Electronic Supplementary Information (ESI) – Table of Contents

A highly luminescent and highly oxygen-sensitive Tb(III) complex with a tris-aryloxide functionalised 1,4,7-triazacyclononane ligand

Hidetaka Nakai,^{*ab} Takahiro Goto,^a Kazuhiro Kitagawa,^{ac} Kyoshiro Nonaka,^{ac} Takahiro Matsumoto^{abc} and Seiji Ogo^{*abc}

^a Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
 ^b Centre for Small Molecule Energy, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
 ^c International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan

Experimental details

General	S 2
X-ray crystallography	S 3
Syntheses of $[{(^{MeMe}ArO)_3 tacn}Tb^{III}(THF)]$ (1) and $[{(^{MeMe}ArO)_3 tacn}Gd^{III}(THF)]$	S 4
References	S 6

Tables

Table S1 Crystallographic data for 1	S 7
Table S2 Continuous shape measures (CSM) values calculated for the Tb^{3+} in 1	S 8

Figures

Fig. S1 UV-vis absorption and corrected luminescence spectra of $\{(^{MeMe}ArOH)_3 tacn\}$	S 9
Fig. S2 Absorption and excitation spectra of 1	S10
Fig. S3 Luminescence decay curves of 1	S11
Fig. S4 Luminescence spectrum of [{(^{MeMe} ArO) ₃ tacn}Gd ^{III} (THF)] at 77 K	S12
Fig. S5 Luminescence spectrum of 1 at 77 K	S13
Fig. S6 Electrospray ionisation mass spectrum of 1	S14

Experimental details

General: All experiments were performed under a dry nitrogen or argon atmosphere using standard Schlenk techniques or a glovebox. Tb(OTf)₃ was purchased from Aldrich. Standard gas mixtures containing 0, 30, 50, 75 and 100% of O₂ balanced with N₂ (100, 70, 50, 25 and 0%, respectively) were purchased from Sumitomo Seika Chemicals Co., Ltd. {($^{MeMe}ArOH$)₃tacn} = {(CH₂(CH₃)₂C₆H₂OH)₃C₆H₁₂N₃} was prepared according to the literature procedures.¹ All other chemicals were obtained from commercial sources and used as received unless otherwise noted.

UV-vis absorption spectra were measured in a JASCO V-670 UV-visible-NIR Spectrophotometer (cell length = 10.0 mm). Electrospray ionisation mass spectrometry data were obtained by a JEOL JMS-T100ESI AccuTOF LC-plus. Elemental analyses were performed using a Yanaco CHN-coder MT-5.

Luminescence properties (corrected luminescence and excitation spectra, luminescence lifetimes and luminescence quantum yields) were measured using a Horiba Jobin Yvon FluoroMax-4P Spectrofluorometer. Low temperature (77 K) spectra were obtained using a quartz tube cell (1 mm inner diameter) placed in a quartz-walled Dewar flask filled with liquid nitrogen. Luminescence quantum yields were measured by the relative comparison method with quinine bisulfate in 0.5 M H₂SO₄ ($\Phi = 0.60$) chosen for the standard (The error in the reported values is within ±10% which is confirmed by the cross-calibration of the standard).² The general equation used for determination of relative quantum yields is given as $Q_x/Q_{st} = [A_{st}(\lambda)/A_x(\lambda)][I_x/I_{st}][n_x^2/n_{st}^2]$, where A is absorbance at excitation wavelength, I is integrated luminescence intensity and n is the refractive index. The subscripts x and st represent sample and standard, respectively.

For measuring oxygen-sensing properties, the standard gas mixtures (0, 30, 50, 75 and 100% of O_2) and air were passed through the cuvette to equilibrate the oxygen content to the respective concentrations (flow rate = 5 mL min⁻¹; time > 5 min). The oxygen concentrations (1.01, 0.75, 0.50, 0.30 and 0.00 × 10⁻² M at 100, 75, 50, 30 and 0% of O_2 , respectively) reported in Fig. 3 were calculated from the mole fraction solubility of oxygen in THF at 101.325 kPa partial pressure of gas (8.16 × 10⁻⁴ at 298.15 K).³

X-ray crystallography: All measurements were made on a Rigaku/MSC Saturn CCD diffractometer with confocal monochromated Mo K α radiation ($\lambda = 0.71070$ Å). Data were collected and processed using CrystalClear⁴ software (Rigaku). The data were corrected for Lorentz and polarisation effects. Empirical absorption corrections were applied. The structures were solved by a direct method: SIR-2011⁵ and expanded using a Fourier technique. All calculations were performed using the CrystalStructure⁶ crystallographic software package except for refinement, which was performed using SHELXL2013⁷. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. Crystallographic data has been deposited with the Cambridge Crystallographic Data Centre (CCDC). CCDC reference number: 1026622 (1).

Synthesis

 $[\{(^{MeMe}ArO)_3 tacn\}Tb^{III}(THF)] (1)$

A mixture of {(MeMe ArOH)₃tacn} (300 mg, 0.56 mmol) and Tb(OTf)₃ (339 mg, 0.56 mmol) in Acetone/THF (100/1, 4 mL) was stirred for 5 min at room temperature. To the mixture was added dropwise triethylamine (0.26 mL, 1.85 mmol). The resulting solution was stirred for 3 h at room temperature. The white precipitate was isolated by filtration and washed with acetone. Yield: 323 mg (77%). Single crystals suitable for X-ray diffraction analysis were obtained from a saturated solution of **1** in AcOEt/THF (9/1) at room temperature.

