Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

For

Ratiometric Electrochemical Detection of Alkaline Phosphatase

Sean Goggins^a, Christophe Naz^b, Barrie J. Marsh^b and Christopher G. Frost^a*

^a Department of Chemistry, University of Bath, BAth, BA2 7AY, UK

^b Atlas, Derby Court, Epsom Square, White Horse Business Park, Trowbridge, Wiltshire, BA14 0XG, UK

* Corresponding author. C.G.Frost@bath.ac.uk

General information:

Proton, carbon and phosphorus nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance 300 spectrometer (¹H NMR at 300 MHz, ¹³C NMR at 75.5 MHz and ³¹P NMR at 121.5 MHz). Chemical shifts for protons are reported downfield from tetramethylsilane and are referenced¹ to residual protium in the solvent (¹H NMR: CHCl₃ at 7.26 ppm, C₆H₆ at 7.16 ppm, H₂O at 4.79 ppm). Chemical shifts for carbons are reported in parts per million downfield from tetramethylsilane and are referenced¹ to the carbon resonances of the solvent peak (¹³C NMR: CDCl₃ at 77.0 ppm, C₆D₆ at 128.1 ppm). Chemical shifts for phosphorus are reported in parts per million referenced to 85% phosphoric acid. NMR data are represented as follows: chemical shift, integration, multiplicity (s = singlet, bs = broad singlet, d = doublet, dd = doublet of doublet, t = triplet, q = quartet, sept = septet, m = multiplet), coupling constants (Hz). IR spectra were recorded on a Perkin-Elmer 1600 FT IR spectrophotometer, with absorbencies quoted as v in cm⁻¹. High resolution mass spectrometry was performed on a µTOF electrospray time-of-flight (ESI-TOF) mass spectrometer (Bruker Daltonik). Melting points were obtained on a Bibby-Sterilin SMP10 melting point machine. Electrochemical analysis was performed on a Metrohm Autolab PGSTAT30 potentiostat using General Purpose Electrochemical System (GPES) software in differential pulse mode (step potential = 3 mV, modulation amplitude 49.95 mV). Analytical thin layer chromatography (TLC) were performed using aluminium-backed plates coated with Alugram[®] SIL G/UV₂₅₄ purchased from Macherey-Nagel and visualised by UV light (254 nm) and/or KMnO₄ or 2,4-DNPH staining. Silica gel column chromatography was carried out using 60 Å, 200-400 mesh particle size silica gel purchased from Sigma-Aldrich. Preparative reverse phase (C18) column chromatography was carried out using VersaPak[®] 30g C18 cartridges (23 mm × 110 mm) preloaded with 20-45 µm spherical C18 bonded silica purchased from Sigma-Aldrich.

Materials:

All reactions were carried out under an atmosphere of nitrogen, in oven-dried glassware unless otherwise stated. Dichloromethane, tetrahydrofuran (THF) and toluene were dried and degassed by passing through anhydrous alumina columns using an Innovative Technology Inc. PS-400-7 solvent purification system and stored under an atmosphere of argon prior to use. Ferrocenecarboxylic acid was purchased from Alfa Aesar. All other chemicals were purchased from Sigma-Aldrich. *N*-Chlorosuccinimide (NCS) and triethylamine (TEA) were purified by standard published methods.² All other chemicals were used as received. Alkaline phosphatase and streptavidin-conjugated alkaline phosphatase were purchased as lyophilised solids from Sigma-Aldrich and stored in a -20 °C freezer. Prior to use, a stock solution of the enzyme was made up using 50 mM pH 9 tris buffer and stored at 4 °C until immediate use. High sensitivity C-reactive protein (CRP) ELISA kit was purchased from Kalon Biological Ltd (Guildford, UK) and stored at 4 °C prior to use.

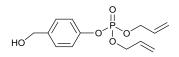
Electrochemical analysis:

Electrochemical analysis was performed by applying a 20 µL sample to screen-printed electrochemical cell equipped with carbon working and counter electrodes and a silver (pseudo Ag/AgCl) reference electrode. The potential across the cell was powered by a Metrohm Autolab PGSTAT30 potentiostat controlled by a laptop running General Purpose Electrochemical System (GPES) software in differential pulse mode (modulation = 0.04 s, interval = 0.1 s, initial voltage = -300 mV, end voltage = 300 mV, step potential = 3 mV, modulation amplitude 49.95 mV). Post-scan, a baseline correction (moving average: peak width = 0.03) was performed. Peak integrals were obtained using the 'peak search' function and conversions calculated using the equation: $Conversion (\%) = \left(\frac{\int 3}{(\int 3 + \int 1)}\right) \times 100.$

Procedure for the synthesis of ferrocenoyl azide (4)

