Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Supporting Information:

Direct Asymmetric Hydrogenation of α-Keto Acids by Using the Highly

Efficient Chiral Spiro Iridium Catalysts

Pu-Cha Yan,^a Jian-Hua Xie,^{b,c} Xiang-Dong Zhang,^a Kang Chen,^a Yuan-Qiang Li,^a Qi-Lin Zhou,^{*,b,c} and Da-Qing Che^{*,a,c}

^a Zhejiang Jiuzhou Pharmaceutical Co., Ltd., 99 Waisha Road, Jiaojiang District, Taizhou City, Zhejiang Province, 318000, P. R. China

^b State Key Laboratory and Institute of Elemento-organic Chemistry, Nankai University, Tianjin 300071, P. R. China

^c Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, P. R. China

E-mail: <u>qlzhou@nankai.edu.cn</u>; <u>dqche@zbjz.cn</u>

CONTENTS:

(A) General	Procedure	for	the	Preparation	of	a-Keto
Acids		.2				
(B) Analytical	Data and NMR	Spectra	of a-Ket	to Acids	•••••	3
(C) General	Pro	cedure		for	As	ymmetric
Hydrogena	ntion		21			
. 0						

(D) Analytical Data, NMR Spectra and HPLC Charts of α-Hydroxy Acids..... 21

General. All reactions and manipulations which are sensitive to moisture or air were performed in an argon-filled glovebox (MIKROUNA *Super 1220/750*). ¹H and ¹³C NMR spectra were recorded on a Bruker Ultrashield 400 Plus spectrometer at 400 and 100.6 MHz, respectively. Chemical shifts were reported in ppm down field from internal Me₄Si. Melting points were determined on an open capillary apparatus (SG WRR) and uncorrected. Chiral separations for ee determinations were conducted on Chiracel OD-H (4.6 mm x 250 mm x 5 μ m) or Chirapak AD-H (4.6 mm x 250 mm x 5 μ m) column on an Agilent 1200 series instrument. Optical rotations were determined using a SG WZZ-2S automatic polarimeter. Mass spectra were recorded on Agilent 6530 Accurate-Mass Q-TOF LC/MS spectrometer with ESI resource. Hydrogen gas (99.999%) was purchased from Bao Qing Gas Int., Shanghai. 'BuOK, α -keto acids **2a**, **2n**, **2p** were purchased from Adamas chemical company and used as received without further purification. Other α -keto acids were hydrolyzed from corresponding esters which were prepared as the reported method.¹ Anhydrous 'PrOH, "PrOH and "BuOH were freshly distilled from calcium hydride. Anhydrous MeOH and EtOH were freshly distilled from magnesium. The catalyst (*R*)-**1** was prepared as the reported method.²

(A) General Procedure for the Preparation of α-Keto Acids

2-(2-Chlorophenyl)-2-oxoacetic acid (**2b**): A solution of *o*-bromochlorobenzene (25 g, 130.6 mmol) in dry THF (60 mL) was added dropwise to a mixture of Mg (3.3 g, 135.8 mmol) and I₂ (one piece) in dry THF (40 mL) at 25–35 °C over 1 h under N₂. To the Grignard reagent thus prepared was added a solution of dimethyl oxalate (10.2 g, 86.4 mmol) in dry THF (50 mL) at -70 °C. After the mixture had been stirred at -70 °C for 1 h, the reaction was quenched with 10% HCl. The product was extracted with 'BuOMe, and the organic layer was dried over Na₂SO4 and concentrated. Purification by silica gel column chromatography (Hexane/EtOAc, 10:1) gave methyl *o*-chlorobenzoylformate as a pale yellow oil, yield: 20.3g (78%). The methyl *o*-chlorobenzoylformate was dissolved in THF (80 mL), to which the aqueous solution (80 mL) of NaOH (8.2 g, 205 mmol) was added at 0 °C. After stirring at 0 °C for 1 h, the reaction mixture was concentrated on a rotary evaporator. To the resulting residue was added 3 M HCl and extracted with 'BuOMe. The extract was dried over Na₂SO₄ and concentrated to give the product 2-(2-chlorophenyl)-2-oxoacetic acid (**2b**), 16 g, yield: 85%.

¹ T. Ema, S. Ide, N. Okita, T. Sakai, Adv. Synth. Catal., 2008, 350, 2039.

