Supporting Information

Palladium-Catalyzed Selective Aminoamidation and Aminocyanation of Alkenes Using Isonitrile as Amide and Cyanide Sources

Hanling Gao, Bifu Liu, Wanqing Wu, Huanfeng Jiang*

School of Chemistry and Chemical Engineering, South China University of

Technology, Guangzhou 510640, P. R. China

jianghf@scut.edu.cn

Lists of Contents

General InformationSI 2
Optimization Study SI 3
Synthesis of Starting Materials SI 4
Experimental Procedures for 3a-3zd,4a-4e and 7SI 8
Characterization Data for 3a-3zd, 4a-4e, 5 and 6SI 10
NMR Spectra for Compounds 3a-3zd, 4a-4e, 5 and 6SI 28
NOE Spectra for Compounds 7SI 69
MS Spectra for Compounds 3a and 3a- ¹⁸ OSI 70

General Information

¹H and ¹³C NMR spectra were recorded on BRUKER DRX/400 spectrometer using CDCl₃ as solvent and TMS as an internal standard. Gas chromatograph mass spectra were obtained with a SHIMADZU model GCMS/QP5000 spectrometer. IR spectra were obtained as potassium bromide pellets or as liquid films between two potassium bromide pellets with a Brucker Vector 22 spectrometer. TLC was performed using commercially prepared 100/400 mesh silica gel plates (GF254), and visualization was effected at 254 nm. High resolution exact mass measurements (HR-MS) were performed on a TOF spectrometer

Optimization Study

Table 1. Optimization of the reaction conditions.^{*a*}

Entry	Catalyst	Oxidant	Solvent	Additive	Yield (%) ^b		
				-	3a	4a	5
1	$Pd(OAc)_2$	$Cu(OAc)_2$	DCE	NaHCO ₃	35	_	25
2	$Pd(PPh_3)_2Cl_2$	$Cu(OAc)_2$	DCE	NaHCO ₃	23	_	30
3	PdCl ₂	$Cu(OAc)_2$	DCE	NaHCO ₃	30	_	18
4	$Pd(TFA)_2$	Cu(OAc) ₂	DCE	NaHCO ₃	48	—	16
5	$Pd(TFA)_2$	Cu(TFA) ₂	DCE	NaHCO ₃	70	_	8
6	$Pd(TFA)_2$	Cu(TFA) ₂	toluene	NaHCO ₃	82	—	6
7	$Pd(TFA)_2$	Cu(TFA) ₂	DMF	NaHCO ₃	70	—	6
8	$Pd(TFA)_2$	Cu(TFA) ₂	1,4-dioxane	NaHCO ₃	68	—	7
9	$Pd(TFA)_2$	Cu(TFA) ₂	toluene	KOAc	76	—	6
10	$Pd(TFA)_2$	Cu(TFA) ₂	toluene	K_2CO_3	80	—	5
11	Pd(TFA) ₂	Cu(TFA) ₂	toluene	DABCO	95(90) ^c	—	—
12	$Pd(TFA)_2$	O_2	toluene	DABCO	46	—	30
13 ^d	$Pd(TFA)_2$	Cu(TFA) ₂ /O ₂	toluene	DABCO	56	_	19
14	_	Cu(TFA) ₂	toluene	DABCO	_	—	56
15	$Pd(TFA)_2$	Cu(TFA) ₂	toluene	—	_	16	35
16 ^e	$Pd(TFA)_2$	Cu(TFA) ₂	toluene	DABCO	90	—	—
17 ^f	$Pd(TFA)_2$	Cu(TFA) ₂	toluene	DABCO	78	—	—
18	$Pd(TFA)_2$	Cu(TFA) ₂	toluene	PivOH	_	23	37
19	Pd(TFA) ₂	Cu(TFA) ₂	toluene	TFA	_	70	10
20	$Pd(TFA)_2$	Cu(TFA) ₂	toluene	HOAc	_	31	23
21	$Pd(OAc)_2$	Cu(TFA) ₂	toluene	TFA	10	15	33
22	$Pd(OAc)_2$	$Cu(OAc)_2$	toluene	TFA	18	10	36
23	$Pd(OAc)_2$	$Cu(OAc)_2$	toluene	HOAc	20	15	39
24 ^h	Pd(TFA) ₂	Cu(TFA) ₂	toluene	TFA	_	56	21
25 ⁱ	Pd(TFA) ₂	Cu(TFA) ₂	toluene	TFA	_	67	25
26 ^j	Pd(TFA) ₂	Cu(TFA) ₂	toluene	TFA	_	68	20

