Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Supporting Information for

Highly Efficient Asymmetric Synthesis of Quaternary

Stereocenter-Containing Indolizidine and Quinolizidine Alkaloids

Using Aldehydes, Nitroalkenes, and Unactivated Cyclic Ketimines

Yu Tan, Yong-Jian Chen, Hua Lin, Han-Lin Luan, Xing-Wen Sun,* Xiao-Di Yang, and Guo-Qiang Lin*

Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China E-mail: <u>sunxingwen@fudan.edu.cn</u>; <u>lingg@sioc.ac.cn</u>

Table of Contents

1.	General experimental methods	S-2
2.	Procedure for the synthesis of indolizidine and quinolizidine Alkaloids	S-2
3.	Characterization data of indolizidine and quinolizidine Alkaloids	S-3
4.	Reference	S-13
5.	¹ H and ¹³ C NMR Spectra	S-14
6.	Chiral HPLC Traces	S-39
7.	X-ray Crystallography of 4n	S-64

1. General Experimental Methods:

NMR spectra were all recorded on a Bruke (400M Hz) spectrometer. Nuclear magnetic resonance (NMR) spectra are recorded in parts per million from internal TMS on the δ scale. Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), integration, coupling constant (Hz) and assignment. Data for ¹³C NMR are reported in terms of chemical shift and no special nomenclature is used for equivalent carbons. Flash column chromatography was performed using silica gel (300–400 mesh). Analytical thin–layer chromatography was performed using glass plates pre-coated with 0.25 mm 300–400 mesh silica gel impregnated with a fluorescent indicator (254 nm). Thin layer chromatography plates were visualized by exposure to ultraviolet light. Commercial reagents and solvents were used as received. Catalyst *S-1* was purchased from Aldrich and used as received. The nitroalkenes **2**¹ and ketimines **3**² were synthesized using known literature procedures. Enantioselectivities were determined by high-performance liquid chromatography (HPLC) with a Jasco uv-2075 plus intelligent uv/ivs detector (λ = 254 nm) and a Phenomenex Lux5u Amylose-2 column or Daicel OD-H column. Optical rotations were measured in CH₃CH₂OH on a Jasco P-1030 polarimeter. Dichloromethane was fractionally distilled.

2. Procedure for the synthesis of indolizidine and quinolizidine Alkaloids:

Aldehyade **1** (0.6 mmol) was added to a solution of nitroalkene **2** (0.20 mmol), *p*-nitrophenol (0.010 mmol) and catalyst *S-I* (0.010 mmol) in CH₂Cl₂ (0.20 mL) at 0 °C. The resulted mixture was stirred until the nitroalkene was consumed (most examples needed only 5 hours, except **4n** needed 12 hours, **4j**, **4k** and **4q** needed 18 hours respectively), then the ketimine **3** (0.30 mmol) and DIPEA (0.20 mmol) were added subsequently and further stirred for another 5 hours at 0 °C. The solvent was removed under vacuum. The resulted crude product was purified by flash chromatography on a short silica gel directly to afford the desired products **4a-y**.

Procedure for gram-scale one-pot stereoselective synthesis of indolizidine 4a:

Aldehyade **1a** (18.0 mmol) was added to a solution of nitroalkene **2a** (6.0 mmol), *p*-nitrophenol (0.30 mmol) and catalyst *S-1* (0.060 mmol) in CH₂Cl₂ (6.0 mL) at 0 °C. The resulted mixture was stirred for 96 hours at 0 °C, then the ketimine **3a** (9.0 mmol) and DIPEA (6.0 mmol) were added subsequently and further stirred for another 5 hours at 0 °C. The solvent was removed under vacuum. The resulted crude product was purified by flash chromatography on a short silica gel directly to afford 1.391g (85% yield, >20:1, 96% ee) of the desired product **4a**.

3. Characterization data of indolizidine and quinolizidine derivatives

(7R,8S,8aR)-6, 8a-dimethyl-8-nitro-7-phenyl-1,2,3,7,8,8a-hexahydroindolizine (4a)

Purified by FC (PE:EtOAc = 50:1). 91% yield, yellow solid. The ee was determined by chiral HPLC using a Phenomenex Lux 5u Amylose-2 column (hexane/*i*-PrOH = 99/1);flow rate 0.7 mL/min; $\lambda = 254$ nm; $\tau_{minor} = 9.8$ min, $\tau_{major} = 11.7$ min, 98% ee. [α]_D²⁰ = - 60.5 (c = 1.0, CH₃CH₂OH).

¹**H NMR (400 MHz, CDCl**₃) δ 7.30 – 7.20 (m, 3H), 7.16 (d, *J* = 6.8 Hz, 2H), 6.00 (s, 1H), 4.38 – 4.35 (d, *J* = 11.2Hz, 1H), 3.94 – 3.91 (d, *J* = 11.2Hz, 1H), 3.45 – 3.40 (m, 1H), 3.05 – 2.99 (m, 1H), 2.18 – 2.10 (m, 1H), 2.00 – 1.87 (m, 2H), 1.82 – 1.77 (m, 1H), 1.36 (s, 3H), 1.17 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 139.0, 128.6(2C), 127.4(2C), 105.6, 96.6, 61.0, 51.4, 46.4, 37.8, 23.3, 19.3, 17.7.

HRMS-ESI (m/z): $[M + H]^+$ calcd for $C_{16}H_{22}N_2O_2 \bullet H^+$: 273.1598; found: 273.1605.

(7R,8S,8aR)-6,8a-dimethyl-8-nitro-7-(p-tolyl)-1,2,3,7,8,8a-hexahydroindolizine (4b)

Purified by FC (PE:EtOAc = 50:1). 84% yield, yellow solid. The ee was determined by chiral HPLC using a Phenomenex Lux 5u Amylose-2 column (hexane/*i*-PrOH = 99/1); flow rate 0.7 mL/min; $\lambda = 254$ nm; $\tau_{minor} = 8.8$ min, $\tau_{major} = 11.5$ min, 98% ee. $[\alpha]_D^{20} = -60.5$ (c = 1.0, CH₃CH₂OH).

¹**H NMR (400 MHz, CDCl₃)** δ 7.09 – 7.03 (m, 4H), 5.98 (s, 1H), 4.34 (d, *J* = 11.2Hz, 1H), 3.88 (d, *J* = 11.2Hz, 1H), 3.44 – 3.39 (m, 1H), 3.04 – 2.97 (m, 1H), 2.29 (s, 3H), 2.17 – 2.09 (m, 1H), 1.93 – 1.86 (m, 2H), 1.81 – 1.76 (m, 1H), 1.36 (s, 3H), 1.16 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 136.9, 135.8, 129.3, 128.4, 127.3, 105.8, 96.7, 61.0, 51.4, 46.0, 37.7, 23.3, 21.0, 19.3, 17.7.

HRMS-ESI (m/z): $[M + H]^+$ calcd for $C_{17}H_{22}N_2O_2 \bullet H^+$: 287.1754; found: 287.1749.