Ferrocenecarboxylic acid (2.00 g, 8.7 mmol, 1 eq.) was suspended in anhydrous dichloromethane (20 mL) and cooled to 0 °C. Oxalyl chloride (1.5 mL, 17.4 mmol, 2 eq.) was then added dropwise, followed by a drop of DMF. The reaction mixture was allowed to warm to room temperature and stirred for 3 hours, after which the solvent and residual oxalyl chloride were removed *in vacuo*. The red solid obtained was dissolved in anhydrous dichloromethane (20 mL) and cooled to 0 °C. Tetrabutylammonium bromide (0.03 g, 0.1 mmol, 0.01 eq.) was added, followed by a solution of sodium azide (0.85 g, 13.1 mmol, 1.5 eq.) in water (4 mL). The reaction mixture was allowed to warm to room temperature and left to stir overnight (~16 hours). Water (50 mL) was then added and the organics separated. The aqueous layer was then extracted with dichloromethane (2 × 20 mL). The combined organics were dried over MgSO₄ and filtered, and the solvent removed *in vacuo*. Purification *via* silica gel column chromatography (hexane 1:1 dichloromethane ($R_f = 0.45$)) gave the title compound as an crystalline orange solid (1.75 g, 79%).

¹**H NMR** (300 MHz, C₆D₆); δ 4.74 (2H, app s), 4.02 (2H, app s), 3.91 (5H, s).


¹³C NMR (75.5 MHz, C₆D₆); 176.3, 97.7, 72.7, 70.7, 70.4.

IR (solid, cm⁻¹); 2149, 1671.

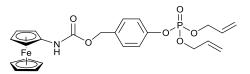
Mp; 86-87°C (lit.³ 84-86 °C).

Data in accordance with literature precedent.³

Procedure for the synthesis of diallyl (4-(hydroxymethyl)phenyl) phosphate (5)

Phosphorus trichloride (8.7 mL, 100 mmol, 2 eq.) was added to anhydrous THF (70 mL) and cooled to 0 °C. A solution of allyl alcohol (13.6 mL, 200 mmol, 4 eq.) and anhydrous TEA (31 mL, 220 mmol, 4.4 eq.) in anhydrous THF (30 mL) was then added dropwise. The reaction mixture was then allowed to warm to room temperature and stirred for 1 hour before being cooled to 0 °C. Water (50 mL) was then added slowly and the reaction mixture allowed to warm to room temperature before being stirred for 0.5 hours. The organics were removed *in vacuo* and the aqueous residue was extracted with ethyl acetate (3×100 mL). The organics were combined, dried over Na_2SO_4 and filtered, and the solvent removed *in vacuo*. The residue was then dissolved in anhydrous toluene (75 ml) and added slowly to a round-bottom flask containing a stirring solution of Nchlorosuccinimide (11.7 g, 87.5 mmol, 1.75 eq.) in anhydrous toluene (75 mL) under argon at 0 °C. The reaction mixture was then allowed to warm to room temperature and left to stir overnight (~16 hours) before being filtered via gravity filtration. The filtrate was then concentrated in vacuo. The residue was then taken up in anhydrous THF (50 mL) and added slowly to a stirring solution of 4-hydroxybenzaldehyde (6.1 g, 50 mmol, 1 eq.) and anhydrous TEA (10.5 mL, 75 mmol, 1.5 eq.) in anhydrous THF (50 mL) at 0 °C. The reaction mixture was allowed to warm to room temperature and stirred for 2 hours before being filtered. The filtrate was then concentrated in vacuo before being taken up in ethyl acetate (50 mL), which was then washed with saturated sodium bicarbonate solution (50 mL) and the organics separated. The aqueous layer was then extracted twice with ethyl acetate (2 \times 50 mL). The combined organics were then washed with water (3 \times 50 mL), dried (Na_2SO_4) and filtered, and the solvent removed *in vacuo*. The residue was then taken up in anhydrous THF (50 mL) and cooled to 0 °C before sodium borohydride (3.8 g, 100 mmol, 2 eq.) was added portion-wise. The reaction mixture was allowed to warm to room temperature and stirred for 2 hours. The reaction mixture was then cooled to 0 $^{\circ}$ C before being quenched with saturated sodium bicarbonate solution (50 mL). The reaction mixture was then extracted with ethyl actetate (3×50 mL). The combined organics were then washed with 1M sodium hydroxide (2×50 mL) and water (2×50 mL), dried over Na₂SO₄ and filtered, and the solvent removed *in vacuo*. Purification via silica gel column chromatography (ethyl acetate 1:1 hexane ($R_f = 0.20$, UV_{254 nm} & $KMnO_4$) gave the title compound as a colourless liquid (4.0 g, 28%).

¹**H NMR** (300 MHz, CDCl₃); δ 7.22 (2H, d, *J* = 8.6 Hz), 7.08 (2H, d, *J* = 8.6 Hz), 5.89-5.80 (2H, m), 5.29 (2H, ddd, *J* = 17.1, 2.6, 1.5 Hz), 5.18 (2H, ddd, *J* = 10.4, 2.6, 1.1 Hz), 4.56-4.51 (6H, m), 2.90 (1H, br s).


¹³C NMR (75.5 MHz, CDCl₃); δ 149.7 (d, $J_{C-P} = 7$ Hz), 138.3 (d, $J_{C-P} = 1$ Hz), 132.0 (d, $J_{C-P} = 7$ Hz), 128.2, 119.9 (d, $J_{C-P} = 5$ Hz), 118.8, 68.9 (d, $J_{C-P} = 6$ Hz), 64.2.