² J.-H. Xie, X.-Y. Liu, J.-B. Xie, L.-X. Wang, Q.-L. Zhou, Angew. Chem., Int. Ed., 2011, 50, 7329.

(B) Analytical Data and NMR Spectra of α-Keto Acids

2-(2-chlorophenyl)-2-oxoacetic acid (2b)

CI 0 OH 0

Pale yellow solid, mp: 113–114 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.29 (brs, 1H), 7.84–7.82 (m, 1H), 7.58–7.41 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 185.8, 164.5, 134.7, 134.2, 132.4, 132.0, 130.9, 127.3. HRMS (ESI) calcd for [M-H, C₈H₄ClO₃]⁻: 182.9849, Found 184.9845.

2-oxo-2-(o-tolyl)acetic acid (2c)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 11.02 (brs, 1H), 7.90 (d, J = 7.6 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.33–7.29 (m, 2H), 2.59 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 187.8, 166.3, 141.8, 134.3, 132.9, 132.4, 130.5, 126.0, 21.5. HRMS (ESI) calcd for [M-H, C₉H₇O₃]⁻: 163.0395, Found 163.0398.

2-(2-methoxyphenyl)-2-oxoacetic acid (2d)

Pale yellow solid, mp: 101–102 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.07 (brs, 1H), 7.90 (dd, J = 1.6, 7.6 Hz, 1H), 7.65–7.60 (m, 1H), 7.10 (t, J = 7.6 Hz, 1H), 7.02 (d, J = 8.4 Hz, 1H), 3.92 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 185.6, 169.4, 160.6, 136.9, 130.9, 122.2, 121.5, 112.3, 56.2. HRMS (ESI) calcd for [M-H, C₉H₇O₄]⁻: 179.0344, Found 179.0347.

2-(3-chlorophenyl)-2-oxoacetic acid (2e)

Pale yellow solid, mp: 59–60 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.21 (brs, 1H), 8.23 (s, 1H), 8.17 (d, *J* = 8.0 Hz, 1H), 7.68–7.65 (m, 1H), 7.48 (t, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 183.6, 162.4, 135.6, 135.4, 133.3, 130.8, 130.4, 129.3. HRMS (ESI) calcd for [M-H, C₈H₄ClO₃]⁻: 182.9849, Found 182.9842.

2-oxo-2-(m-tolyl)acetic acid (2f)

Pale yellow solid, mp: 61–63 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.06–8.03 (m, 2H), 7.50 (d, J = 7.6 Hz, 1H), 7.41 (t, J = 7.6 Hz, 1H), 6.71 (brs, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 185.4, 163.3, 139.0, 136.5, 131.9, 131.3, 128.9, 128.4, 21.3. HRMS (ESI) calcd for [M-H, C₉H₇O₃]⁻: 163.0395, Found 163.0398.

2-(3-methoxyphenyl)-2-oxoacetic acid (2g)

Yellow solid, mp: 63–64 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.99 (brs, 1H), 7.86 (d, *J* = 7.6 Hz, 1H), 7.72 (s, 1H), 7.44 (t, *J* = 8.0 Hz, 1H), 7.25 (dd, *J* = 2.0, 8.0 Hz, 1H), 3.88 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 184.7, 163.6, 159.9, 133.0, 130.1, 124.2, 122.7, 114.3, 55.6. HRMS (ESI) calcd for [M-H, C₉H₇O₄]⁻: 179.0344, Found 179.0340.

2-(4-fluorophenyl)-2-oxoacetic acid (2h)

Pale yellow solid, mp: 93–94 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.66 (brs, 1H), 8.40–8.37 (m, 2H), 7.23–7.19 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 182.8, 168.7, 166.1, 162.2, 134.5, 134.4, 128.3 (d), 116.6, 116.4. HRMS (ESI) calcd for [M-H, C₈H₄FO₃]⁻: 167.0144, Found 167.0150.

2-(4-chlorophenyl)-2-oxoacetic acid (2i)³

Pale yellow solid, mp: 92–94 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.85 (brs, 1H), 8.27 (d, J = 8.8 Hz, 1H), 7.51 (d, J = 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 183.3, 162.1, 142.7, 132.6, 130.1, 129.5.

³ K. Wadhwa, C. Yang, P. R. West, K. C. Deming, S. R. Chemburkar, R. E. Reddy, *Synth. Commun.*, 2008, **38**, 4434.