(7R,8S,8aR)-7-(4-methoxyphenyl)-6,8a-dimethyl-8-nitro-1,2,3,7,8,8a-hexahydroindolizine

(4c)

Purified by FC (PE:EtOAc = 40:1). 52% yield, yellow solid. The ee was determined by chiral HPLC using a Phenomenex Lux 5u Amylose-2 column (hexane/*i*-PrOH = 99/1); flow rate 0.7 mL/min; $\lambda = 254$ nm; $\tau_{minor} = 14.4$ min, $\tau_{major} = 27.8$ min, 98% ee. $[\alpha]_D^{20} = -61.7$ (c = 1.0, CH₃CH₂OH).

¹**H NMR (400 MHz, CDCl₃)** δ 7.08 (d, J = 8.8 Hz, 2H), 6.81 (d, J = 8.8 Hz, 2H), 5.91 (s, 1H), 4.32 (d, J = 11.2 Hz, 1H), 3.87 (d, J = 11.2 Hz, 1H), 3.77 (s, 3H), 3.44 – 3.40 (m, 1H), 3.03 – 2.97 (m, 1H), 2.17 – 2.09 (m, 1H), 1.94 – 1.87 (m, 2H), 1.81 – 1.76 (m, 1H), 1.36 (s, 3H), 1.16 (s, 3H). ¹³C NMP (100 MHz, CDCl) δ 158 8, 130 7, 120 6, 127 3, 114 0, 106 0, 96 8, 61 0, 55 2, 51 4, 45 6

¹³C NMR (100 MHz, CDCl₃) δ 158.8, 130.7, 129.6, 127.3, 114.0, 106.0, 96.8, 61.0, 55.2, 51.4, 45.6, 37.7, 23.3, 19.3, 17.7.

HRMS-ESI (m/z): $[M + H]^+$ calcd for $C_{17}H_{22}N_2O_3 \cdot H^+$: 303.1703; found: 303.1701.

(7*R*,8*S*,8*aR*)-7-(4-chlorophenyl)-6,8a-dimethyl-8-nitro-1,2,3,7,8,8a-hexahydroindolizine (4d) Purified by FC (PE:EtOAc = 50:1). 70% yield, yellow solid. The ee was determined by chiral HPLC using a Phenomenex Lux 5u Amylose-2 column (hexane/*i*-PrOH = 99/1); flow rate 0.7 mL/min; $\lambda = 254$ nm; $\tau_{minor} = 9.4$ min, $\tau_{major} = 14.4$ min, 98% ee. $[\alpha]_D^{20} = -81.2$ (c = 1.0, CH₃CH₂OH).

¹**H NMR (400 MHz, CDCl₃)** δ 7.27 – 7.25 (m, 2H), 7.12 – 7.10 (m, 2H), 6.00 (s, 1H), 4.29 (d, *J* = 11.2 Hz, 1H), 3.91 (d, *J* = 11.2 Hz, 1H), 3.45 – 3.40 (m, 1H), 3.05 – 2.99 (m, 1H), 2.17 – 2.10 (m, 1H), 1.96 – 1.88 (m, 2H), 1.83 – 1.77 (m, 1H), 1.35 (s, 3H), 1.15 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 137.7, 133.1, 130.0, 128.9, 127.8, 104.6, 96.6, 61.1, 51.3, 45.8, 37.8, 23.3, 19.2, 17.6.

HRMS-ESI (m/z): $[M + H]^+$ calcd for $C_{16}H_{19}CIN_2O_2 \bullet H^+$: 307.1208; found: 307.1193.

(7*R*,8*S*,8a*R*)-7-(4-bromophenyl)-6,8a-dimethyl-8-nitro-1,2,3,7,8,8a-hexahydroindolizine (4e) Purified by FC (PE:EtOAc = 50:1). 84% yield, yellow solid. The ee was determined by chiral HPLC using a Phenomenex Lux 5u Amylose-2 column (hexane/*i*-PrOH = 99/1); flow rate 0.7 mL/min; $\lambda = 254$ nm; $\tau_{minor} = 10.1$ min, $\tau_{major} = 17.7$ min, 98% ee. $[\alpha]_D^{20} = -76.5$ (c = 1.0, CH₃CH₂OH).

¹**H NMR (400 MHz, CDCl₃)** δ 7.41 (d, J = 8.4 Hz, 2H), 7.05 (d, J = 8.4 Hz, 2H), 6.00 (s, 1H), 4.29 (d,

J = 11.2 Hz, 1H), 3.90 (d, *J* = 11.2 Hz, 1H), 3.44 – 3.40 (m, 1H), 3.05 – 2.99 (m, 1H), 2.17 – 2.08 (m, 1H), 1.94 – 1.87 (m, 2H), 1.82 – 1.77 (m, 1H), 1.34 (s, 3H), 1.14 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 138.2, 131.8, 130.3, 127.7, 121.2, 104.4, 96.4, 61.0, 51.3, 45.8, 37.8, 23.2, 19.2, 17.6.

HRMS-ESI (m/z): $[M + H]^+$ calcd for $C_{16}H_{19}BrN_2O_2 \bullet H^+$: 351.0703; found: 351.0699.

(7*R*,8*S*,8a*R*)-6,8a-dimethyl-8-nitro-7-(3-nitrophenyl)-1,2,3,7,8,8a-hexahydroindolizine (4f) Purified by FC (PE:EtOAc = 30:1). 89% yield, yellow solid. The ee was determined by chiral HPLC using a Phenomenex Lux 5u Amylose-2 column (hexane/*i*-PrOH = 99/1); flow rate 0.7 mL/min; $\lambda = 254$ nm; $\tau_{minor} = 16.2$ min, $\tau_{major} = 18.5$ min, 97% ee. $[\alpha]_D^{20} = -67.9$ (c = 1.0, CH₃CH₂OH).

¹**H NMR (400 MHz, CDCl₃)** δ 8.13 – 8.10 (m, 1H), 8.05 (s, 1H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.48 (t, *J* = 8.0 Hz, 1H), 6.07 (s, 1H), 4.35 (d, *J* = 11.2 Hz, 1H), 4.09 (d, *J* = 11.2 Hz, 1H), 3.49 – 3.44 (m, 1H), 3.14 – 3.07 (m, 1H), 2.20 – 2.12 (m, 1H), 1.99 – 1.91 (m, 2H), 1.86 – 1.80 (m, 1H), 1.35 (s, 3H), 1.16 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 148.5, 141.7, 135.3(bs), 129.6, 128.4, 123.4, 122.6, 102.7, 96.3, 61.0, 51.1, 46.0, 37.8, 23.2, 19.1, 17.6.

HRMS-ESI (m/z): $[M + H]^+$ calcd for C₁₆H₁₉N₃O₄•H⁺: 318.1448; found: 318.1446.

