, 128.9, 128.4, 126.1, 43.0 ppm; IR (KBr): 1622, 1298, 1128, 966, 748, 500 cm⁻¹; HRMS-ESI (m/z): calcd. for C₉H₁₁O₂S [M+H]⁺ 183.0474, found 183.0476.

(*E*)-1-(2-Methanesulfonyl-vinyl)-4-methyl-benzene (2b); white solid; m.p. 115–116 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, *J*=15.2 Hz, 1H), 7.41 (d, *J*=8.0 Hz, 2H), 7.23 (d, *J*=7.6 Hz, 2H), 6.86 (d, *J*=15.6 Hz, 1H), 3.03 (s, 3H), 2.40 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 142.1, 129.9, 129.4, 128.7, 125.1, 43.4, 21.8 ppm; IR (KBr): 2943, 2830, 1453, 1299, 1130, 1030 cm⁻¹; HRMS-ESI (m/z): calcd. for C₁₀H₁₂NaO₂S [M+Na]⁺ 219.0450, found 219.0451.

(*E*)-1-(2-Methanesulfonyl-vinyl)-4-methoxy-benzene (2c); brown solid; m.p. 138–139 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, *J*=15.2 Hz, 1H), 7.46 (d, *J*=8.8 Hz, 2H), 6.93 (d, *J*=8.8 Hz, 2H), 6.77 (d, *J*=15.2 Hz, 1H), 3.85 (s, 3H), 3.02 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 162.3, 144.0, 130.5, 124.6, 123.6, 114.7, 55.6, 43.7 ppm; IR (KBr): 2943, 2828, 1425, 1290, 1133, 1029 cm⁻¹; HRMS-ESI (m/z): calcd. for C₁₀H₁₂NaO₃S [M+Na]⁺ 235.0399, found 235.0401.

(*E*)-1-tert-Butyl-4-(2-methanesulfonyl-vinyl)-benzene (2d); light yellow solid; m.p. 88–89 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, *J*=15.2 Hz, 1H), 7.47–7.43 (m, 4H), 6.88 (d, *J*=15.6 Hz, 1H), 3.03 (s, 3H), 1.33 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 155.2, 143.9, 129.3, 128.4, 126.1, 125.2, 43.4, 35.0, 31.1 ppm; IR (KBr): 3082, 3008, 1430, 1106, 621, 546 cm⁻¹; HRMS-ESI (m/z): calcd. for C₁₃H₁₈NaO₂S [M+Na]⁺ 261.0920, found 261.0919.

(*E*)-1-Fluoro-4-(2-methanesulfonyl-vinyl)-benzene (2e); white solid; m.p. 128–129 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, *J*=15.2 Hz, 1H), 7.52 (dd, *J*=8.6, 5.4 Hz, 2H), 7.13 (t, *J*=8.6 Hz, 2H), 6.85 (d, *J*=15.6 Hz, 1H), 3.04 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 163.3, 142.7, 130.7, 130.6, 128.4, 128.3, 125.9, 125.9, 116.5, 116.3, 43.28 ppm; IR (KBr): 2946, 2834, 1640, 1302, 1132, 1028 cm⁻¹; HRMS-ESI (m/z): calcd. for C₉H₉FNaO₂S [M+Na]⁺ 223.0199, found 223.0199.

(*E*)-1-Chloro-4-(2-methanesulfonyl-vinyl)-benzene (2f); light yellow solid; m.p. 129–130 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, *J* = 15.2 Hz, 1H), 7.46 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 16.0 Hz, 2H), 6.94 (d, *J* = 15.6 Hz, 1H), 3.05 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 142.4, 137.3, 130.5, 129.7, 129.3, 126.7, 43.1 ppm; IR (KBr): 2939, 2832, 1638, 1298, 1128, 1028 cm⁻¹; HRMS-ESI (m/z): calcd. for C₉H₉ClNaO₂S [M+Na]⁺ 238.9904, found 238.9907.