2-oxo-2-(p-tolyl)acetic acid (2j)

Pale yellow solid, mp: 94–96 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.98 (brs, 1H), 8.23 (d, J = 7.6 Hz, 1H), 7.33 (d, J = 7.6 Hz, 1H), 2.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 184.0, 162.5, 147.4, 131.5, 129.8, 129.3, 22.1. HRMS (ESI) calcd for [M-H, C₉H₇O₃]⁻: 163.0395, Found 163.0398.

2-(4-methoxyphenyl)-2-oxoacetic acid $(2k)^4$

Pale yellow solid, mp: 90–91 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.93 (brs, 1H), 8.33 (d, J = 8.8 Hz, 2H), 6.97 (d, J = 8.8 Hz, 2H), 3.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 182.6, 165.8, 162.8, 134.2, 124.8, 114.5, 55.8.

⁴ M.-L. Yang, P.-C. Kuo, A. G. Damu, R.-J. Chang, W.-F. Chiou, T.-S. Wu, *Tetrahedron*, 2006, **62**, 10900.

2-(naphthalen-1-yl)-2-oxoacetic acid (2l)⁵

Yellow solid, mp: 113–115 °C. ¹H NMR (400 MHz, CDCl₃): δ 10.03 (brs, 1H), 8.92 (d, *J* = 8.4 Hz, 2H), 8.37 (d, *J* = 7.2 Hz, 1H), 8.14 (d, *J* = 8.4 Hz, 2H), 7.92 (d, *J* = 8.0 Hz, 2H), 7.72–7.55 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 186.9, 164.5, 136.6, 135.1, 134.0, 131.2, 129.6, 129.0, 127.5, 127.2, 125.5, 124.4.

⁵ D. Crich, Y. Zou, J. Org. Chem., 2005, 70, 3309.

2-(naphthalen-2-yl)-2-oxoacetic acid (2m)

Yellow solid, mp: 92–94 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.97 (brs, 1H), 9.02 (s, 1H), 8.16 (dd, J = 8.8, 1.6 Hz, 1H), 8.00 (d, J = 8.0 Hz, 1H), 7.92–7.86 (m, 2H), 7.69–7.56 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 184.4, 163.0, 136.7, 135.5, 132.4, 130.5, 130.2, 129.1, 128.0, 127.4, 124.6. HRMS (ESI) calcd for [M-H, C₁₂H₇O₃]⁻: 199.0395, Found 199.0399.

2-cyclohexyl-2-oxoacetic acid (20)

Yellow solid, mp: 48~49 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.44 (brs, 1H), 3.18–3.11 (m, 1H), 1.92–1.66 (m, 5H), 1.39–1.17 (m, 5H). ¹³C NMR (100 MHz, CDCl₃): δ 198.2, 161.4, 45.1, 27.7, 25.6, 25.2. HRMS (ESI) calcd for [M-H, C₈H₁₁O₃]⁻: 155.0708, Found 155.0711.

(C) General Procedure for Asymmetric Hydrogenation

(S/C = 1000): To a 30 mL hydrogenation vessel were added 'BuOK (242 mg, 2.16 mmol), α -keto acid 2 (2 mmol), the catalyst (*R*)-1 (2 mg, 0.002mmol) and anhydrous "BuOH (5 mL) under nitrogen atmosphere. The vessel was then placed in an autoclave. The air in the autoclave was replaced with hydrogen for five times. Then the autoclave was charged with hydrogen to 15 atm, and the reaction mixture was stirred at room temperature for a certain time. After releasing the hydrogen pressure, the reaction mixture was acidified with 3 M HCl and extracted with 'BuOMe. The extract was dried over Na₂SO₄ and concentrated on a rotary evaporator. The conversion of substrate was determined by ¹H NMR analysis. The crude product was purified by flash chromatography on silica gel column to give the pure product **3**. The product was esterfied to afford the corresponding ester which was analyzed on HPLC with a chiral column to determined *ee* value.

(D) Analytical Data, NMR Spectra and HPLC Charts of α-Hydroxy Acids

(S)-2-hydroxy-2-phenylacetic acid $(3a)^6$

⁶ P. D. Gennaro, S. Bernasconi, F. Orsini, E. Corretto, G. Sello, *Tetrahedron: Asymmetry*, 2010, **21**, 1885.