(7*R*,8*S*,8a*R*)-6,8a-dimethyl-7-(naphthalen-2-yl)-8-nitro-1,2,3,7,8,8a-hexahydroindolizine (4g) Purified by FC (PE:EtOAc = 40:1). 57% yield, yellow solid. The ee was determined by chiral HPLC using a Phenomenex Lux 5u Amylose-2 column (hexane/*i*-PrOH = 99/1); flow rate 0.7 mL/min; $\lambda = 254$ nm; $\tau_{minor} = 13.1$ min, $\tau_{major} = 16.4$ min, 98% ee. $[\alpha]_D^{20} = -55.5$ (c = 1.0, CH₃CH₂OH).

¹**H NMR (400 MHz, CDCl₃)** δ 7.80 – 7.76 (m, 3H), 7.67 (s, 1H), 7.48 – 7.42 (m, 2H), 7.26 – 7.23 (m, 1H), 6.05 (s, 1H), 4.48 (d, *J* = 11.2 Hz, 1H), 4.10 (d, *J* = 11.2 Hz, 1H), 3.47 – 3.43 (m, 1H), 3.10 – 3.03 (m, 1H), 2.20 – 2.12 (m, 1H), 1.96 – 1.88 (m, 2H), 1.84 – 1.78 (m, 1H), 1.37 (s, 3H), 1.21 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 136.4, 133.4, 132.8, 128.6(2C), 127.7, 127.6 (2C), 126.1, 125.8(2C), 105.4, 96.4, 61.1, 51.4, 46.5, 37.8, 23.3, 19.3, 17.8.

HRMS-ESI (m/z): $[M + H]^+$ calcd for $C_{20}H_{22}N_2O_2 \bullet H^+$: 323.1754; found: 323.1751.

(7*R*,8*S*,8*aR*)-7-(furan-2-yl)-6,8a-dimethyl-8-nitro-1,2,3,7,8,8a-hexahydroindolizine (4h) Purified by FC (PE:EtOAc = 40:1). 84% yield, yellow oil. The ee was determined by chiral HPLC using a Phenomenex Lux 5u Amylose-2 column (hexane/*i*-PrOH = 99/1); flow rate 0.7 mL/min; $\lambda = 254$ nm; $\tau_{minor} = 9.1$ min, $\tau_{major} = 12.2$ min, 98% ee. [α]_D²⁰ = - 116.6 (c = 1.0, CH₃CH₂OH). ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, *J* = 1.2 Hz, 1H), 6.27 – 6.26 (m, 1H), 6.22 (d, *J* = 2.4 Hz, 1H), 5.97 (s, 1H), 4.57(d, *J* = 11.2 Hz, 1H), 4.13 (d, *J* = 11.6 Hz, 1H), 3.42 – 3.37 (m, 1H), 3.07 – 3.01 (m, 1H), 2.22 – 2.14 (m, 1H), 1.94 – 1.87 (m, 2H), 1.84 – 1.78 (m, 1H), 1.42 (s, 3H), 1.12 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 151.5, 142.2, 127.0, 110.1, 109.1, 103.2, 92.4, 60.8, 51.3, 40.0, 37.9, 23.3, 19.2, 17.4.

HRMS-ESI (m/z): $[M + H]^+$ calcd for C₁₄H₁₈N₂O₃•H⁺: 263.1390; found: 263.1395.

(7*R*,8*S*,8a*R*)-6,8a-dimethyl-8-nitro-7-(thiophen-2-yl)-1,2,3,7,8,8a-hexahydroindolizine (4i) Purified by FC (PE:EtOAc = 40:1). 79% yield, yellow solid. The ee was determined by chiral HPLC using a Phenomenex Lux 5u Amylose-2 column (hexane/*i*-PrOH = 99/1); flow rate 0.7 mL/min; $\lambda = 254$ nm; $\tau_{minor} = 10.2$ min, $\tau_{major} = 14.0$ min, 98% ee. $[\alpha]_D^{20} = -65.5$ (c = 1.0, CH₃CH₂OH).

¹**H NMR** (400 MHz, CDCl₃) δ 7.18 (d, J = 4.4 Hz, 1H), 6.92 – 6.88 (m, 2H), 5.95 (s, 1H), 4.41 (d, J = 11.2 Hz, 1H), 4.29 (d, J = 11.2 Hz, 1H), 3.43 – 3.38 (m, 1H), 3.07 – 3.01 (m, 1H), 2.20 – 2.12 (m, 1H), 1.96 – 1.87 (m, 2H), 1.82 – 1.77 (m, 1H), 1.47 (s, 3H), 1.14 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 142.4, 127.1, 127.0, 126.5, 124.6, 104.8, 96.8, 61.1, 51.2, 41.8, 37.8, 23.3, 19.1, 17.4.

HRMS-ESI (m/z): $[M + H]^+$ calcd for $C_{14}H_{18}N_2O_2S \cdot H^+$: 279.1162; found: 279.1156.

(7R,8S,8aR)-6,8a-dimethyl-8-nitro-7-phenethyl-1,2,3,7,8,8a-hexahydroindolizine (4j)

Purified by FC (PE:EtOAc = 50:1). 78% yield, yellow solid. The ee was determined by chiral HPLC using a Daicel OD-H column (hexane/*i*-PrOH = 99/1); flow rate 1.0 mL/min; $\lambda = 254$ nm; $\tau_{minor} = 4.8$ min, $\tau_{major} = 5.9$ min, 99% ee.

 $[\alpha]_D^{20} = -36.5 (c = 1.0, CH_3CH_2OH).$

¹**H** NMR (400 MHz, CDCl₃) δ 7.28 – 7.24 (m, 2H), 7.19 – 7.12 (m, 3H), 5.94 (s, 1H), 4.30 (d, J = 11.6Hz, 1H), 3.38 – 3.33 (m, 1H), 3.00 – 2.90 (m, 2H), 2.56 – 2.48 (m, 1H), 2.42 – 2.35 (m, 1H), 2.15 – 2.04 (m, 1H), 1.96 – 1.85 (m, 3H), 1.82 – 1.77 (m, 1H), 1.73 (s, 3H), 1.70 – 1.61 (m, 1H), 1.07 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 141.9, 128.4, 128.2, 127.9, 125.9, 105.0, 92.4, 60.9, 51.2, 38.0, 37.8, 30.1, 29.6, 23.2, 19.1, 17.3.

HRMS-ESI (m/z): $[M + H]^+$ calcd for $C_{18}H_{24}N_2O_2 \bullet H^+$: 301.1911; found: 301.1906.

(7R,8S,8aR)-6,8a-dimethyl-8-nitro-7-propyl-1,2,3,7,8,8a-hexahydroindolizine (4k)

Purified by FC (PE:EtOAc = 100:1). 78% yield, yellow oil. The ee was determined by chiral HPLC using a Daicel OD-H column (hexane/*i*-PrOH = 99/1); flow rate 0.7 mL/min; $\lambda = 254$ nm; $\tau_{minor} = 5.2$ min, $\tau_{major} = 5.7$ min, 98% ee.