³¹**P NMR** (121.5 MHz, CDCl₃); δ – 5.52.

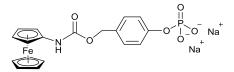
IR (film, cm⁻¹); v 3419, 2881, 1651, 1608, 1506, 1459, 1425, 1365, 1267, 1210, 1164, 1097, 1013, 988, 931, 874, 824, 733, 693, 638.

HRMS (ESI); calc'd for $C_{13}H_{17}O_5P [M+Na]^+$: m/z 307.0706, found 307.0760.

Procedure for the synthesis of 4-((bis(allyloxy)phosphoryl)oxy)benzyl ferrocenylcarbamate (6)

Ferrocenoyl azide (255 mg, 1 mmol, 1 eq.) was dissolved in anhydrous toluene (3 mL) under argon. Diallyl (4-(hydroxymethyl)phenyl) phosphate (284 mg, 1 mmol, 1 eq.) was then added and the reaction mixture was refluxed for 2 hours. After cooling to room temperature, the solvent was removed *in vacuo*. Purification *via* silica gel column chromatography (hexane 1:1 ethyl acetate ($R_f = 0.45$, KMnO₄)) gave the title compound as a dark orange oil (377 mg, 74%).

¹**H NMR** (300 MHz, C₆D₆); δ 7.26 (2H, d, *J* = 8.3 Hz), 7.12 (2H, d, *J* = 8.3 Hz), 6.81 (1H, br s), 5.71-5.58 (2H, m), 5.14 (2H, dd, *J* = 17.1, 1.3 Hz), 4.99 (2H, s), 4.92 (2H, dd, *J* = 10.4, 1.3 Hz), 4.47-4.33 (4H, m), 4.10 (5H, s), 3.81 (2H, s).


¹³**C NMR** (75.5 MHz, C₆D₆); δ 154.1, 150.9 (d, $J_{C-P} = 7$ Hz), 134.3, 132.5 (d, $J_{C-P} = 7$ Hz), 130.1, 120.5 (d, $J_{C-P} = 5$ Hz), 118.4, 97.0, 69.5, 68.9 (d, $J_{C-P} = 6$ Hz), 65.9, 64.5, 60.9.

³¹**P NMR** (121.5 MHz, C₆D₆); δ – 4.70.

IR (film, cm⁻¹); 3267, 3094, 2953, 1726, 1558, 1508, 1259, 1219, 1017, 951, 818.

HRMS (ESI); calc'd for $C_{24}H_{26}FeNO_6P [M+Na]^+$: m/z 534.0745, found 534.0760.

Procedure for the synthesis of sodium 4-(((ferrocenylcarbamoyl)oxy)methyl)phenyl phosphate (1)

4-((bis(allyloxy)phosphoryl)oxy)benzyl ferrocenylcarbamate (377 mg, 0.74 mmol, 1 eq.) was dissolved in anhydrous THF (7.5 mL) and cooled to 0 °C. Polymer-bound tetrakis(triphenylphosphine)palladium (11 mg, 7.4 µmol, 0.01 eq.) was then added, followed by formic acid (0.4 mL, 11.1 mmol, 15 eq.) and anhydrous TEA (1.0 mL, 7.4 mmol, 10 eq.). The reaction mixture was allowed to warm to room temperature and left to stir overnight (~16 hours), after which the reaction mixture was filtered and the filtrate was concentrated *in vacuo*. To the residue was added 1M sodium hydroxide solution (8.8 mL, 8.8 mmol, 12 eq.) at 0 °C. The reaction mixture was allowed to warm to room temperature and stir for an hour before the solvent was removed *in vacuo*. Purification *via* preparative reverse phase (C18) column chromatography (water) gave the title compound as an amorphous orange solid (241 mg, 69%).

¹**H NMR** (300 MHz, D₂O); δ 7.32 (2H, d, *J* = 8.3 Hz), 7.17 (2H, d, *J* = 8.3 Hz), 5.05 (2H, s), 4.47 (2H, s), 4.17 (5H, s), 4.03 (2H, s).

¹³C NMR (75.5 MHz, D₂O); δ 156.5, 154.2 (d, $J_{C-P} = 6$ Hz), 130.3, 129.5, 120.8 (d, $J_{C-P} = 5$ Hz), 95.1, 69.7, 67.2, 65.2, 61.8.

³¹**P NMR** (121.5 MHz, D₂O); δ 0.95.

IR (solid, cm⁻¹); 1687, 1558, 1510, 1391, 1357, 1233, 1071, 896, 807.

HRMS (ESI); calc'd for $C_{18}H_{18}FeNO_6P [M-H]^-$: m/z 430.0143, found 430.0180.