Yield: 95%, white solid. 93% ee, $[\alpha]_{12}^{28}$ +148.0 (*c* 0.5, H₂O), HPLC condition for corresponding methyl ester: Chiralcel OD-H column, *n*-Hexane/IPA = 95:5, 1.0 mL/min, 35 °C, 210 nm UV detector, $t_{\rm R}$ = 11.86 min for (*S*)-enantiomer and $t_{\rm R}$ = 20.14 min for (*R*)-enantiomer. ¹H NMR (400 MHz, CD₃OD): δ 7.46 (d, *J* = 7.2 Hz, 2H), 7.30–7.19 (m, 3H), 4.84 (s, 1H).

methyl 2-hydroxy-2-phenylacetate

Signal 1: DAD1 B, Sig=210,16 Ref=360,100

⁷ N. Kurono, K. Arai, M. Uemura, T. Ohkuma, Angew. Chem., Int. Ed., 2008, 47, 6643.

Yield: 93%, white solid. 91% ee, $[\alpha]_{12}^{28}$ +137.1 (*c* 0.5, EtOH), HPLC condition for corresponding methyl ester: Chiralcel OD-H column, *n*-Hexane/IPA = 97:3, 1.0 mL/min, 35 °C, 210 nm UV detector, $t_{\rm R}$ = 16.41 min for (*S*)-enantiomer and $t_{\rm R}$ = 19.24 min for (*R*)-enantiomer. ¹H NMR (400 MHz, CD₃OD): δ 7.52–7.50 (m, 1H), 7.42–7.39 (m, 1H), 7.33–7.29 (m, 2H), 5.57 (s, 1H).

(S)-2-hydroxy-2-(o-tolyl)acetic acid $(3c)^8$

⁸ H. Vázquez-Villa, S. Reber, M. A. Ariger, E. M. Carreira, *Angew. Chem., Int. Ed.*, 2011, **50**, 8979.

Yield: 98%, pale yellow oil, 98% ee, $[\alpha]_{15}^{28}$ +175.1 (*c* 0.5, EtOH), HPLC condition for corresponding methyl ester: Chiralcel OD-H column, *n*-Hexane/IPA = 92:8, 1.0 mL/min, 35 °C, 210 nm UV detector, $t_{\rm R}$ = 9.39 min for (*S*)-enantiomer and $t_{\rm R}$ = 11.46 min for (*R*)-enantiomer. ¹H NMR (400 MHz, CDCl₃): δ 7.30–7.15 (m, 4H), 5.63 (brs, 2H), 5.40 (s, 1H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 177.4, 136.5, 136.0, 131.0, 128.8, 126.8, 126.4, 70.2, 19.3.

methyl 2-hydroxy-2-(o-tolyl)acetate

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	웅
1	9.389 BB	0.2109	1.67179e4	1242.99023	98.9050
2	11.456 BB	0.2425	185.08586	11.83152	1.0950
Total	ls :		1.69030e4	1254.82176	

(S)-2-hydroxy-2-(2-methoxyphenyl)acetic acid (3d)

Yield: 97%, colorless oil, 92% ee, $[\alpha]_{15}^{28}$ +124.2 (*c* 0.51, EtOH), HPLC condition for corresponding methyl ester: Chiralcel OD-H column, *n*-Hexane/IPA = 95:5, 1.0 mL/min, 35 °C, 210 nm UV detector, $t_{\rm R}$ = 19.40 min for (*S*)-enantiomer and $t_{\rm R}$ = 22.89 min for (*R*)-enantiomer. ¹H NMR (400 MHz, CDCl₃): δ 7.35–7.31 (m, 2H), 6.99–6.89 (m, 2H), 5.35 (s, 1H), 3.81 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 177.1, 156.8, 130.2, 129.3, 126.2, 121.2, 111.3, 70.0, 55.7; HRMS (ESI) calcd for [M-H, C₉H₉O₄]⁻: 181.0501, Found 181.0504.

methyl 2-hydroxy-2-(2-methoxyphenyl)acetate

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	웅
1	19.398 BB	0.4331	1.83758e4	655.45667	95.9851
2	22.894 BB	0.5856	768.62891	19.25933	4.0149
Total	ls :		1.91444e4	674.71600	