(*E*)-1-Bromo-4-(2-methanesulfonyl-vinyl)-benzene (2g); light yellow solid; m.p. 136–137 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.56 (dd, *J*=12.0, 3.2 Hz, 3H), 7.38 (d, *J*=8.4, 2H), 6.93 (d, *J*=15.6 Hz, 1H), 3.04 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 142.5, 132.3, 130.9, 129.9, 126.9, 125.7, 43.12 ppm; IR (KBr): 2941, 2831, 1638, 1404, 1129, 1027 cm⁻¹; HRMS-ESI (m/z): calcd. for C₉H₉BrNaO₂S [M+Na]⁺ 282.9399, found 282.9399.

(*E*)- 4-(2-Methanesulfonyl-vinyl)-benzoic acid methyl ester (2h); white solid; m.p. 116–117 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.09 (d, J = 8.2 Hz, 2H), 7.66 (d, J = 15.5 Hz, 1H), 7.59 (d, J = 8.2 Hz, 2H), 7.02 (d, J = 15.5 Hz, 1H), 3.94 (s, 3H), 3.06 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 166.1, 142.6, 136.2, 132.4, 130.3, 129.3, 128.4, 52.4, 43.1 ppm; IR (KBr): 2941, 2830, 1573, 1409, 1120, 1029 cm⁻¹; HRMS-ESI (m/z): calcd. for C₁₁H₁₂NaO₄S [M+Na]⁺ 263.0349, found 263.0348.

(*E*)-4-(2-Methanesulfonyl-vinyl)-benzonitrile (2i); light yellow liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, J = 8.4 Hz, 2H), 7.66–7.62(m, 3H), 7.05 (d, J = 15.6 Hz, 1H), 3.07 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 141.5, 136.3, 132.8, 129.8, 128.9, 117.9, 114.5, 43.0 ppm; IR (KBr): 2939, 2831, 1647, 1404, 1122, 1029 cm⁻¹; HRMS-ESI (m/z): calcd. for C₁₀H₉NNaO₂S [M+Na]⁺ 230.0246, found 230.0237.

(E)-1-(2-(Methylsulfonyl)vinyl)-4-nitrobenzene (2j); light yellow solid; m.p. 181–182 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.30 (d, *J* = 8.8 Hz, 2H), 7.69 (dd, *J* = 12.0, 3.2 Hz, 3H), 7.07 (d, *J* = 14.2 Hz, 1H), 3.08 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 141.1, 138.1, 130.5, 129.3, 124.4, 43.1 ppm; IR (KBr): 2942, 2831, 2356, 1647, 1405, 1028 cm⁻¹; MS (EI) m/z: 89, 102, 118, 148, 164, 227.

(*E*)-1-(2-Methanesulfonyl-vinyl)-4-trifluoromethyl-benzene (2k); light yellow solid; m.p. 143–144 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.70–7.64 (m, 5H), 7.07 (d, *J* = 15.2 Hz, 1H), 3.07 (s, 3H) ppm; ¹³C NMR (100MHz, CDCl₃) δ 142.0, 135.4, 133.2, 132.8, 132.5, 132.2, 128.8, 128.7, 128.3, 127.6, 127.6, 126.1, 126.1, 126.0, 126.0, 124.9, 122.2, 43.0 ppm; IR (KBr): 2934, 2831, 2356, 1530, 1303, 1127 cm⁻¹; HRMS-ESI (m/z): calcd. for C₁₀H₉F₃NaO₂S [M+Na]⁺ 273.0168, found 273.0161.

(*E*)-1-(2-Methanesulfonyl-vinyl)-3-methyl-benzene (2l); light yellow liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, *J*=15.2 Hz, 1H), 7.32–7.31 (m, 3H), 7.29–7.26 (m, 1H), 6.90 (d, *J*=15.2 Hz, 1H), 3.03 (s, 3H), 2.38 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 144.2, 138.9, 132.2, 132.0, 129.2, 129.0, 125.9, 125.8, 43.4, 21.3 ppm; IR (KBr): 2942, 2831, 1644, 1395, 1123, 1028 cm⁻¹; HRMS-ESI (m/z): calcd. for C₁₀H₁₂NaO₂S [M+Na]⁺ 219.0450, found 219.0446.