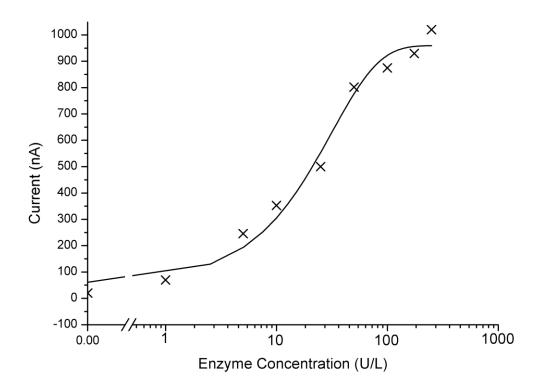
Method for the electrochemical detection of alkaline phosphatase (optimised conditions)

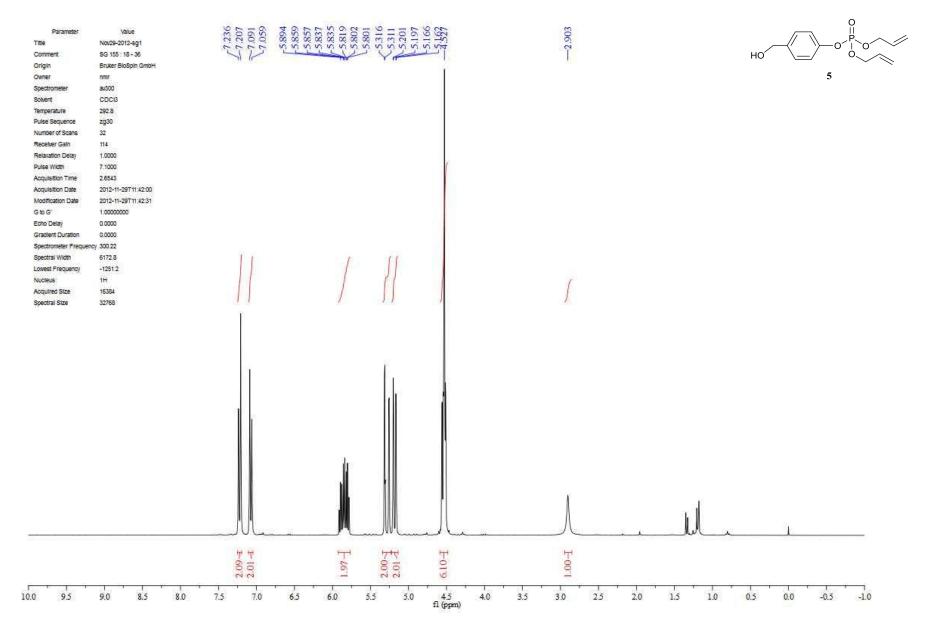
A 100 μ M stock solution of substrate **1** was prepared using 50 mM pH 9 tris buffer. 500 μ L of the stock solution of **1** was added to 500 μ L buffered (50 mM pH 9 tris buffer) solution of alkaline phosphatase in a small screw top vial equipped with a small magnetic stirrer. The vial was then placed in a DrySyn[®] block warmed to 37 °C and stirred. Every 3 minutes for 30 minutes thereafter, a 20 μ L sample was subjected to electrochemical analysis.

Method for the electrochemical detection of C-reactive protein (CRP)

To a microtiter well coated with affinity purified sheep anti-CRP antibodies was added 50 μ L of a standard concentration of CRP and incubated at room temperature for 60 minutes. After washing, 100 μ L of affinity purified sheep anti-CRP antibodies labelled with alkaline phosphatase was added and incubated at room temperature for 60 minutes. After washing, the well was washed further with 50 mM pH 9 tris buffer. 100 μ L of a 0.5 mM solution of substrate **1** was added and the well was incubated at 37 °C for 30 minutes. After which, a 20 μ L sample was subjected to electrochemical analysis.

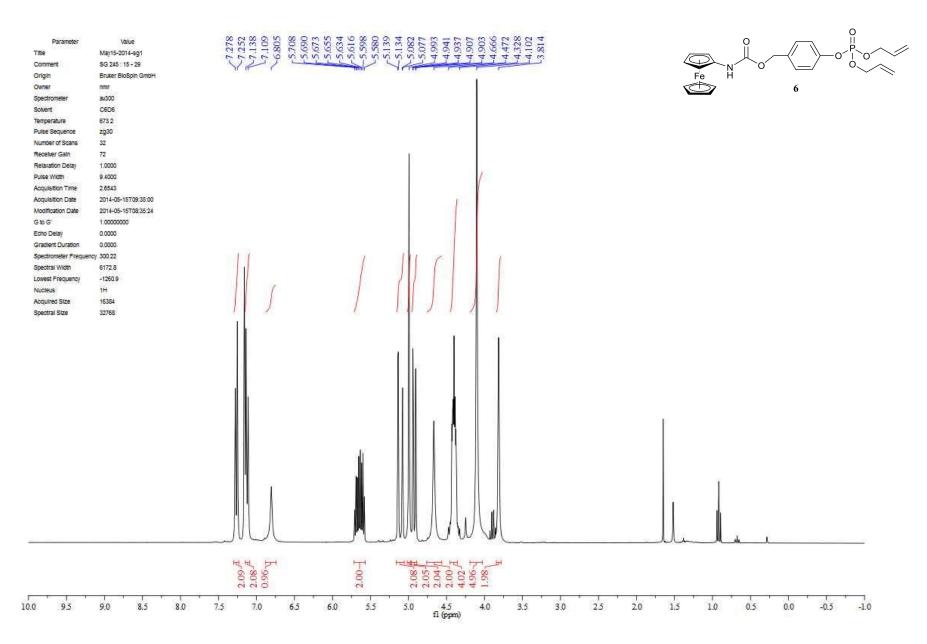
Determination of ALP LOD




Fig S1 Amperometric response of ferrocenylamine released from substrate 1 (50 μ M) after the addition of various concentrations of ALP after incubation at 37 °C for 27 minutes.