(S)-2-(3-chlorophenyl)-2-hydroxyacetic acid (3e)⁹

Yield: 94%, white solid, 91% ee, $[α]_{12}^{28}$ +117.3 (*c* 0.5, H₂O), HPLC condition for corresponding methyl ester: Chiralcel OD-H column, *n*-Hexane/IPA = 95:5, 1.0 mL/min, 35 °C, 210 nm UV detector, $t_R = 11.43$ min for (*S*)-enantiomer and $t_R = 13.74$ min for (*R*)-enantiomer. ¹H NMR (400 MHz, Acetone-d6): δ 7.56 (s, 1H), 7.49–7.34 (m, 3H), 5.26 (s, 1H). ¹³C NMR (100 MHz, Acetone-d6): δ 173.8, 143.0, 134.4, 130.7, 128.7, 127.4, 126.0, 72.7; HRMS (ESI) calcd for [M-H, C₈H₆ClO₃]⁻: 185.0005, Found 185.0010.

⁹ H.-R. Huang, J.-H. Xu, Y. Xu, J. Pan, X. Liu, *Tetrahedron: Asymmetry*, 2005, 16, 2113.

methyl 2-(3-chlorophenyl)-2-hydroxyacetate

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	용
1	11.429 VB	0.2501	2.41473e4	1514.10461	95.6381
2	13.737 BB	0.2739	1101.30994	61.79673	4.3619
Total	ls :		2.52486e4	1575.90134	

(S)-2-hydroxy-2-(m-tolyl)acetic acid (3f)

Yield: 95%, white solid, 92% ee, [α] $\frac{28}{15}$ +132.3 (*c* 0.5, EtOH), HPLC condition for corresponding methyl ester: Chiralcel OD-H column, *n*-Hexane/IPA = 95:5, 1.0 mL/min, 35 °C, 210 nm UV detector, $t_{\rm R}$ = 9.88 min for (*S*)-enantiomer and $t_{\rm R}$ = 16.36 min for (*R*)-enantiomer. ¹H NMR (400 MHz, Acetone-d6): δ 7.32–7.22 (m, 3H), 7.12 (d, *J* = 7.6 Hz, 1H), 5.16 (s, 1H), 2.32 (s, 3H). ¹³C NMR (100 MHz, Acetone-d6): δ 174.5, 140.6, 138.5, 129.3, 128.9, 128.1, 124.6, 73.5, 21.3; HRMS (ESI) calcd for [M-H, C₉H₉O₃]⁻: 165.0552, Found 165.0557.

Peak RetTime Type Width Height Area Area # [min] [mAU*s] [mAU] 응 [min] ----|-----|-----|-----|-----|-----| 1 9.875 BB 0.2177 1.20792e4 860.73804 96.1747 2 16.364 VV 0.3666 480.44095 20.41241 3.8253 Totals : 1.25596e4 881.15045

(S)-2-hydroxy-2-(3-methoxyphenyl)acetic acid (3g)

Yield: 97%, colorless oil, 94% ee, $[α]_{12}^{28}$ +106.6 (*c* 0.5, EtOH), HPLC condition for corresponding methyl ester: Chiralcel OD-H column, *n*-Hexane/IPA = 90:10, 1.0 mL/min, 35 °C, 210 nm UV detector, t_R = 9.14 min for (*S*)-enantiomer and t_R = 15.32 min for (*R*)-enantiomer. ¹H NMR (400 MHz, Acetone-d6): δ 7.27 (t, *J* = 8.0 Hz, 1H), 7.08–7.06 (m, 2H), 6.88–6.86 (m, 1H), 5.17 (s, 1H), 3.79 (s, 3H). ¹³C NMR (100 MHz, Acetone-d6): δ 174.4, 160.6, 142.2, 130.1, 119.7, 114.1, 113.1, 73.4, 55.4; HRMS (ESI) calcd for[M-H, C₉H₉O₄]⁻: 181.0501, Found 181.0506.

methyl 2-hydroxy-2-(3-methoxyphenyl)acetate

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	9.144	BB	0.2230	1.60726e4	1122.86279	96.7622
2	15.324	BB	0.3399	537.80792	24.71538	3.2378
Total	ls :			1.66104e4	1147.57817	

(S)-2-(4-fluorophenyl)-2-hydroxyacetic acid (3h)