 $[\alpha]_D^{20} = -16.6 \text{ (c} = 1.0, \text{CH}_3\text{CH}_2\text{OH}).$

¹**H NMR (400 MHz, CDCl₃)** δ 5.85 (s, 1H), 4.19 (d, *J* = 11.6 Hz, 1H), 3.34 – 3.30 (m, 1H), 2.90 – 2.84 (m, 2H), 2.13 – 2.05 (m, 1H), 1.91 – 1.82 (m, 2H), 1.79 – 1.73 (m, 1H), 1.63 (s, 3H), 1.58 – 1.52 (m, 1H), 1.38 – 1.31 (m, 1H), 1.24 – 1.18 (m, 1H), 1.14 – 1.09 (m, 1H), 1.05 (s, 3H), 0.88 (t, *J* = 7.2 Hz, 3H)

¹³C NMR (100 MHz, CDCl₃) δ 127.4, 106.1, 92.7, 60.9, 51.3, 38.0, 37.8, 29.8, 23.2, 19.2, 17.2, 17.0, 14.5.

HRMS-ESI (m/z): $[M + H]^+$ calcd for $C_{13}H_{22}N_2O_2 \cdot H^+$: 239.1754; found: 239.1749.

(7*R*,8*S*,8*aR*)-6-ethyl-8a-methyl-8-nitro-7-phenyl-1,2,3,7,8,8a-hexahydroindolizine (4I) Purified by FC (PE:EtOAc = 50:1). 86% yield, yellow solid. The ee was determined by chiral HPLC using a Phenomenex Lux 5u Amylose-2 column (hexane/*i*-PrOH = 99/1); flow rate 0.7 mL/min; $\lambda = 254$ nm; $\tau_{\text{minor}} = 8.4$ min, $\tau_{\text{major}} = 9.2$ min, 99% ee. $[\alpha]_D^{20} = -1.6$ (c = 1.0, CH₃CH₂OH).

¹**H NMR (400 MHz, CDCl₃)** δ 7.29 – 7.16 (m, 5H), 6.02 (s, 1H), 4.36 (d, J = 11.2 Hz, 1H), 4.02 (d, J

= 11.2 Hz, 1H), 3.45 - 3.41 (m, 1H), 3.06 - 2.99 (m, 1H), 2.17 - 2.09 (m, 1H), 1.96 - 1.88 (m, 2H), 1.82 - 1.69 (m, 2H), 1.68 - 1.58 (m, 1H), 1.17 (s, 3H), 0.88 (t, *J* = 7.2 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 138.9, 128.5(2C), 127.3, 126.2, 111.9, 96.9, 60.9, 51.3, 44.7, 37.7, 24.8, 23.3, 19.0, 13.4.

HRMS-ESI (m/z): $[M + H]^+$ calcd for $C_{17}H_{22}N_2O_2 \bullet H^+$: 287.1754; found: 287.1751.

(7*R*,8*S*,8*aR*)-8a-methyl-8-nitro-7-phenyl-6-propyl-1,2,3,7,8,8a-hexahydroindolizine (4m) Purified by FC (PE:EtOAc = 50:1). 84% yield, yellow solid. The ee was determined by chiral HPLC using a Phenomenex Lux 5u Amylose-2 column (hexane/*i*-PrOH = 99/1); flow rate 0.7 mL/min; $\lambda = 254$ nm; $\tau_{minor} = 7.9$ min, $\tau_{major} = 8.6$ min, >99% ee. $[\alpha]_D^{20} = -1.8$ (c = 1.0, CH₃CH₂OH).

¹**H NMR** (400 MHz, CDCl₃) δ 7.30 – 7.22 (m, 3H), 7.17 (d, J = 6.4 Hz, 2H), 6.03 (s, 1H), 4.34 (d, J = 11.2 Hz, 1H), 3.97 (d, J = 11.2 Hz, 1H), 3.46 – 3.42 (m, 1H), 3.06 – 3.00 (m, 1H), 2.17 – 2.09 (m, 1H), 1.95 – 1.88 (m, 2H), 1.82 – 1.77 (m, 1H), 1.68 – 1.57 (m, 2H), 1.34 – 1.30 (m, 1H), 1.26 – 1.21 (m, 1H), 1.18 (s, 3H), 0.77 (t, J = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 138.9, 128.5(2C), 127.3, 127.2, 109.7, 97.0, 60.9, 51.3, 44.7, 37.7, 33.7, 23.3, 21.4, 19.1, 13.4.

HRMS-ESI (m/z): $[M + H]^+$ calcd for $C_{18}H_{24}N_2O_2 \bullet H^+$: 301.1911; found: 301.1908.

(7*R*,8*S*,8a*R*)-6-benzyl-8a-methyl-8-nitro-7-phenyl-1,2,3,7,8,8a-hexahydroindolizine (4n) Purified by FC (PE:EtOAc = 50:1). 73% yield, yellow solid. The ee was determined by chiral HPLC using a Phenomenex Lux 5u Amylose-2 column (hexane/*i*-PrOH = 99/1); flow rate 0.7 mL/min; $\lambda = 254$ nm; $\tau_{minor} = 11.0$ min, $\tau_{major} = 12.5$ min, >99% ee. $[\alpha]_D^{20} = 53.3$ (c = 1.0, CH₃CH₂OH).

¹**H NMR (400 MHz, CDCl₃)** δ 7.25 – 7.14 (m, 6H), 7.07 (br, 2H), 6.92 (d, *J* = 7.2Hz, 2H), 6.14 (s, 1H), 4.49 (d, *J* = 11.6 Hz, 1H), 3.74 (d, *J* = 11.2 Hz, 1H), 3.46 (m, 1H), 3.10 – 3.05 (m, 2H), 2.83 – 2.79 (m, 1H), 2.16 – 2.08 (m, 1H), 1.95 – 1.88 (m, 2H), 1.80 – 1.76 (m, 1H), 1.08 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 140.4, 138.5, 128.6(2C), 128.3, 128.1, 127.5(2C), 125.9, 109.3, 96.9, 61.0, 51.1, 44.5, 38.3, 37.7, 23.3, 19.3.

HRMS-ESI (m/z): $[M + H]^+$ calcd for C₂₂H₂₄N₂O₂•H⁺: 349.1911; found: 349.1905.

(7*R*,8*S*,8a*R*)-6-heptyl-8a-methyl-8-nitro-7-(3-nitrophenyl)-1,2,3,7,8,8a-hexahydroindolizine (4o)

Purified by FC (PE:EtOAc = 50:1). 97% yield, yellow oil. The ee was determined by chiral HPLC using a Daicel OD-H column (hexane/*i*-PrOH = 99/1); flow rate 1.0 mL/min; $\lambda = 254$ nm; τ minor = 5.7 min, τ major = 6.6 min, 99% ee.