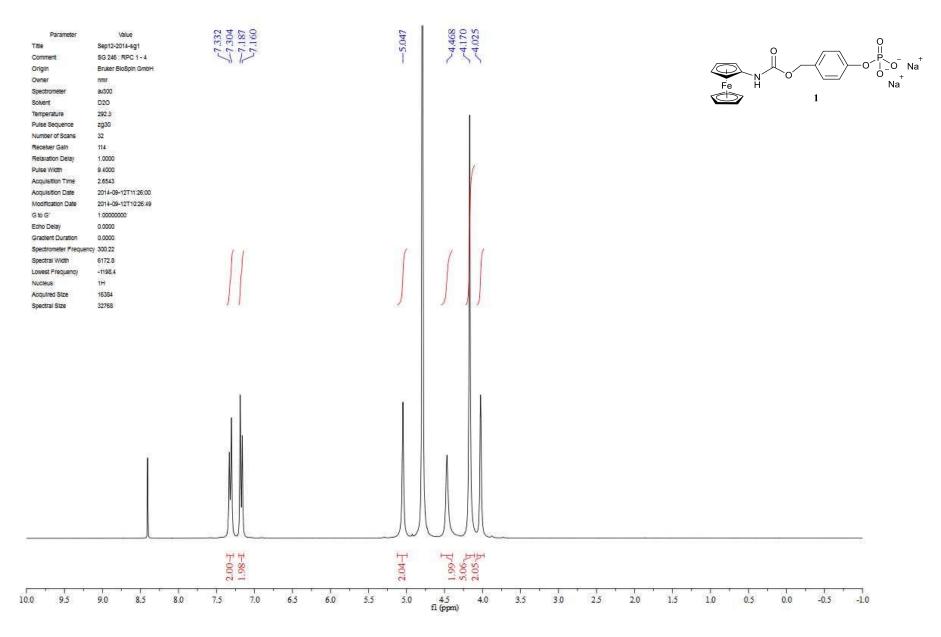
Calculation of LOD

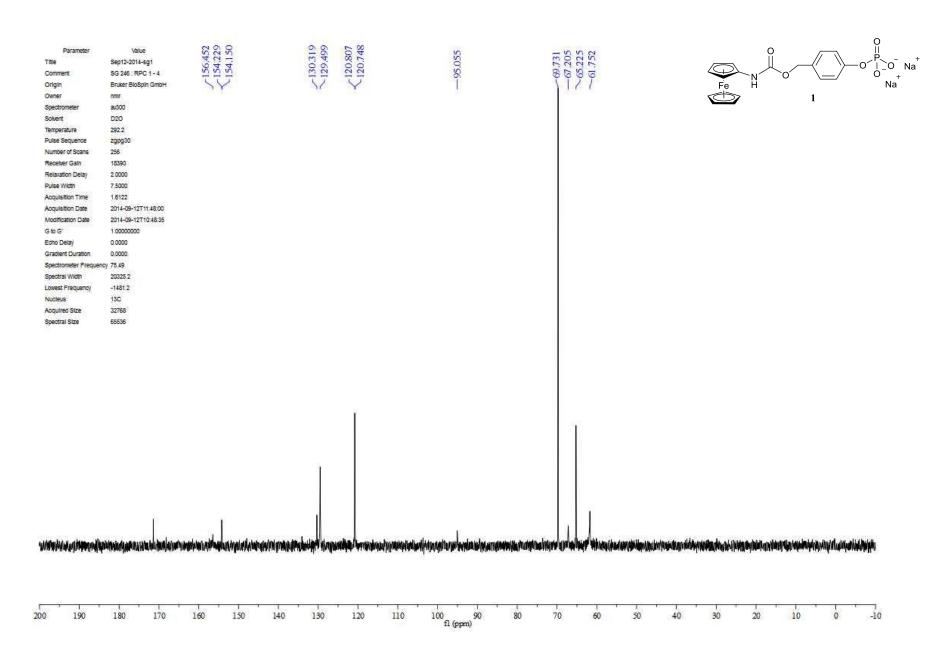
Curve fit equation $y = y^0 + A \times e (R^0 \times x)$ where; A = -899.22191, $R^0 = -0.0318$, $y^0 = 959.78715$. $R^2 = 0.98051$. When $y = LOD (3 \times StDev) + Mean (48.6 nA)$ then $x = 0.415 \text{ UL}^{-1}$ which equates to 259 fmol assuming MW of ALP is 160000 Da.