Yield: 94%, colorless oil, 90% ee, $[α]_{12}^{28}$ +137.3 (*c* 0.5, EtOH), HPLC condition for corresponding methyl ester: Chiralcel OD-H column, *n*-Hexane/IPA = 95:5, 1.0 mL/min, 35 °C, 210 nm UV detector, t_R = 9.86 min for (*S*)-enantiomer and t_R = 11.94 min for (*R*)-enantiomer. ¹H NMR (400 MHz, Acetone-d6): δ 7.57–7.53 (m, 2H), 7.15–7.11 (m, 2H), 5.23 (s, 1H). ¹⁹F NMR (376 MHz, Acetone-d6): δ –116.3. ¹³C NMR (100 MHz, Acetone-d6): δ 174.4, 164.6, 162.2, 137.0 (d), 129.6 (d), 115.8 (d), 72.9; HRMS (ESI) calcd for[M-H, C₈H₆FO₃]⁻: 169.0301, Found 169.0305.

methyl 2-(4-fluorophenyl)-2-hydroxyacetate

Signal 1: DAD1 B, Sig=210,16 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
		-				
1	9.855	BB	0.2148	1.04407e4	748.19348	95.1700
2	11.942	BB	0.2729	529.87708	30.17592	4.8300
Total	ls :			1.09706e4	778.36940	

(S)-2-(4-chlorophenyl)-2-hydroxyacetic acid (3i)⁹

Yield: 97%, white solid, 88% ee, $[\alpha]_{12}^{28}$ +110.2 (*c* 0.5, H₂O), HPLC condition for corresponding methyl ester: Chiralcel OD-H column, *n*-Hexane/IPA = 96:4, 1.0 mL/min, 35 °C, 210 nm UV detector, $t_{\rm R}$ = 12.59 min for (*S*)-enantiomer and $t_{\rm R}$ = 14.60 min for (*R*)-enantiomer. ¹H NMR (400 MHz, Acetone-d6): δ 7.53 (d, *J* = 8.4 Hz, 2H), 7.40 (d, *J* = 8.8 Hz, 2H), 5.24 (s, 1H). ¹³C NMR (100 MHz, Acetone-d6): δ 174.1, 139.6, 134.1, 129.3, 129.1, 72.8.

methyl 2-(4-chlorophenyl)-2-hydroxyacetate

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
		-				
1	12.594	BB	0.2632	8827.68066	517.05139	93.8373
2	14.597	BB	0.3040	579.75293	29.66323	6.1627

Totals :

9407.43359 546.71462

(S)-2-hydroxy-2-(p-tolyl)acetic acid $(3j)^{10}$

Yield: 97%, white solid, 90% ee, $[\alpha]_{D}^{28}$ +135.1 (*c* 0.5, MeOH), HPLC condition for corresponding methyl ester: Chiralcel OD-H column, *n*-Hexane/IPA = 95:5, 1.0 mL/min, 35 °C, 210 nm UV detector, $t_{\rm R} = 10.42$ min for (*S*)-enantiomer and $t_{\rm R} = 14.14$ min for (*R*)-enantiomer. ¹H NMR (400 MHz, Acetone-d6): δ 7.38 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 5.16 (s, 1H), 2.31 (s, 3H). ¹³C NMR (100 MHz, Acetone-d6): δ 174.7, 138.4, 137.9, 129.7, 127.6, 73.4, 21.1.

¹⁰ (a) T. Ziegler, B. Hörsch, F. Effenberger, *Synthesis*, 1990, **7**, 575; (b) D. F. Colon, S. T. Pickard, H. E. Smith, *J. Org. Chem.*, 1991, **56**, 2322.

methyl 2-hydroxy-2-(p-tolyl)acetate

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	웅
		-				
1	10.423	BB	0.2137	1.66223e4	1199.29419	94.9006
2	14.135	BBA	0.2782	893.18469	50.05350	5.0994
Total	ls :			1.75155e4	1249.34769	

(S)-2-hydroxy-2-(4-methoxyphenyl)acetic acid (3k)