Reaction conditions: unless otherwise noted, all reactions were performed with **1a** (0.3 mmol), **2a** (0.36 mmol), catalyst (10 mol %), base (0.6 mmol), and oxidant (0.3 mmol) in solvent (2.0 mL) at 100 °C for 10 h, DCE = 1,2- dichloroethane. DMF = N,N-dimethylformamide. DABCO = 1,4- diazabicyclo[2.2.2]octane. ^bYields and conversions analyzed by GC/MS are based on **1a**. ^cisolated yield. ^d20 mol% Cu(TFA)₂ and O₂ balloon was used. ^e The reaction was carried out at 110 °C. ^f The reaction was carried out at 90 °C. ^h Reaction performed at 130 °C. ⁱ 20 mol% Pd(TFA)₂ was used. ^j 2 equiv isonitrile was used.

Synthesis of Starting Materials

Starting materials S2a-r: Into a flame-dried Schlenk-flask were introduced **S1** (10.0 mmol, 1.0 equiv), allylbromide (0.87 mL, 10.0 mmol, 1.0 equiv), K_2CO_3 (3.3 g, 24 mmol, 2.4 equiv) and DMF (25 mL). The flask was equipped with a stopper and the reaction mixture heated to 70 °C over night. The mixture was allowed to cool down to room temperature and washed with water (10 mL). The aqueous phase was extracted with diethyl ether (3 × 20 mL). The combined organic layers were washed with brine, dried and concentrated to provide the crude *N*-allylaniline.

Starting materials S3a-r¹: Into a flame-dried Schlenk-flask were introduced **S1** (8.0 mmol, 1. 0 equiv), BF₃·OEt₂ (8.0 mmol, 1.0 equiv) and xylene (4 mL). The flask was

sealed and heated to 160 °C overnight. The reaction was allowed to cool down and treated with saturated aqueous K_2CO_3 solution (10 mL). The organic phase was separated and the aqueous phase was extracted with diethyl ether (3 × 20 mL). The organic layers were combined, dried over MgSO₄ and concentrated to provide the crude product. Purification was carried out by column chromatography (silica gel, hexanes/EtOAc, 9/1, v/v).

Starting materials 1a-r²: To an oven dried 50 mL round bottom flask containing the solution of the amine (5.0 mmol) in pyridine (10 mL), the reaction mixture was cooled to 0 °C and acyl chlorides and acid anhydrides (7.5 mmol) were added slowly. Then the mixture was stirred at room temperature for 12 h. Upon completion, the reaction mixture was washed with saturated NaCl for three times and extracted with ethyl acetate (3 \times 10 mL), and the organic layers were combined, dried over anhydrous MgSO₄. The organic layer was then concentrated under vacuum, and the residue was separated by silica gelcolumn chromatography (hexanes/EtOAc) to give *N*-sulfonyl-2-aminobiaryls.

Starting materials 1u: The method for the synthesis of the known sulfonamide **1u** was the same as the method previously described except for replacing 3-bromoprop-1-ene with 3-bromo-2-methylprop-1-ene.

Starting materials 1s^{3,4}:

To a 100 mL round-bottomed flask was added n-BuMgBr (10 mL, 1.2 M in THF, 12 mmol) and n-BuLi (15 mL, 1.6 M in hexanes, 24 mmol) at 0 °C in THF (20 mL), and stirred for 10-15 min. The mixture was then cooled down to -78 °C and 2bromobenzonitrile (1.82 g, 10 mmol) in THF (20 mL) was added dropwise. It was then allowed to stir at -78 °C for 1 h. Meanwhile, CuCN (269.6 mg, 3.01 mmol) and LiCl (254.3 mg, 6.00 mmol) in THF (3 mL) were added to a 15 mL round-bottomed flask and stirred at room temperature until all solids were dissolved and the mixture turned to blue color. The resulting CuCN·2LiCl solution and allyl bromide (3.5 mL, 40 mmol) were then added onto the reaction mixture at -78 °C, respectively. After 1 h stirring, the reaction mixture was then quenched with saturated aqueous NH₄Cl at room temperature. Organic materials were then extracted three times with 50 mL of Et₂O. The organic phase was washed with water and brine, and dried over MgSO₄. After filtration, the solvent was evaporated to give crude mixture, which was purified by Kugelrohr distillation to provide 1f (0.93 g, 6.49 mmol) as a colorless oil for 65% yield.