References:

- 1. H.E. Gottlieb, V. Kotlyar and A. Nudelman, J. Org. Chem., 1997, 62, 7512.
- Purification of Laboratory Chemicals 3rd ed., C. L. L. Chai and W. L. F. Amarego, Pergamon Press, Oxford, 1988.
- 3. J. Lapić, G. Pavlović, D. Siebler, K. Heinze and V. Rapić, Organometallics, 2008, 27, 726.

Parameter Title Comment Origin Owner Spectrometer Solvent	Value Noz9-2012-eg1 SG 155 : 18 - 36 Bruker BloSpin GmbH nmr ad000 CDCI3	<149.730 <149.638	$\begin{array}{c} < 138.328 \\ < 138.312 \\ < 132.033 \\ < 132.033 \\ < 132.033 \\ < 128.279 \end{array}$	L119.959		C(8.929 C(8.854 ~64.180		
Temperature Puise Sequence Number of Scans Receiver Gain Relaxation Delay Puise Wildth Acquisition Time Acquisition Time Acquisition Date G to G' Echo Delay Gradient Duration Spectrarie Frequency	293.6 2gpg30 256 18390 2.0000 7.5000 1.6122 2012-11-29T12.03.00 2012-11-29T12.03.43 1.00000000 0.0000 0.0000 0.75.49 20025.2 -1509.9			1	Í	Ĩ		
Nucleus Acquired Size Spectral Size	13C 32768 65536							
evadi fadi produktara fina bila	nicigranglandskafelikaða Luvikak lengt sáki ka	daldas open fakter for open store	islations, Yéyangrefeje Utiyang Myamah	athra ^{n in} Udatransa (Midator	ninnariarangkangkenakenakenakenakenakenakenakenakenakena	faljis knist dyk antwertys bucklyng medi	Manaadiationalianinationishaalasistinatiolooon	qalininensuurunanaalaganaalaytayt
200 190	180 170 1	60 150	140 130	1 1 120 110	100 90 80 fl (ppm)	70 60	50 40 30 20	10 0 -10


tie	Value Nov29-2012-sg1				0700						
omment	SG 155: 18 - 36			1	2						0
rigin	Bruker BloSpin GmbH										Ĭ
wher	nmr.				1					_// //	
pectrometer	av300								но		Ċ Ŏ Ŏ Ŏ
ovent	CDCI3										\sim
Temperature	673.2										5
Pulse Sequence	zgpg30										
Jumber of Scans	32										
Receiver Gain	5161										
Relaxation Delay	2.0000										
Pulse Wildth	14.5000										
Acquisition Time	0.6734										
Acquisition Date	2012-11-29T11:45:00										
Modification Date	2012-11-29T11:45:58										
G 10 G'	1.00000000										
Echo Delay	0.0000										
Gradient Duration	0.0000										
Spectrometer Frequency	121.53										
Spectral Width	48661.8										
Lowest Frequency	-30465.9										
Nucleus	31P										
Acquired Size	32768										
Spectral Size	65536										
		 -	 	 			 	 			
			••••••••••••••••••••••••••••••••••••••				 				



Parameter Title Comment Origin Owner Spectrometer Solvent	Value Sep05-2014-sg1 SG 245 Bruker BioSpin GmbH nmr ax300 C6D6	∠154.066 ∠150.974 ₹150.885	L134,250 L132,569 L132,479 L130,081	<120.513 <120,449 <118.272		0530 (0530 (0530 (0530 (0530 (0530)	O Fe	
Temperature Pulse Sequence	291.8 zgpg30		i i					
Number of Scans Receiver Gain	256 11585							
Relaxation Delay	2.0000							
Pulse Width	7.5000							
Acquisition Time	1.6122							
Acquisition Date	2014-09-05T13:48:00							
Modification Date G to G'	2014-09-05T12:48:32 1.00000000							
Echo Delay	0.0000							
Gradient Duration	0.0000							
Spectrometer Frequen	ncy 75.49							
Spectral Width	20325.2							
Lowest Frequency	-1493.6							
Nucleus Acquired Size	13C 32768							
Spectral Size	65536							
, , , , , , , , , , , , , , , , , , ,	1 , I , I	160 150	140 130	120 110	100 90	80 70 60 50	40 30 20	

Parameter	Value	S	
tie	May15-2014-sg1	4.695	
omment	SG 245: 15 - 29	1	
rigin	Bruker BloSpin, GmbH		
vner	nmr		6
ectrometer	a/300		
owent	C6D6		
mperature	673.2		
ise Sequence	zgpg30		
umber of Scans	32		
celver Galn	9195		
elaxation Delay	2.0000		
lse Wildth	14.5000		
quisition Time	0.6734		
quisition Date	2014-05-157.09:38:00		
odification Date	2014-05-15T08:38:11		
to G"	1.00000000		
ho Delay	0.0000		
radient Duration	0.0000		
pectrometer Frequency	121.53		
ectral Width	48651.8		
west Frequency	-30447.6		
ucleus	31P		
oquired Size	32768		
pectral Size	65536		

														- 10 m														
140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140
						10000			0.00	1000				fl (ppm)														