(*E*)-1-(2-Methanesulfonyl-vinyl)-3-trifluoromethyl-benzene (2m); brown solid; m.p. 142–143 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.78 (s, 1H), 7.72–7.65(m, 3H), 7.58 (t, *J* = 7.8 Hz, 1H), 7.03 (d, *J* = 15.6 Hz, 1H), 3.06 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 142.2, 132.9, 131.9, 131.7, 131.6, 129.8, 128.3, 127.8, 127.8, 127.7,

127.7, 125.1, 125.0, 125.0, 124.9, 124.9, 122.2, 43.1 ppm; IR (KBr): 2968, 1629, 1425, 989, 1101, 622 cm⁻¹; HRMS-ESI (m/z): calcd. for C₁₀H₉F₃NaO₂S [M+Na]⁺ 273.0168, found 273.0173.

(*E*)-1-(2-Methanesulfonyl-vinyl)-2-methyl-benzene (2n); light yellow solid; m.p. 112–113 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, *J*=15.2 Hz, 1H), 7.51 (d, *J*=8.4 Hz, 1H), 7.34 (t, *J*=7.4 Hz, 1H), 7.62–7.24 (m, 2H), 6.85 (d, *J*=15.6 Hz, 1H), 3.04 (s, 3H), 2.45 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 141.8, 138.3, 131.1, 131.0, 127.1, 126.9, 126.6, 43.4, 19.8 ppm; IR (KBr): 3008, 1628, 1425, 1171, 1102, 621 cm⁻¹; HRMS-ESI (m/z): calcd. for C₁₀H₁₂NaO₂S [M+Na]⁺ 219.0450, found 219.0453.

(*E*)-2-(2-Methanesulfonyl-vinyl)-1,4-dimethyl-benzene (20); light yellow solid; m.p. 80–81 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, *J* = 15.2 Hz, 1H), 7.32 (s, 1H), 7.16–7.11 (m, 2H), 6.83 (d, *J* = 15.2 Hz, 1H), 3.04 (s, 3H), 2.40 (s, 3H), 2.34 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 141.8, 136.0, 135.3, 132.0, 131.0, 130.7, 127.3, 126.7, 43.3, 20.8, 19.2 ppm; IR (KBr): 3002, 1629, 1425, 1174, 621, 545 cm⁻¹; HRMS-ESI (m/z): calcd. for C₁₁H₁₄NaO₂S [M+Na]⁺ 233.0607, found 233.0603.

(2-(Methylsulfonyl)ethene-1,1-diyl)dibenzene (2p); white solid; m.p. 101-102 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.49–7.26 (m, 10H), 6.86 (s, 1H), 2.68 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 154.8, 139.0, 135.6, 130.4, 129.8, 129.5, 128.7, 128.3, 128.0, 43.2 ppm; IR (KBr): 2943, 2832, 1648, 1567, 1405, 1027 cm⁻¹; HRMS-ESI (m/z): calcd. for C₁₅H₁₄NaO₂S [M+Na]⁺ 281.0607, found 281.0603.

(*E*)-2,2-Difluoro-5-(2-methanesulfonyl-vinyl)-benzo[1,3]dioxole (2q); light yellow solid; m.p. 142–143 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, *J* = 15.6 Hz, 1H), 7.27 (d, *J* = 9.2 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 1H), 6.87 (d, *J* = 15.6 Hz, 1H), 3.05 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 144.4, 142.5, 134.1, 131.6, 129.0, 128.5, 126.5, 125.9, 110.0, 108.3, 43.21 ppm; IR (KBr): 3114, 2978, 1624, 1377, 1098, 619 cm⁻¹; HRMS-ESI (m/z): calcd. for C₁₀H₈F₂NaO₄S [M+Na]⁺ 285.0004, found 285.0004.

(*E*)-2-(2-Methanesulfonyl-vinyl)-thiophene (2r); brown liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, *J* = 15.2 Hz, 1H), 7.48 (d, *J* = 5.2 Hz, 1H), 7.33 (d, *J* = 3.6 Hz, 1H), 7.11–7.09 (m, 1H), 6.70 (d, *J* = 15.2 Hz, 1H), 3.03 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 136.6, 130.1, 128.4, 124.3, 43.5 ppm; IR (KBr): 2940, 2831, 1640, 1552, 1390, 1028 cm⁻¹; HRMS-ESI (m/z): calcd. for C₇H₈NaO₂S₂ [M+Na]⁺ 210.9858, found 210.9857.