A solution of 2-allylbenzonitrile (2.92 g, 0.020 mol, 1 equiv) in diethyl ether (10 mL)

was transferred via cannula over 2 mins to a Schlenk containing a lithium aluminum hydride (2.50 g, 0.063 mol, 3.2 equiv) suspension in diethyl ether (90 mL) at 0 °C, allowing for venting of the formed gas. After stirring for 1 h at 0 °C, the reaction mixture was carefully quenched via the dropwise addition of water (6 mL), 2M KOH (6 mL), and water (6 mL) at 0 °C. Upon quench, the resulting suspension was brought to ambient temperature, then filtered through a Whatman filter paper and rinsed with diethyl ether (700 mL). The resulting filtrate was concentrated and the crude product thus obtained was purified by silica gel flash column chromatography (2/2/96 methanol/triethylamine/dichloromethane) to provide the desired amine as a pink oil after concentration under high vacuum (< 1 Torr) for 1 h (2.67 g, 0.018 mol, 91%). R_f = 0.42 (2/2/96 methanol/triethylamine/dichloromethane).

Starting materials 1t⁵:

N-(2,2-Diphenylpent-4-enyl)-4-methylbenzamide. Sodium hydride (0.630 g, 21.00 mmol) was suspended in 20 mL of DMF and diphenylacetonitrile (3.86 g, 20.00 mmol) (dissolved in 6 mL of DMF) was added. The reaction was allowed to stir for 1 h. The reaction mixture was cooled to 0 °C and allyl bromide (1.861 mL, 22.00 mmol) was added. The reaction mixture was allowed to stir overnight. The reaction mixture was poured over an ice/water mixture (100 mL). The aqueous layer was extracted with benzene (3×50 mL). Then the combined organic layer was washed with water, dried over MgSO₄, and concentrated under reduced pressure. The reaction mixture

was carried on without further purification. LAH (1.594 g, mmol) was suspended in 50 mL of Et_2O and the crude product from the pervious step was added. The reaction was allowed to stir for two hours and then quenched with 50 mL of 1M NaOH. reaction mixture was filtered through celite and the celite was rinsed with Et_2O (2 × 10 mL). Reaction mixture was concentrated under reduced pressure and 2,2-diphenylpent-4-en-1-amine was carried on without further purification.

Experimental Procedures for 3a-3z:

To the mixture of **1** (0.3 mmol), Pd(TFA)₂ (10 mol %) and Cu(TFA)₂ (1.0 equiv) in toluene (2.0 mL) solvent, TFA (2.0 equiv) were added successively. After stirred for 5 min at room temperature, isocyanide **2** (1.2 equiv) was added, and then the mixture was stirred at 100 °C for 10 h. After cooling to room temperature, the mixture was extracted by ethyl acetate (3×10 mL). The organic layer was washed with brine, and dried with anhydrous MgSO₄, filtered and concentrated under reduced pressure, and the residue was isolated by silica gel column chromatography, eluted with petroleum ether/ethyl acetate to give the pure product **3**.

Experimental Procedures for 4a-4e:

To the mixture of **1** (0.3 mmol), Pd(TFA)₂ (10 mol %) and Cu(TFA)₂ (1.0 equiv) in toluene (2.0 mL) solvent was added TFA (1.0 equiv) dropwise. After stirred for 5 min at room temperature, isocyanide **2** (1.2 equiv) was added, and then the mixture was stirred at 100 °C for 10 h. After cooling to room temperature, the mixture was extracted by ethyl acetate (3×10 mL). The organic layer was washed with saturated aqueous NaHCO₃ solution, and dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The residue was isolated by silica gel column chromatography, eluted with petroleum ether/ethyl acetate to give the pure product **4**.