UV-vis (THF): $\lambda_{\text{max}}/\text{nm} (\epsilon/\text{M}^{-1}\text{cm}^{-1}) = 302$ (15000). Anal. calcd. for **1** (C₃₇H₅₀N₃O₄Tb): C, 58.49; H, 6.63; N, 5.53%. Found: C, 58.40; H, 6.60; N, 5.50%.

[{(^{MeMe}ArO)₃tacn}Gd^{III}(THF)]

A mixture of {(^{MeMe}ArOH)₃tacn} (54 mg, 0.10 mmol) and Gd(OTf)₃ (60 mg, 0.10 mmol) in Acetone/THF (100/1, 10 mL) was stirred for 5 min at room temperature. To the mixture was added dropwise triethylamine (0.06 mL, 0.43 mmol). The resulting solution was stirred for 3 h at room temperature. The white precipitate was isolated by filtration and washed with acetone. Yield: 44 mg (70%).

UV-vis (THF): $\lambda_{\text{max}}/\text{nm} (\epsilon/\text{M}^{-1}\text{cm}^{-1}) = 303 (15000)$. Anal. calcd. for [{($^{\text{MeMe}}\text{ArO}$)₃tacn}Gd^{III} (THF)] (C₃₇H₅₀GdN₃O₄): C, 58.62; H, 6.65; N, 5.54%. Found: C, 58.62; H, 6.61; N, 5.52%.

References

- 1 D. A. Moore, P. E. Fanwick and M. J. Welch, Inorg. Chem., 1989, 28, 1504.
- 2 K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi and S. Tobita, *Phys. Chem. Chem. Phys.*, 2009, **11**, 9850.
- 3 R. Battino, T. R. Rettich and T. Tominaga, J. Phys. Chem. Ref. Data, 1983, 12, 163.
- 4 *CrystalClear*: Data collection and Processing Software, Rigaku Corporation (1998-2014). Tokyo 196-8666, Japan.
- 5 M. C. Burla, R. Caliandro, M. Camallli, B. Carrozzini, G. L. Cascarano, C. Giacovazzo, M. Mallamo, A. Mazzone, G. Polidori and R. Spagna, J. Apll. Cryst., 2012, 45, 357.
- 6 CrystalStructure 4.1: Crystal Structure Analysis Package, Rigaku Corporation (2000-2014).
 Tokyo 196-8666, Japan.
- 7 G. M. Sheldrick, Acta. Cryst., 2008, A64, 112.

Tables

	1
Formula	$C_{37}H_{50}N_{3}O_{4}Tb$
Fw	759.75
Crystal system	triclinic
Space group	<i>P</i> -1 (No. 2)
<i>a</i> (Å)	7.901(6)
<i>b</i> (Å)	14.273(10)
<i>c</i> (Å)	16.298(10)
α (deg)	69.07(3)
β (deg)	76.98(4)
γ (deg)	85.52(4)
$V(\text{\AA}^3)$	1673(2)
Ζ	2
$\mu (\mathrm{cm}^{-1})$	21.53
<i>F</i> (000)	780.00
$D_{\text{calcd}}(\text{g/cm}^3)$	1.508
Temperature (K)	93
Reflections collected	19591
Independent reflection	7638
	$(R_{\rm int} = 0.048)$
Data/parameters	7638/406
$R_1 \left[I > 2\sigma(I) \right]$	0.0477
wR_2 (all data)	0.1203
Goodness-of-fit	1.074

Table S1 Crystallographic data for 1

	HP–7	HPY-7	PBPY-7	COC-7	CTPR-7	JPBPY-7	JETPY-7
1	36.638	20.505	8.442	0.907	2.276	11.239	14.143
HP-7 (D	7h)	Heptagon					
HPY-7 (C _{6v})	Hexagonal pyr	amid				
PBPY-7	(D _{5h})) Pentagonal bipyramid					
COC-7 (COC-7 (C_{3v}) Monocapped octahedron (Capped octahedron)						
CTPR-7 (C_{2v}) Monocapped trigonal prism (Capped trigonal prism)							
JPBPY-	7 (D _{5h}) Johnson pentagonal bipyramid (J13)						
JETPY-	ETPY-7 (C_{3v}) Johnson elongated triangular pyramid (J7)						

Table S2 Continuous shape measures (CSM) values calculated for the $\mathrm{Tb}^{^{3+}}$ in 1

Figures

Fig. S1 UV–vis absorption (black) and corrected luminescence (red, $\lambda_{ex} = 270$ nm) spectra of {(^{MeMe}ArOH)₃tacn} in THF at room temperature.

Fig. S2 Absorption (black dot) and excitation (red) spectra of **1** in THF at room temperature. The excitation spectrum was detected at 547 nm.

Fig. S3 Luminescence decay curves of 1 under (a) N₂ (red, 840 μ s) and (b and c) air (blue, 40 μ s) in THF at room temperature. The decay was monitored at 547 nm (λ_{ex} = 300 nm). Fitted by single exponential curve (black).

Fig. S4 Corrected luminescence spectrum of $[{(^{MeMe}ArO)_3 tacn}Gd^{III}(THF)]$ in 2-MeTHF at 77 K ($\lambda_{ex} = 250$ nm).

Fig. S5 Corrected luminescence spectrum of 1 in 2-MeTHF at 77 K ($\lambda_{ex} = 300$ nm).

Fig. S6 (a) Positive-ion electrospray ionisation mass spectrum of 1 dissolved in THF/MeOH (7/1). (b) The signal at m/z 760.3 corresponds to $[1 + H]^+$. (c) Calculated isotopic distribution for $[1 + H]^+$.