Yield: 96%, white solid, 90% ee, $[α]_{12}^{28}$ +125.1 (*c* 0.5, H₂O), HPLC condition for corresponding methyl ester: Chiralcel OD-H column, *n*-Hexane/IPA = 92:8, 1.0 mL/min, 35 °C, 210 nm UV detector, $t_R = 11.57$ min for (*S*)-enantiomer and $t_R = 16.73$ min for (*R*)-enantiomer. ¹H NMR (400 MHz, Acetone-d6): δ 11.10 (brs, 1H), 7.41 (d, J = 8.4 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 5.14 (s, 1H), 4.71 (brs, 1H), 3.79 (s, 3H). ¹³C NMR (100 MHz, Acetone-d6): δ 174.7, 160.5, 132.8, 128.8, 114.5, 73.1, 55.5. HRMS (ESI) calcd for[M-H, C₉H₉O₄]⁻: 181.0501, Found 181.0504.

methyl 2-hydroxy-2-(4-methoxyphenyl)acetate

Signal 1: DAD1 B, Sig=210,16 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
		-				
1	11.569	BB	0.2823	1.24893e4	680.02960	94.9257
2	16.728	BB	0.3518	667.61395	28.44955	5.0743
Total	ls :			1.31569e4	708.47915	

(S)-2-hydroxy-2-(naphthalen-1-yl)acetic acid $(3l)^{11}$

Yield: 98%, white solid, 99.2% ee, $[\alpha]_{12}^{28}$ +157.7 (*c* 0.5, EtOH), HPLC condition for corresponding methyl ester: Chiralpak AD-H column, *n*-Hexane/EtOH = 92:8, 1.0 mL/min, 35 °C, 210 nm UV detector, $t_{\rm R}$ = 14.73 min for (*R*)-enantiomer and $t_{\rm R}$ = 16.22 min for (*S*)-enantiomer. ¹H NMR (400 MHz, Acetone-d6): δ 8.37 (d, *J* = 8.0 Hz, 2H), 7.93–7.87 (m, 2H), 7.66 (d, *J* = 6.8 Hz, 1H), 7.54–7.47 (m, 3H), 5.90 (s, 1H), 5.06 (brs, 1H). ¹³C NMR (100 MHz, Acetone-d6): δ 174.7, 136.6, 134.9, 132.1, 129.5, 129.3, 126.8, 126.6, 126.5, 126.0, 125.3, 72.0.

¹¹ G. Massolini, G. Fracchiolla, E. Calleri, G. Carbonara, C. Temporini, A. Lavecchia, S. Cosconati, E. Novellino, F. Loiodice, *Chirality*, 2006, **18**, 633.

methyl 2-hydroxy-2-(naphthalen-1-yl)acetate

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	웅
1	14.729 BB	0.2629	68.90124	3.96143	0.4014
2	16.220 BB	0.2621	1.70977e4	1017.05078	99.5986
Total	ls :		1.71666e4	1021.01221	

(S)-2-hydroxy-2-(naphthalen-2-yl)acetic acid $(3m)^{12}$

Yield: 98%, white solid, 91% ee, $[\alpha]_{12}^{28}$ +137.1 (*c* 0.5, EtOH), HPLC condition for corresponding methyl ester: Chiralcel OD-H column, *n*-Hexane/IPA = 92:8, 1.0 mL/min, 35 °C, 210 nm UV detector, $t_{\rm R}$ = 13.34 min for (*S*)-enantiomer and $t_{\rm R}$ = 15.71 min for (*R*)-enantiomer. ¹H NMR (400 MHz, Acetone-d6): δ 8.02 (s, 1H), 7.93–7.88 (m, 3H), 7.65 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.53–7.48 (m, 2H), 5.41 (s, 1H), 4.96 (brs, 1H). ¹³C NMR (100 MHz, Acetone-d6): δ 174.5, 138.3, 134.2 (d), 128.8, 128.5, 127.1, 127.0, 126.6, 125.5, 73.7.

¹² M. St. Maurice, S. L. Bearne, *Biochemistry*, 2004, 43, 2524.

methyl 2-hydroxy-2-(naphthalen-2-yl)acetate

1c was used as catalyst:

Peak	RetTime 1	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	웅
		-				
1	13.341 H	BB	0.3326	1.70857e4	814.84875	95.2550
2	15.713 H	BB	0.3419	851.09479	37.90898	4.7450

1.79368e4 852.75773

1b was used as catalyst:

Totals :

Signal 1: DAD1 B, Sig=210,16 Ref=360,100

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	옹
1	13.145 BB	0.2269	1.22257e4	755.02460	97.4511
2	15.255 BB	0.3261	319.76462	15.16102	2.5489
Total	.s :		1.25454e4	770.18562	
			47		