State State <th< th=""><th>Status Status Status<</th><th>Parameter</th><th>Value Sep12-2014-sg1</th><th></th><th></th><th>-0.947</th><th></th><th></th><th></th><th>C</th><th></th><th></th><th>0 </th></th<>	Status Status<	Parameter	Value Sep12-2014-sg1			-0.947				C			0
ingling Bits/Big/III. Gram/H Fe H Na weel 00 1 <	ingling Bits/Bits/Bits/Bits/Bits/Bits/Bits/Bits/					9					$\langle \langle \rangle$)—0	O Na
gentomic aud konet D2O imperature S2E tumes desame zgggdo umper desame S2 keexber Gain S12 keexber Gain S12 keexber Gain 14000 outgiets desame 44000 outgiets desame 6474 outgiets desame 6474 outgiets desame 2014-britti 30:00 konthation 2000 konthation 2014-britti 30:00 konthation 2014-britti 30:00 konthation 2000 konthation 2014-britti 30:00 konthation 2014-britti 30:00 konthation 2014-britti	gentomic aud konet D2O imperature S2E tumes desame zgggdo tumes desame S2 keexber Gain S12 keexber Gain S12 keexber Gain 14000 outgiets desame 44000 viels desame 14000 outgiets desame 6474 outgiets desame 2014-britti 30:00 konthation 2014-britti 30:00 conductor 2000 conductor 2014-britti 30:00 conductor 2014-britti 30:										0 \=	_/	Na Na
gentomic aud konet D2O imperature S2E tumes desame zgggdo umper desame S2 keexber Gain S12 keexber Gain S12 keexber Gain 14000 outgiets desame 44000 outgiets desame 6474 outgiets desame 6474 outgiets desame 2014-britti 30:00 konthation 2000 konthation 2014-britti 30:00 konthation 2014-britti 30:00 konthation 2000 konthation 2014-britti 30:00 konthation 2014-britti 30:00 konthation 2014-britti	gentomic aud konet D2O imperature S2E tumes desame zgggdo tumes desame S2 keexber Gain S12 keexber Gain S12 keexber Gain 14000 outgiets desame 44000 viels desame 14000 outgiets desame 6474 outgiets desame 2014-britti 30:00 konthation 2014-britti 30:00 conductor 2000 conductor 2014-britti 30:00 conductor 2014-britti 30:					1			-		1		, ia
Solent D2O Immerative 3265 Ause Sequence 32930 Ummer d'Same 320 Vender d'Same 320 Vender d'Same 320 Vender d'Same 320 Vender d'Same 3000 Vender d'Same 6404 Vender d'Same	Solent D2O Immerative 3265 Ause Sequence 32930 Ummer d'Same 3200 Secker Calm 810 Value Viden 4.500 Value Viden 0.674 Value Viden 0.674 Value Viden 0.674 Value Viden 0.000 Value Viden 0.000 Secker Calm 0.000 Secker Viden Vid										I		
Interstuic 32.6 Number of Scans 32.0 Researce Gain 35.0 Researce Gain 5.0 Researce Gain 5.0 Value Scans 3.0 Scanso 5.0 Value Mode 5.0	Imperature 322 Value Sequence 3pgoda Value Sequence 32 Value Sequence 32 Secuence Cala 32 Resulter Cala 32 Value With 14000 Value With 14000 Value With 6734 Value With 00000 Value With 1000000 Store Gale 10000000 Store Gale 10000000 Store Gale 1000000000000000000000000000000000000												
Autes Sequence 29930 Number OSams 32 Receiver Gain 5192 Section Del Seguence 6000 Autes Watte 14.5000 Output Intime 6754 Sequence 2014-09-1211/30.03 Output Intime 01000 Section Del V 10000000 Section Del V 10000000 Section Del V 10000000 Section Del V 153 Section Method 266.8 Section Del V 3067 Section Del V 300000 Section Del V 3000000 Section Del V	Autes Sequence sign30 Number OSams 32 Receiver Gal 5192 Secole Gal 6192 Secole Gal 6174 Secole Gal 6100 Secole Gal 6000 Secole Gal 6100 Secole Gal 6163 Secole Gal 6164 Secole Gal <td></td>												
Number of Scans 32 Receiver Gain 592 Statustion Delay 20000-00000000000000000000000000000000	Number of Scans 32 Receiver Gain 592 Statustion Delay 20000-00000000000000000000000000000000												
Relaxation Delay 2.0000 Puble Width 14.500 Voculation Time 0.6734 Voculation Date 2014-09-127113.000 Voculation Date 2014-09-127103.039 Voculation Date 2000000 Enxo Delay 0.0000 Spectra Width 0.0000 Spectra Width 4661.8 Lowest Frequency 21.53 Spectra Width 6461.8 Voculation 3047.6 Voculation 3164	Relaxation Delay 2000 Autee Width 14.500 Acquisition Time 6754 Acquisition Date 2014-09-127113.000 Wodincation Date 2014-09-127103.039 So G* 000000 Enco Delay 0.0000 Spectra Width 0.0000 Spectra Width 4661.8 Lowest Frequency 21.53 Spectra Width 6461.9 Lowest Frequency 604.7 Spectra Width 8661.8 Lowest Frequency 5045 Koquistion State 319												