(*E*)-2-(2-Methanesulfonyl-vinyl)-naphthalene (2s); tawny solid; m.p. 145–146 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.95–7.77 (m, 5H), 7.61–7.52 (m, 3H), 7.02 (d, *J*=15.6 Hz, 1H), 3.07 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 134.6, 133.1, 131.0, 129.5, 129.1, 128.7, 127.9, 127.8, 127.0, 126.2, 123.3, 43.5 ppm; IR (KBr): 2944, 2832, 1644, 1552, 1119, 1022 cm⁻¹; HRMS-ESI (m/z): calcd. for C₁₃H₁₂NaO₂S [M+Na]⁺ 255.0450, found 255.0454.

(*E*)-9-(2-Methanesulfonyl-vinyl)-anthracene (2t); brown solid; m.p. 165–166 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.60 (d, J = 15.6 Hz, 1H), 8.49 (s, 1H), 8.16 (d, J = 8.8 Hz, 2H), 8.03 (d, J = 8.4 Hz, 2H), 7.57–7.46 (m, 4H), 6.98 (d, J = 15.6 Hz, 1H), 3.19 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 141.1, 134.5, 131.1, 129.3, 129.3, 129.0, 127.0, 126.0, 125.5, 124.4, 43.2 ppm; IR (KBr): 2930, 2839, 1640, 1550, 1309, 1022 cm⁻¹; HRMS-ESI (m/z): calcd. for C₁₇H₁₄NaO₂S [M+Na]⁺ 305.0607, found 305.0610.

(*E*)-5-(2-Methanesulfonyl-vinyl)-4-methyl-thiazole (2u); brown solid; m.p. 125–126 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.79 (s, 1H), 7.77 (d, *J* = 15.2 Hz, 1H), 6.66 (d, *J* = 15.2 Hz, 1H), 3.05 (s, 3H), 2.59 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 157.8, 154.0, 133.2, 126.9, 125.7, 43.3, 15.7 ppm; IR (KBr): 2926, 1747, 1555, 1385, 1129, 1026 cm⁻¹; HRMS-ESI (m/z): calcd. for C₇H₉NaO₂S₂ [M+Na]⁺ 225.9967, found 225.9965.

(E)-(2-(Methylsulfonyl)prop-1-enyl)benzene (2v); light yellow liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.65 (s, 1H), 7.46–7.38 (m, 5H), 2.97 (s, 3H), 2.34 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 138.0, 136.7, 133.5, 129.6, 129.4, 128.7, 40.4, 13.4 ppm; IR (KBr): 3106, 2975, 1624, 1425, 1098, 619 cm⁻¹; HRMS-ESI (m/z): calcd. for C₁₀H₁₂NaO₂S [M+Na]⁺ 219.0450, found 219.0453.

(1-Methanesulfonylmethyl-vinyl)-benzene (2w); light yellow liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.48–7.45 (m, 2H), 7.41–7.32 (m, 3H), 5.76 (s, 1H), 5.57 (s, 1H), 4.19 (s, 2H), 2.72 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 138.6, 136.7, 128.8, 128.5, 126.3, 122.1, 60.7, 40.2 ppm; IR (KBr): 3005, 1628, 1425, 1174, 1100, 620 cm⁻¹; HRMS-ESI (m/z): calcd. for C₁₀H₁₂NaO₂S [M+Na]⁺ 219.0450, found 219.0451.

1-Fluoro-4-(1-methanesulfonylmethyl-vinyl)-benzene (2x); light yellow solid; m.p. 80–81 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.46 (dd, J = 8.0, 5.1 Hz, 2H), 7.07 (t, J = 8.6 Hz, 2H), 5.73 (s, 1H), 5.54 (s, 1H), 4.17 (s, 2H), 2.78 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 161.6, 135.7, 134.8, 134.7, 128.2, 128.1, 122.0, 115.9, 115.6, 60.9, 40.2 ppm; IR (KBr): 3105, 2787, 1625, 1425, 1099, 620 cm⁻¹; HRMS-ESI (m/z): calcd. for C₁₀H₁₁FNaO₂S [M+Na]⁺ 237.0356, found 237.0362.