(a) Correa, A. Tellitu, I. Dominguez, E. SanMartin, R. J. Org. Chem., 2006, 71, 8316; (b) K. C.
 Nicolaou, A. J. Roecker, J. A. Pfefferkorn, G.-Q. Cao, J. Am. Chem. Soc., 2000, 122, 2966.

- 2. P. H. Fuller, J.-W. Kim, S. R. Chemler, J. Am. Chem. Soc., 2008, 130, 17638.
- 3. S. Sanjaya, S. Chiba, Tetrahedron, 2011, 67, 590.
- 4. D. A. Ryan, D. Y. Gin, J. Am. Chem. Soc., 2008, 130, 15228.
- 5. P. A. Sibbald, F. E. Michael, Org. Lett., 2009, 11, 1147.

Analysis Data for Compounds 3a-3zd, 4a-4e, 5-7

*N-(tert-***butyl)-2-(1-tosylindolin-2-yl)acetamide (3a):** Grey solid; mp 89-91 °C. IR (KBr): 3690, 3308, 2898, 1673, 1530, 1463,1323, 1124, 816, 742; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.0 Hz, 1H), 7.52 (d, *J* = 7.6 Hz, 2H), 7.19-7.13 (m, 3H), 7.01-6.97 (m, 2H), 5.56 (br. s, 1H), 4.68-4.30 (m, 1H), 2.91-2.84 (m, 1H), 2.80-2.75 (m, 1H), 2.71-2.66 (m, 1H), 2.55-2.49 (m, 1H), 2.32 (s, 1H), 1.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 144.1, 141.2, 134.4, 131.9, 129.7, 127.7, 127.2, 125.4, 124.9, 117.1, 59.5, 51.4, 44.1, 34.0, 28.6, 21.5. HRMS (ESI) m/z: calcd for C₂₁H₂₇N₂O₃S⁺, 387.1737; found, 387.1741.

N-(tert-butyl)-2-(5-methyl-1-tosylindolin-2-yl)acetamide (3b): Yellow solid; mp 94-96 °C. IR (KBr): 3697, 3312, 2970, 1663, 1541, 1488,1351, 1164, 816, 752; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 7.2 Hz, 3H), 7.13 (d, *J* = 7.6 Hz, 2H), 6.97 (d, *J* = 8.0 Hz, 1H), 6.81 (s, 1H), 5.58 (br. s, 1H), 4.50-4.45 (m, 1H), 2.83-2.77 (m, 1H), 2.70-2.63 (m, 2H), 2.51-2.46 (m, 1H), 2.32 (s, 3H), 2.23 (s, 3H), 1.23 (s, 9H).; ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 138.8, 134.7, 134.3, 132.0, 129.6, 128.3, 127.2, 125.9, 117.0, 59.6, 51.3, 44.0, 34.0, 28.6, 21.5, 20.9. HRMS (ESI) m/z: calcd for C₂₂H₂₉N₂O₃S⁺, 401.1893; found, 401.1901.

Yellow solid; mp 102-104 °C. IR (KBr): 3667, 3319, 2968, 1662, 1538, 1486, 1352, 1164, 1032, 813, 741; ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.42 (m, 3H), 7.09 (d, *J* = 8.0 Hz, 1H), 6.67 (d, *J* = 8.4 Hz, 1H), 6.51 (s, 1H), 5.80 (br. s, 1H), 4.46-4.45 (m, 1H), 3.67 (s, 3H), 2.72-2.56 (m, 3H), 2.46-2.40 (m, 1H), 2.28 (s, 3H), 1.21 (s, 9H).; ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 157.6, 144.0, 134.4, 134.1, 133.9, 129.6, 127.2, 118.4, 113.1, 110.8, 59.8, 55.5, 51.3, 43.8, 34.3, 28.6, 21.5. HRMS (ESI) m/z: calcd for C₂₂H₂₉N₂O₄S⁺, 417.1843; found, 417.1849.