Relaxation Delay 2.0000 Puble Width 14.500 Voculation Time 0.6734 Voculation Date 2014-09-127113.000 Voculation Date 2014-09-127103.039 Voculation Date 2000000 Enxo Delay 0.0000 Spectra Width 0.0000 Spectra Width 4661.8 Lowest Frequency 21.53 Spectra Width 6461.8 Voculation 3047.6 Voculation 3164	Relaxation Delay 2000 Autee Width 14.500 Acquisition Time 6754 Acquisition Date 2014-09-127113.000 Wodincation Date 2014-09-127103.039 So G* 000000 Enco Delay 0.0000 Spectra Width 0.0000 Spectra Width 4661.8 Lowest Frequency 21.53 Spectra Width 6461.9 Lowest Frequency 604.7 Spectra Width 8661.8 Lowest Frequency 5045 Koquistion State 319	Receiver Gain	8192										
Aulee Wittin 14 5000 koguistition Time 0 5734 koguistition Date 2014-09-12T1130:00 koguistition Date 2014-09-12T10:00.39 koguistition Date 2014-09-12T10:00.39 koguistition Date 2014-09-12T10:00.39 koguistition Date 2014-09-12T10:00.39 koguistition Date 2000000 sko G* 0.000000 gestrometer Frequency 121,53 spectrameter Frequency 121,53 spectrameter Frequency 30447.5 usinaus 30447.5 usinaus 32768	Aulee Widtin 14 5000 koguistion Time 0 5734 koguistion Date 2014-09-12T1130:00 koguistion Date 2014-09-12T10:00.99 koguistion Date 200000 storin Delay 0.00000 storin Delay 0.0000 storin Frequency 12.53 storin Frequency 0.0407.5 storins 0.0407.5 storins 3.768												
Acquisition Time 0.6734 Acquisition Date 2014-09-12T1130.00 Woodfication Date 2014-09-12T1030.39 3 to G* 0.000000 choic Delay 0.0000 choic Delay 0.0000 choic Delay 0.0000 choic Delay 0.0000 spectrameter Frequency 11.5 spectrameter Frequency 15.6 vooleus 3047.5 vooleus 3.9	Acquisition Time 0.6734 Acquisition Date 2014-09-12T1130.00 Woodfication Date 2014-09-12T1030.39 3 to G* 0.000000 choir Delay 0.00000 choir Delay 0.0000 choir Delay 0.0000 choir Delay 0.0000 choir Delay 0.0000 spectrometer Frequency 11.5 spectrometer Frequency 156.3 vooleus 3047.5 vooleus 319												
Acquisition Date 2014-09-12T11:0:00 Viodification Date 2014-09-12T10:0:39 Sho G' 1.0000000 Cho Delig 0.0000 Sho G' 0.00	Acquisition Date 2014-09-12T11:0:00 Viodification Date 2014-09-12T10:0:39 Sho G' 10000000 Cho Delig 00000 Sho G' 0.0000												
Nondification Date 2014-09-12T10.30.39 Sto G* 1.00000000 Sto G* 0.0000 Stor Delay	Nondification Date 2014-09-12T10.30.39 Sto G* 1.00000000 Sto G* 0.0000 Stor Delay												
3 to G* 1.00000000 cono Dellay 0.0000 aradient Duration 0.0000 spectrameter Frequency 121.53 spectrameter Frequency 204.47.5 vuoleuse 31P	3 to G* 1.00000000 cono Dellay 0.0000 aradient Duration 0.0000 spectrameter Frequency 121.53 spectrameter Frequency 48661.8 undelse 31P volgared Stzee 32768												
Echh Delay 0.000 Gradient Duration 0.000 spectrameter Frequency 121.83 Spectrameter Frequency 48661.8 .owest Frequency -0047.6 volause 31P Koquired Stze 32768	Echh Delay 0.000 Gradient Duration 0.000 Spectrameter Frequency 121.83 Spectrameter Frequency 48661.8 Jowest Frequency -00447.6 Vicieuse 31P Koquired Stze 32768												
Gradient Duration 0.000. Spectrometer Frequency 121.53 Spectral Width 4661.8 Lowest Frequency	Gradient Duration 0.000. Spectrometer Frequency 121.53 Spectral Width 4661.8. Lowest Frequency -30447.6 Nucleus 31P Koguired Size 32768												
Spectrometer Frequency 121.53 Spectral Width 48661.8 Jowest Frequency -30447.6 Nucleus 31P Acquired Size 32768	Spectrometer Frequency 121.53 Spectral Width 48661.8 Jowest Frequency -30447.6 Nucleus 31P Acquired Size 32768												
spectral Width 48661.8 owest Frequency -30447.6 Nucleus 31P loguined Size 32768	spectral Width 48661.8 owest Frequency -30447.6 Nucleus 31P loguined Size 32768												
covest Frequency -30447.6 vucleus 31P loogured Size 32768	covest Frequency -30447.6 vucleus 31P loogured Size 32768												
Nucleus 31P Acquired Size 32768	Nucleus 31P Acquired Size 32768	Contraction of the second											
Acquired Size 32768	Acquired Size 32768												
	l.												
				1018/0018-00-10 Miles				121/2010/201					

S19