1-Chloro-4-(1-methanesulfonylmethyl-vinyl)-benzene (2y); light yellow solid; m.p. 85–86 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.43–7.34 (m, 4H), 5.77 (s, 1H), 5.56 (s, 1H), 4.16 (s, 2H), 2.79 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 137.0, 135.6, 134.5, 127.6, 122.5, 60.5, 40.2 ppm; IR (KBr): 3002, 2847, 1595, 1425, 1106, 621 cm⁻¹; HRMS-ESI (m/z): calcd. for C₁₀H₁₁ClNaO₂S [M+Na]⁺ 253.0060, found 253.0062.

(1-Methanesulfonylmethyl-propenyl)-benzene (2z); light yellow liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.41–7.33 (m, 5H), 6.25 (q, *J* = 7.0, 14.2 Hz, 1H), 4.27 (s, 2H), 2.56 (s, 3H), 1.99 (d, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 141.0, 133.6, 128.9, 127.7, 126.4, 125.5, 56.2, 41.1, 15.5 ppm; IR (KBr): 2943, 2831, 1574, 1410, 1119,1029 cm⁻¹; HRMS-ESI (m/z): calcd. for C₁₁H₁₄NaO₂S [M+Na]⁺ 233.0607, found 233.0615.

2-(Methylthio)-1-phenylethanol (3a)^[2]; ¹H NMR (400 MHz, CDCl₃): δ 7.47–7.27 (m, 5H), 4.77 (dd, *J* = 9.2, 3.2 Hz, 1H), 2.89–2.69 (m, 3H), 2.13 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 142.4, 128.5, 127.8, 125.8, 71.2, 44.0, 15.4 ppm; MS (EI) m/z: 168, 107, 79, 62.

2-(Methylsulfonyl)-1-phenylethanol (4a)^[2]; ¹H NMR (400 MHz, CDCl₃): δ 7.41–7.29 (m, 5H), 5.35 (d, *J* = 10.4 Hz, 1H), 3.46 (dd, *J* = 14.8, 10.2 Hz, 1H), 3.17 (d, *J* = 14.8 Hz, 1H), 3.05 (s, 4H), 3.02 (s, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 141.0, 129.0, 128.7, 125.6, 69.3, 62.5, 42.8 ppm; MS (EI) m/z: 200, 120, 107, 94, 78.

2,2-Difluoro-5-vinyl-benzo[1,3]dioxole (1q); ¹H NMR (400 MHz, CDCl₃): δ 7.09 (s, 1H), 7.01 (d, *J* = 8.4 Hz, 1H), 6.92 (d, *J* = 8.0 Hz, 1H), 6.61 (dd, *J* = 17.6, 10.8 Hz, 1H), 5.61 (d, *J* = 17.6 Hz, 1H), 5.21 (d, *J* = 11.2 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 143.3, 135.6, 134.3, 131.7, 129.2, 122.3, 114.0, 109.2, 106.4 ppm.

But-1-en-2-ylbenzene (1z); ¹H NMR (400 MHz, CDCl₃): δ 7.40–7.37 (m, 2H), 7.30–7.26 (m, 2H), 7.23–7.21 (m, 1H), 5.26 (s, 1H), 5.04 (s, 1H), 2.52 – 2.46 (m, 2H), 1.11–1.06 (m, 3H) ppm;¹³C NMR (100 MHz, CDCl₃) δ 150.0, 141.5, 128.2, 127.2, 126.0, 110.9, 28.1, 13.0 ppm.

7. References

Taber, D. F.; Nelson, C. G. J. Org. Chem., 2006, 71, 8973.
 Truce, W. E.; Buser, K.R. J. Am. Chem. Soc., 1954, 76, 3577.

8. NMR spectra of products

8.102 8.081 7.598 7.578 7.035 6.996

---0.000

-3.070

---0.000

---0.000

										· .								
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	
								f1	(ppm)									

---0.000

--3.069

SI 34

----0.000

SI 44