 $[\alpha]_D^{20} = 12.0 (c = 1.0, CH_3CH_2OH).$

¹**H NMR (400 MHz, CDCl**₃) δ 8.13 – 8.10 (m, 1H), 8.06 (s, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.47 (t, J = 8.0 Hz, 1H), 6.09 (s, 1H), 4.32 (d, J = 11.2 Hz, 1H), 4.14 (d, J = 11.2 Hz, 1H), 3.49 – 3.45 (m, 1H), 3.14 – 3.08 (m, 1H), 2.19 – 2.11 (m, 1H), 1.99 – 1.91 (m, 2H), 1.85 – 1.80 (m, 1H), 1.75 – 1.64 (m, 1H), 1.59 – 1.53 (m, 1H), 1.26 – 1.15 (m, 12H), 1.08 – 1.06 (m, 1H), 0.85 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 148.5, 141.7, 135.2 (bs), 129.5, 128.1, 122.9, 122.6, 107.3, 96.6, 61.0, 51.1, 44.4, 37.8, 31.6, 31.6, 28.9, 28.8, 28.4, 23.2, 22.5, 18.9, 14.0.

HRMS-ESI (m/z): $[M + H]^+$ calcd for C₂₂H₃₁N₃O₄•H⁺: 402.2387; found: 402.2388.

(7*R*,8*S*,8a*R*)-8a-methyl-8-nitro-7-(3-nitrophenyl)-6-nonyl-1,2,3,7,8,8a-hexahydroindolizine (4p)

Purified by FC (PE:EtOAc = 50:1). 98% yield, yellow oil. The ee was determined by chiral HPLC using a Phenomenex Lux 5u Amylose-2 column (hexane/*i*-PrOH = 99/1); flow rate 0.7 mL/min; $\lambda = 254$ nm; $\tau_{minor} = 14.5$ min, $\tau_{major} = 18.4$ min, 99% ee.

 $[\alpha]_D^{20} = 9.4 (c = 1.0, CH_3CH_2OH).$

¹**H NMR (400 MHz, CDCl₃)** δ 8.13 – 8.10 (m, 1H), 8.05 (s, 1H), 7.56 (d, J = 7.6 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 6.09 (s, 1H), 4.32 (d, J = 11.2 Hz, 1H), 4.14 (d, J = 11.2 Hz, 1H), 3.49 – 3.45 (m, 1H), 3.14 – 3.08 (m, 1H), 2.19 – 2.11 (m, 1H), 1.99 – 1.91 (m, 2H), 1.85 – 1.80 (m, 1Hz), 1.74 – 1.67 (m, 1H), 1.61 – 1.53 (m, 1H), 1.28 – 1.15 (m, 16H), 1.09 – 1.04 (m, 1H), 0.87 (t, J = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 148.6, 141.7, 135.8 (bs), 129.6, 128.1, 123.2, 122.6, 107.4, 96.7, 61.0, 51.1, 44.5, 37.8, 31.8, 31.6, 29.4, 29.3, 29.2, 28.8, 28.4, 23.2, 22.6, 18.9, 14.0.

HRMS-ESI (m/z): $[M + H]^+$ calcd for $C_{24}H_{35}N_3O_4 \cdot H^+$: 430.2700; found: 430.2693.

(7*R*,8*S*,8a*R*)-8a-methyl-8-nitro-6,7-diphenyl-1,2,3,7,8,8a-hexahydroindolizine (4q) Purified by FC (PE:EtOAc = 50:1). 57% yield, yellow solid. The ee was determined by chiral HPLC using a Daicel OD-H column (hexane/*i*-PrOH = 99/1); flow rate 0.7 mL/min; $\lambda = 254$ nm; $\tau_{maior} = 14.2 \text{ min}, \tau_{minor} = 16.3 \text{ min}, 90\%$ ee.

 $[\alpha]_D^{20} = -71.7 (c = 1.0, CH_3CH_2OH).$

¹**H NMR (400 MHz, CDCl₃)** δ 7.16 – 7.05 (m, 9H), 6.91 – 6.87 (m, 1H), 6.74 (s, 1H), 4.61 (d, *J* = 10.8Hz, 1H), 4.46 (d, *J* = 10.8Hz, 1H), 3.59 – 3.54 (m, 1H), 3.34 – 3.28 (m, 1H), 2.16 – 2.08 (m, 1H), 2.06 – 1.97 (m, 2H), 1.89 – 1.84 (m, 1H), 1.24 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 139.6, 139.2, 130.3, 128.6, 128.4, 127.9, 127.1, 125.4, 124.3, 108.5, 98.2, 61.1, 50.4, 44.0, 37.8, 22.9, 18.3.

HRMS-ESI (m/z): $[M + H]^+$ calcd for $C_{21}H_{22}N_2O_2 \bullet H^+$: 335.1754; found: 335.1745.

(1*R*,2*S*,11b*S*)-3,11b-dimethyl-1-nitro-2-phenyl-2,6,7,11b-tetrahydro-1H-pyrido[2,1-*a*]isoquin oline (4r)

Purified by FC (PE:EtOAc = 50:1). 41% yield, yellow solid. The ee was determined by chiral HPLC using a Daicel OD-H column (hexane/*i*-PrOH = 99/1); flow rate 0.7 mL/min; $\lambda = 254$ nm; $\tau_{maior} = 11.2$ min, $\tau_{minor} = 13.0$ min, 99% ee.

 $[\alpha]_D^{20} = -276.8 (c = 1.0, CH_3CH_2OH).$

¹**H NMR (400 MHz, CDCl₃)** δ 7.27 – 7.12 (m, 8H), 7.00 (m, 1H), 5.95 (s, 1H), 4.62 (d, *J* = 10.8 Hz, 1H), 4.02 (d, *J* = 10.8 Hz, 1H), 3.38 – 3.32 (m, 1H), 3.20 – 3.14 (m, 1H), 3.03 – 2.96 (m, 1H), 2.86 – 2.80 (m, 1H), 1.71 (s, 3H), 1.42 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 138.5, 137.3, 134.6, 131.3, 129.2, 128.7, 128.3, 127.6, 127.2, 126.6, 126.0, 106.3, 96.8, 59.2, 48.8, 46.4, 30.8, 18.8, 17.6.

HRMS-ESI (m/z): $[M + H]^+$ calcd for $C_{21}H_{22}N_2O_2 \cdot H^+$: 335.1754; found: 335.1737.