(3d): Yellow solid; mp 140-142 °C. IR (KBr): 3683, 3317, 2964, 1661, 1541, 1353, 1164, 819, 750; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.0 Hz, 3H), 7.08 (d, J = 8.0 Hz, 2H), 6.97 (d, J = 8.4 Hz, 1H), 6.82 (s, 1H), 5.77 (br. s, 1H), 4.48-4.44 (m, 1H), 2.82-2.72 (m, 2H), 2.68-2.60 (m, 2H), 2.49-2.44 (m, 1H), 2.27 (s, 3H), 1.17 (s, 9H), 1.11 (d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 145.8, 144.0, 139.0, 134.4, 131.9, 129.6, 127.1, 125.8, 123.3, 116.8, 59.6, 51.2, 44.0, 34.0, 33.6, 28.5, 24.1, 24.0, 21.5. HRMS (ESI) m/z: calcd for C₂₄H₃₃N₂O₃S⁺, 429.2206; found, 429.2214.

N-(*tert*-butyl)-2-(5-isopropyl-1-tosylindolin-2-yl)acetamide

N-(tert-butyl)-2-(5-fluoro-1-tosylindolin-2-yl)acetamide (3e):Yellow oil. IR (KBr): 3695, 3309, 3080, 2974, 1730, 1548, 1481, 1356, 1166, 816, 668; ¹H NMR
(400 MHz, CDCl₃) δ 7.56-7.47 (m, 3H), 7.19-7.13 (m, 2H), 6.85 (t, *J* = 8.0 Hz, 1H), 6.69 (d, *J* =

7.6 Hz, 1H), 5.64 (br. s, 1H), 4.51 (s, 1H), 2.80-2.64 (m, 3H), 2.50-2.45 (m, 1H), 2.32 (s, 3H), 1.23 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 160.3 (d, J = 221.1 Hz), 144.3, 137.2 (d, J =1.7 Hz), 134.3 (d, J = 8.8 Hz), 134.0, 129.7, 127.2, 118.2 (d, J = 8.6 Hz), 114.4 (d, J = 23.2 Hz), 112.5 (d, J = 23.6 Hz), 60.0, 51.4, 43.8, 34.1, 28.6, 21.5. HRMS (ESI) m/z: calcd for $C_{21}H_{25}FN_2NaO_3S^+$, 427.1462; found, 427.1469.

N-(*tert*-butyl)-2-(5-chloro-1-tosylindolin-2-yl)acetamide (3f): Brown solid; mp 148-150 °C. IR (KBr): 3672, 3319, 2970, 1660, 1596, 1470, 1355, 1167, 816, 717; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.4 Hz, 3H), 7.13 (d, *J* = 8.0 Hz, 2H), 7.08 (d, *J* = 8.8 Hz, 1H), 6.94 (s, 1H), 5.79 (br. s, 1H), 4.51-4.49 (m, 1H), 2.86-2.79 (m,1H), 2.72-2.67 (m, 2H), 2.50-2.44 (m, 1H), 2.30 (s, 3H), 1.22 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 144.4, 139.9, 134.0, 133.8, 130.0, 129.8, 127.7, 127.1, 125.5, 117.8, 59.9, 51.5, 43.7, 34.0, 28.6, 21.5. HRMS (ESI) m/z: calcd for C₂₁H₂₆ClN₂O₃S⁺, 421.1347; found, 421.1353.

2-(5-bromo-1-tosyl-2,3-dihydro-1H-inden-2-yl)-N-(tert-

butyl)acetamide (3g): Yellow solid; mp 142-144 °C. IR (KBr): 3686, 3313, 1712, 1582, 1268, 1165, 755; ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.45 (m, 3H), 7.29 (d, *J* = 5.6 Hz, 1H), 7.20-7.15 (m, 3H), 5.73 (br. s, 1H), 4.57-4.52 (m, 1H), 2.93-2.66 (m, 3H), 2.56-2.49 (m, 1H), 2.36 (s, 3H), 1.28 (s, 9H).; ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 144.4, 134.1, 134.1, 130.7, 129.8, 128.4, 127.1, 118.2,

117.6, 59.8, 51.4, 43.8, 33.9, 28.6, 21.5. HRMS (ESI) m/z: calcd for $C_{21}H_{26}BrN_2O_3S^+$, 465.0842; found, 465.0848.