(S)-2-hydroxy-4-phenylbutanoic acid $(3n)^{13}$

Yield: 96%, white solid, 56% ee, $[\alpha]_{12}^{28}$ +5.3 (*c* 0.5, EtOH), HPLC condition for corresponding ethyl ester: Chiralcel OD-H column, *n*-Hexane/IPA = 95:5, 1.0 mL/min, 35 °C, 210 nm UV detector, $t_{\rm R}$ = 8.24 min for (*S*)-enantiomer and $t_{\rm R}$ = 11.41 min for (*R*)-enantiomer. ¹H NMR (400 MHz, CDCl₃): δ 7.30–7.18 (m, 5H), 4.26 (dd, *J* = 4.0, 8.0 Hz, 1H), 2.83–2.78 (m, 2H), 2.22–2.14 (m, 1H), 2.06–1.96 (m, 2H).

ethyl 2-hydroxy-4-phenylbutanoate

Signal 1: DAD1 B, Sig=210,16 Ref=360,100

Peak	RetTime Type	e Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	웅
		-			
1	8.242 BB	0.1804	1.14958e4	998.21069	77.9436
2	11.409 BB	0.2383	3253.06372	212.87833	22.0564
Total	ls :		1.47488e4	1211.08902	

¹³ (a) Q. Meng, L. Zhu, Z. Zhang, *J. Org. Chem.*, 2008, **73**, 7209; (b) B. Larissegger-Schnell, W. Kroutil, K. Faber, *Synlett*, 2005, **12**, 1936.

(S)-2-cyclohexyl-2-hydroxyacetic acid $(3o)^{14}$

Yield: 95%, white solid, 82% ee, $[\alpha]_{15}^{28}$ +18.1 (*c* 0.5, Acetic acid), HPLC condition for corresponding benzyl ester: Chiralcel OD-H column, *n*-Hexane/IPA = 95:5, 1.0 mL/min, 35 °C, 210 nm UV detector, $t_{\rm R}$ = 6.84 min for (*S*)-enantiomer and $t_{\rm R}$ = 7.91 min for (*R*)-enantiomer. ¹H NMR (400 MHz, CDCl₃): δ 4.12 (d, *J* = 3.6 Hz, 1H), 1.80–1.66 (m, 5H), 1.54–1.52 (m, 1H), 1.36–1.13 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 179.2, 74.8, 41.8, 29.2, 26.3, 26.0.

benzyl 2-cyclohexyl-2-hydroxyacetate

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
1	6.843	BB	0.1625	8388.33496	786.07605	90.9171
2	7.911	BB	0.1974	838.02167	66.33637	9.0829
Total	s:			9226.35663	852.41242	

¹⁴ N. Yamagiwa, J. Tian, S. Matsunaga, M. Shibasaki, J. Am. Chem. Soc., 2005, 127, 3413.

(*R*)-2-hydroxy-3,3-dimethylbutanoic acid $(3p)^{15}$

Yield: 92%, yellow oil, 85% ee, $[\alpha]_{25}^{25}$ –3.8 (*c* 0.5, MeOH), HPLC condition for corresponding benzyl ester: Chiralcel OD-H column, *n*-Hexane/IPA = 99:1, 1.0 mL/min, 35 °C, 210 nm UV detector, $t_{\rm R}$ = 7.87 min for (*S*)-enantiomer and $t_{\rm R}$ = 8.45 min for (*R*)-enantiomer. ¹H NMR (400 MHz, CDCl₃): δ 3.89 (s, 1H), 1.02 (s, 9H).

benzyl 2-hydroxy-3,3-dimethylbutanoate

1c was used as catalyst:

Signal 1: DAD1 B, Sig=210,16 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	11.907	BB	0.3452	1444.68518	66.05718	11.3084
2	13.436	BB	0.3817	1.13306e4	469.25998	88.6916
Total	ls :			1.27753e4	535.31716	

¹⁵ N. A. Van Draanen, S. Arseniyadis, M. T. Crimmins, C. H. Heathcock, *J. Org. Chem.*, 1991, **56**, 2499.

1b was used as catalyst:

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	7.867	BV	0.2146	947.40387	69.67858	7.7099
2	8.450	VB	0.2378	1.13408e4	752.82141	92.2901

Totals :

1.22882e4 822.49999