(1*R*,2*S*,11b*S*)-3,10,11b-trimethyl-1-nitro-2-phenyl-2,6,7,11b-tetrahydro-1H-pyrido[2,1-*a*]isoq uinoline (4s)

Purified by FC (PE:EtOAc = 50:1). 44% yield, yellow solid. The ee was determined by chiral HPLC using a Phenomenex Lux 5u Amylose-2 column (hexane/*i*-PrOH = 99/1); flow rate 0.7 mL/min; $\lambda = 254$ nm; $\tau_{minor} = 10.4$ min, $\tau_{major} = 13.7$ min, >99% ee. [α]_D²⁰ = - 289.8 (c = 1.0, CH₃CH₂OH). ¹**H NMR (400 MHz, CDCl₃)** δ 7.25 - 7.19 (m, 3H), 7.13 - 7.11 (m, 2H), 7.01 - 6.96 (m, 2H), 6.77 (s, 1H), 5.95 (s, 1H), 4.62 (d, *J* = 10.4 Hz, 1H), 4.00 (d, *J* = 10.8 Hz, 1H), 3.37 - 3.31 (m, 1H), 3.19 - 3.13 (m, 1H), 2.99 - 2.92 (m, 1H), 2.80 - 2.74 (m, 1H), 2.22 (s, 3H), 1.69 (s, 3H), 1.42 (s, 3H). ¹³C NMP (100 MHz, CDCl₃) δ 128 6 127 1 126 0 121 5 121 4 120 0 128 6 128 2 128 1 127 5

¹³C NMR (100 MHz, CDCl₃) δ 138.6, 137.1, 136.0, 131.5, 131.4, 129.0, 128.6, 128.3, 128.1, 127.5, 126.4, 106.0, 96.8, 59.0, 48.7, 46.6, 30.3, 21.2, 19.0, 17.6.

HRMS-ESI (m/z): $[M + H]^+$ calcd for C₂₂H₂₄N₂O₂•H⁺: 349.1911; found: 349.1897.

(1*R*,2*S*,11b*S*)-10-methoxy-3,11b-dimethyl-1-nitro-2-phenyl-2,6,7,11b-tetrahydro-1H-pyrido[2,1-*a*]isoquinoline (4t)

Purified by FC (PE:EtOAc = 50:1). 42% yield, yellow solid. The ee was determined by chiral HPLC using a Daicel OD-H column (hexane/*i*-PrOH = 99/1); flow rate 0.7 mL/min; $\lambda = 254$ nm;

 $τ_{major} = 11.4 \text{ min}, τ_{minor} = 13.7 \text{ min}, 98\% \text{ ee.}$ [α]_D²⁰ = - 325.9 (c = 1.0, CH₃CH₂OH).

¹**H NMR (400 MHz, CDCl₃)** δ 7.26 – 7.20 (m, 3H), 7.12 (d, J = 6.8 Hz, 2H), 7.02 (d, J = 8.4 Hz, 1H), 6.74 (d, J = 8.4 Hz, 1H), 6.52 (s, 1H), 5.95 (s, 1H), 4.63 (d, J = 10.8 Hz, 1H), 4.00 (d, J = 10.8 Hz, 1H), 3.68 (s, 3H), 3.36 – 3.30 (m, 1H), 3.17 – 3.12 (m, 1H), 2.95 – 2.89 (m, 1H), 2.78 – 2.72 (m, 1H), 1.70 (s, 3H), 1.42 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 158.0, 138.5, 138.2, 131.4, 130.0, 128.7, 128.3, 127.5, 126.6, 113.9, 110.8, 106.1, 96.8, 59.2, 55.2, 48.8, 46.6, 29.8, 18.9, 17.6.

HRMS-ESI (m/z): $[M + H]^+$ calcd for $C_{22}H_{24}N_2O_3 \cdot H^+$: 365.1860; found: 365.1850.

(1*R*,2*S*,11b*S*)-10-bromo-3,11b-dimethyl-1-nitro-2-phenyl-2,6,7,11b-tetrahydro-1H-pyrido[2,1 -*a*]isoquinoline (4u)

Purified by FC (PE:EtOAc = 50:1). 58% yield, yellow solid. The ee was determined by chiral HPLC using a Daicel OD-H column (hexane/*i*-PrOH = 99/1);flow rate 0.7 mL/min; $\lambda = 254$ nm; $\tau_{major} = 7.8 \text{ min}, \tau_{minor} = 8.6 \text{ min}, 98\%$ ee. $[\alpha]_D^{20} = -268.8 \text{ (c} = 1.0, \text{CH}_3\text{CH}_2\text{OH}).$

¹**H NMR (400 MHz, CDCl₃)** δ 7.29 – 7.21 (m, 4H), 7.11 – 7.07 (m, 3H), 6.99 (d, J = 8.4 Hz, 1H), 5.95

(s, 1H), 4.64 (d, *J* = 10.4 Hz, 1H), 3.98 (d, *J* = 10.4 Hz, 1H), 3.36 – 3.30 (m, 1H), 3.20 – 3.15 (m, 1H), 2.98 – 2.90 (m, 1H), 2.80 – 2.74 (m, 1H), 1.68 (s, 3H), 1.43 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 139.5, 138.2, 133.6, 131.2, 130.7, 130.4, 129.0, 128.7, 128.3, 127.6, 120.1, 106.9, 96.4, 58.6, 48.5, 46.2, 30.1, 19.3, 17.6.

HRMS-ESI (m/z): $[M + H]^+$ calcd for $C_{21}H_{21}BrN_2O_2 \bullet H^+$: 413.0859; found: 413.0850.

(1*R*,2*S*,11b*S*)-9,10-dimethoxy-3,11b-dimethyl-1-nitro-2-phenyl-2,6,7,11b-tetrahydro-1H-pyri do[2,1-*a*]isoquinoline (4v)

Purified by FC (PE:EtOAc = 20:1). 67% yield, yellow oil. The ee was determined by chiral HPLC using a Daicel OD-H column (hexane/*i*-PrOH = 95/5); flow rate 0.7 mL/min; $\lambda = 254$ nm; $\tau _{major} = 11.4$ min, $\tau _{minor} = 13.5$ min, 98% ee.

 $[\alpha]_D^{20} = -209.9 (c = 1.0, CH_3CH_2OH).$

¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.20 (m, 3H), 7.12 (d, J = 6.4 Hz, 2H), 6.58 (s, 1H), 6.46 (s, 1H), 5.95 (s, 1H), 4.62 (d, J = 10.8 Hz, 1H), 4.00 (d, J = 10.8 Hz, 1H), 3.84 (s, 3H), 3.74 (s, 3H), 3.38 – 3.32 (m, 1H), 3.16 – 3.10 (m, 1H), 2.95 – 2.88 (m, 1H), 2.78 – 2.72 (m, 1H), 1.70 (s, 3H), 1.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 148.0, 147.3, 138.4, 131.6, 129.2, 128.7, 128.3, 127.6, 126.9, 111.4, 109.0, 106.4, 97.1, 58.9, 55.8, 55.7, 48.9, 46.3, 30.2, 18.9, 17.6.

HRMS-ESI (m/z): $[M + H]^+$ calcd for $C_{23}H_{26}N_2O_4 \bullet H^+$: 395.1965; found: 395.1959.

(1*R*,2*S*,11b*S*)-11b-ethyl-9,10-dimethoxy-3-methyl-1-nitro-2-phenyl-2,6,7,11b-tetrahydro-1H-pyrido[2,1-*a*]isoquinoline (4w)

Purified by FC (PE:EtOAc = 20:1). 30% yield, yellow solid. The ee was determined by chiral HPLC using a Daicel OD-H column (hexane/*i*-PrOH = 99/1);flow rate 0.7 mL/min; $\lambda = 254$ nm; $\tau_{major} = 18.2 \text{ min}, \tau_{minor} = 25.2 \text{ min}, >99\%$ ee.

 $[\alpha]_D^{20} = -177.1 \text{ (c} = 1.0, \text{CH}_3\text{CH}_2\text{OH}).$

¹**H NMR (400 MHz, CDCl₃)** δ 7.28 – 7.19 (m, 3H), 7.13 – 7.11 (m, 2H), 6.59 (s, 1H), 6.48 (s, 1H), 5.97 (s, 1H), 4.54 (d, *J* = 11.2 Hz, 1H), 3.98 (d, *J* = 11.6 Hz, 1H), 3.84 (s, 3H), 3.75 (s, 3H), 3.40 – 3.34 (m, 1H), 3.19 – 3.13 (m, 1H), 2.89 – 2.74 (m, 2H), 2.23 (q, *J* = 7.2 Hz, 2H), 1.42 (s, 3H), 0.66 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 148.0, 147.5, 138.4, 131.1, 128.7(2C), 128.5, 127.6, 126.4, 111.3, 109.0, 108.6, 97.2, 62.6, 55.9, 55.7, 48.4, 47.7, 30.0, 23.0, 17.5, 8.3.

HRMS-ESI (m/z): $[M + H]^+$ calcd for $C_{24}H_{28}N_2O_4 \cdot H^+$: 409.2122; found: 409.2125.

(1*R*,2*S*,12*bR*)-3,12*b*-dimethyl-1-nitro-2-phenyl-1,2,6,7,12,12*b*-hexahydroindolo[2,3-*a*]quinoli zine (4x)

Purified by FC (PE:EtOAc = 20:1). 83% yield, yellow solid. The ee was determined by chiral HPLC using a Phenomenex Lux 5u Amylose-2 column (hexane/*i*-PrOH = 99/1); flow rate 0.7 mL/min; $\lambda = 254$ nm; $\tau_{minor} = 12.9$ min, $\tau_{major} = 15.9$ min, 98% ee. $[\alpha]_D^{20} = -128.4$ (c = 1.0, CH₃CH₂OH).

¹**H NMR (400 MHz, CDCl₃)** δ 7.71 (s, 1H), 7.49 (d, *J* = 7.6 Hz, 1H), 7.30 – 7.24 (m, 3H), 7.21 – 7.06 (m, 5H), 5.99 (s, 1H), 4.85 (d, *J* = 11.2 Hz, 1H), 3.96 (d, *J* = 11.2 Hz, 1H), 3.47 – 3.41 (m, 1H), 3.19 – 3.13 (m, 1H), 2.92 – 2.80 (m, 2H), 1.73 (s, 3H), 1.44 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 137.8, 136.5, 133.6, 131.7, 128.9, 128.3, 127.8, 126.1, 122.4, 119.6, 118.4, 111.3, 109.6, 108.3, 95.6, 57.0, 48.9, 46.7, 21.9, 18.1, 17.7.

HRMS-ESI (m/z): $[M + H]^+$ calcd for C₂₃H₂₃N₃O₂•H⁺: 374.1863; found: 374.1859.

(1*R*,2*S*,12*bR*)-12b-ethyl-3-methyl-1-nitro-2-phenyl-1,2,6,7,12,12b-hexahydroindolo[2,3-*a*]qui nolizine (4y)

Purified by FC (PE:EtOAc = 20:1). 70% yield, yellow solid. The ee was determined by chiral HPLC using a Daicel OD-H column (hexane/*i*-PrOH = 95/5);flow rate 0.7 mL/min; λ = 254 nm; τ_{major} = 7.0 min, τ_{minor} = 15.4 min, >99% ee.

 $[\alpha]_D^{20} = -41.4 (c = 1.0, CH_3CH_2OH).$

¹**H NMR (400 MHz, CDCl₃)** δ 7.67 (s, 1H), 7.50 (d, *J* = 7.6 Hz, 1H), 7.31 – 7.06 (m, 8H), 6.00 (s, 1H), 4.81 (d, *J* = 11.2 Hz, 1H), 3.95 (d, *J* = 11.2 Hz, 1H), 3.50 – 3.45 (m, 1H), 3.16 – 3.10 (m, 1H), 2.94 – 2.80 (m, 2H), 2.28 – 2.16 (m, 2H), 1.44 (s, 3H), 0.55 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 137.7, 136.6, 131.3, 131.2, 128.9, 128.3, 127.8, 126.0, 122.4, 119.5, 118.3, 112.2, 111.9, 111.3, 95.1, 60.6, 48.4, 47.3, 22.9, 21.6, 17.6, 7.9.

HRMS-ESI (m/z): $[M + H]^+$ calcd for $C_{24}H_{25}N_3O_2 \cdot H^+$: 388.2020; found: 388.2005.

4. Reference:

1. (a) Organic Syntheses, Coll. *Vol. 1*, p.413 (**1941**); *Vol. 9*, p.66 (**1929**). (b) Duursma, A.; Minnaard, A. J.; Feringa, B. L. *Tetrahedron* **2002**, *58*, 5773.

2. (a) Xie, J.-H.; Yan, P.-C.; Zhang, Q.-Q.; Yuan, K.-X.; Zhou, Q.-L. *ACS Catal.* **2012**, *2*, 561. (b) Roszkowski, P.; Wojtasiewicz, K.; Leniewski, A.; Maurin, J. K.; Lis, T.; Czarnocki, Z. J. Mol. *Catal. A Chem.* **2005**, *232*, 143.

5. ¹H and ¹³C NMR Spectra

6. Chiral HPLC Traces

Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		9.168	362405.594	4804997.000	49.8824	
2		10.952	269225.219	4827648.000	50.1176	
Total			631630.813	9632645.000	100.0000	

Peak No.	Peak ID	Ret Time	Height	Area	Conc.				
1		9.810	9633.085	145463.625	0.9087				
2		11.745	675050.500	15862092.000	99.0913				
Total			684683.585	16007555.625	100.0000				

		-			
1	8.807	412721.719	7903534.500	49.2157	
2	11.623	222501.828	8155442.500	50.7843	
Total		635223.547	16058977.000	100.0000	

2	11.518	297101.406	10778230.000	99.2488
Total		301185.276	10859810.203	100.0000

Peak No.	Peak ID	Ret Time	Height	Area	Conc.			
1		14.398	128056.875	4542154.000	50.3568			
2		28.523	27799.648	4477794.000	49.6432			
Total			155856.523	9019948.000	100.0000			

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		14.418	2711.739	89229.516	0.7704
2		27.773	72004.242	11492792.000	99.2296
Total			74715.981	11582021.516	100.0000

	icourts							
Peak No.	Peak ID	Ret Time	Height	Arca	Conc.			
1		9.380	3316.521	79112.375	0.9297			
2		14.397	125758.695	8430454.000	99.0703			
Total			129075.217	8509566.375	100.0000			

1 Cak 1 (0)	I Call ID	Rect Thine	Intight	Airea -	cone.	
1		8.732	672309.688	13020911.000	49.9790	
2		15.673	208022.719	13031859.000	50.0210	
Total			880332.406	26052770.000	100.0000	

Peak No.	Peak ID	Ret Time	Height	Area	Conc.			
1		10.080	23536.977	456431.438	1.0169			
2		17.670	584166.188	44430008.000	98.9831			
Total			607703.164	44886439.438	100.0000			

Peak No.	Реак ID	Ket 11me	Height	Area	Conc.	
1		15.565	463370.438	22239074.000	48.7063	_
2		17.698	522724.094	23420450.000	51.2937	
Total			986094.531	45659524.000	100.0000	

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		16.218	3491.727	129012.320	1.3235
2		18.487	240927.172	9618443.000	98.6765
Total			244418.899	9747455.320	100.0000

Results								
Peak No.	Peak ID	Ret Time	Height	Area	Conc.			
1		13.102	7527.441	271595.969	0.9546			
2		16.410	550345.938	28178478.000	99.0454			
Total			557873.378	28450073.969	100.0000			

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		9.133	10362.652	185691.094	1.2312
2		12.233	479892.156	14896183.000	98.7688
Total			490254.809	15081874.094	100.0000

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		10.132	487952.156	10367446.000	50.8191
2		14.048	247747.375	10033235.000	49.1809
Total			735699.531	20400681.000	100.0000

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		10.158	10585.622	196769.141	1.2097
2		13.955	385482.781	16069009.000	98.7903
Total			396068.403	16265778.141	100.0000

		-		
1	4.623	74431.141	692382.188	49.7485
2	5.615	66769.891	699381.625	50.2515
Total		141201.031	1391763.813	100.0000

I Cak 100.	I Car ID	Ret Thire	incigite	Arta	conc.	
1		4.750	1881.145	21934.199	0.5825	
2		5.935	353550.125	3743694.750	99.4175	
Total			355431.270	3765628.949	100.0000	

Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		5.207	60431.836	443779.031	50.1151	
2		5.655	57343.328	441740.688	49.8849	
Total			117775.164	885519.719	100.0000	

Peak No.	Peak ID	Ret Time	Height	Area	Conc.			
1		5.187	4999.486	34866.199	1.2098			
2		5.663	441289.094	2847124.250	98.7902			
Total			446288.580	2881990.449	100.0000			

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		8.415	112333.125	2247537.750	48.5266
2		9.248	95821.875	2384016.250	51.4734
Total			208155.000	4631554.000	100.0000

	and a provide the second			C PREASURE PROVIDE		
1		8.442	2185.354	40477.480	0.5411	
2		9.213	302570.594	7440738.000	99.4589	
Total			304755.948	7481215.480	100.0000	

Peak No.	Peak ID	Ret Time	Height	Area	Сопс.	
1		7.988	269632.531	5342756.500	47.3793	
2		8.602	263170.781	5933805.000	52.6207	
Total			532803.313	11276561.500	100.0000	

Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		7.942	460.202	6498.000	0.1440	_
2		8.560	205533.047	4505688.000	99.8560	
Total			205993.248	4512186.000	100.0000	

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		10.953	1288.208	29612.750	0.4069
2		12.478	207209.094	7247583.000	99.5931
Total			208497.302	7277195.750	100.0000

1	6.963	160852.578	2434481.750	50.5679
2	7.803	140751.594	2379800.250	49.4321
Total		301604.172	4814282.000	100.0000

Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		5.722	5828.419	62360.699	0.7287	-
2		6.588	652943.875	8495369.000	99.2713	
Total			658772.294	8557729.699	100.0000	

Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		14.198	768563.813	28420868.000	49.5939	
2		18.065	613087.000	28886258.000	50.4060	
Total			1381650.813	57307126.000	100.0000	

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		14.500	1931.230	60003.688	0.5365
2		18.355	242455.813	11124738.000	99.4635
Total			244387.043	11184741.688	100.0000

2	16.160	9935.960	320431.406	50.2746
Total		21220.730	637363.000	100.0000

D					
к	e	s	11	Ŀ	ts
τ.	•		u		

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		14.155	146630.109	4250598.500	94.8699
2		16.255	7656.704	229851.641	5.1301
Total			154286.813	4480450.141	100.0000

33734.111

759949.031

100.0000

Total

			IXC3uit5		
Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		11.198	155041.031	3373907.500	99.3211
2		13.048	1028.454	23061.301	0.6789
Total			156069.485	3396968.801	100.0000

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		10.578	21037.031	1305122.875	50.0156
2		13.473	18318.514	1304309.250	49.9844
Total			39355.545	2609432.125	100.0000

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		10.450	498.554	8938.400	0.0714
2		13.683	170905.172	12516122.000	99.9286
Total			171403.726	12525060.400	100.0000

Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		11.670	14137.702	317584.375	49.6751	
2		13.443	11984.763	321739.219	50.3249	
Total			26122.465	639323.594	100.0000	

Peak No.	Peak ID	Ret Time	Height	Area	Conc.		
1		11.368	1041658.188	25976492.000	99.1135		
2		13.668	8309.133	232346.031	0.8865		
Total			1049967.320	26208838.031	100.0000		

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		7.498	87444.945	1087278.750	49.1218
2		7.998	79271.406	1126154.250	50.8782
Total			166716.352	2213433.000	100.0000

Peak No.	Peak ID	Ket 11me	Height	Area	Conc.	
1		7.842	484896.188	6264710.000	98.9062	
2		8.587	4766.614	69284.258	1.0938	
Total			489662.801	6333994.258	100.0000	

157001.641

4174448.875

100.0000

Total

Peak No.	Peak ID	Ret Time	Height	Area	Conc.		
1		11.398	574262.875	14068463.000	98.9888		
2		13.465	4519.881	143718.297	1.0112		
Total			578782.756	14212181.297	100.0000		

Results

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		18.205	25046.809	1162490.875	49.8534
2		25.250	15440.978	1169328.875	50.1466
Total			40487.786	2331819.750	100.0000

Results

Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		18.243	9372.722	469723.719	100.0000	_
Total			9372.722	469723.719	100.0000	_

				contr	
1	13.490	96966.898	5589868.500	51.9865	
2	17.190	94429.500	5162672.500	48.0135	
Total		191396.398	10752541.000	100.0000	

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		12.948	1998.977	86626.305	0.8704
2		15.947	127278.969	9865458.000	99.1296
Total			129277.946	9952084.305	100.0000

1	6.932	53499.801	710233.438	51.1194
2	15.198	17538.346	679129.563	48.8806
Total		71038.146	1389363.000	100.0000

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		6.955	127198.414	1668133.750	99.6046
2		15.357	230.039	6622.794	0.3954
Total			127428.453	1674756.544	100.0000

7. X-ray Crystallography of 4n

The single crystal of 4n grown from a solution of petroleum: ethyl acetate = 5:1 was submitted to X-Ray crystallography