N-(*tert*-butyl)-2-(5-cyano-1-tosylindolin-2-yl)acetamide (3h): Brownish solid; mp 157-159 °C. IR (KBr): 3679, 3326, 2971, 2226, 1664, 1537, 1357, 1167, 743, 667; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.4 Hz, 1H), 7.61 (d, *J* = 8.0 Hz, 2H), 7.48 (d, *J* = 8.4 Hz, 1H), 7.31 (s, 1H), 7.24 (d, *J* = 8.0 Hz, 2H), 5.84 (br. s, 1H), 4.67-4.60 (m, 1H), 3.10-3.04 (m, 1H), 2.97-2.92 (m, 1H), 2.87-2.83 (m, 1H), 2.60-2.54 (m, 1H), 2.37 (s, 3H), 1.29 (s, 9H).; ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 145.4, 144.9, 134.1, 132.6, 132.5, 130.0, 129.1, 126.9, 118.8, 116.1, 107.4, 60.0, 51.4, 43.7, 33.8, 28.6, 21.5. HRMS (ESI) m/z: calcd for C₂₂H₂₅N₃NaO₃S⁺, 434.1509; found, 434.1514.

N-(tert-butyl)-2-(7-fluoro-1-tosylindolin-2-yl)acetamide (3i): Pale yellow oil. IR (KBr): 3692, 3302, 3115, 1722, 1553, 1168, 955, 675; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 7.6 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 7.06-7.01 (m, 1H), 6.97-6.92 (m, 1H), 6.81 (d, J = 7.2 Hz, 0H), 5.70 (br. s, 1H), 4.70-4.66 (m, 1H), 2.53-2.42 (m, 3H), 2.34 (s, 3H), 2.31-2.27 (m, 1H), 1.23 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 154.5 (d, J = 253.6 Hz), 144.4, 138.5 (d, J = 1.4 Hz), 134.3, 129.7, 128.2 (d, J = 10.1 Hz), 127.7 (d, J = 6.8 Hz), 127.6, 121.0 (d, J = 3.5 Hz), 115.9 (d, J = 20.2 Hz), 61.7, 51.4, 42.9,34.3, 28.6, 21.6. HRMS (ESI) m/z: calcd for

 $C_{21}H_{26}FN_2O_3S^+$, 405.1643; found, 405.1651.

N-(*tert*-butyl)-2-(6-fluoro-1-tosylindolin-2-yl)acetamide (3j): Yellow solid; mp 98-100 °C. IR (KBr): 3695, 3301, 3114, 1725, 1546, 1493, 1356, 1165, 979, 865; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 10.0 Hz, 1H), 7.16 (d, *J* = 8.0 Hz, 2H), 6.93-6.89 (m, 1H), 6.68-6.63 (m, 1H), 5.71 (br. s, 1H), 4.55-4.51 (m, 1H), 2.89-2.83 (m, 1H), 2.76-2.69 (m, 2H), 2.55-2.49 (m, 1H), 2.32 (s, 3H), 1.24 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 162.5 (d, *J* = 242.0 Hz), 144.5, 142.5 (d, *J* = 11.6 Hz), 134.2, 129.8, 127.1, 126.9 (d, *J* = 2.6 Hz), 125.9 (d, *J* = 9.6 Hz), 111.4 (d, *J* = 22.5 Hz), 104.7 (d, *J* = 27.8 Hz), 60.5, 51.5, 43.9, 33.5, 28.6, 21.5. HRMS (ESI) m/z: calcd for C₂₁H₂₆FN₂O₃S⁺, 405.1643; found, 405.1641.

N-(tert-butyl)-2-(1-(methylsulfonyl)indolin-2-yl)acetamide (3k): Yellow solid; mp 151-153 °C. IR (KBr): 3693, 3315, 2972, 1661, 1538, 1343, 1158, 979, 759; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.4 Hz, 1H), 7.15-7.12 (m, 2H), 7.03-7.00 (m, 1H), 5.61 (br. s, 1H), 4.60-4.55 (m, 1H), 3.48-3.42 (m, 1H), 3.03-2.99 (m, 1H), 2.78 (s, 3H), 2.72-2.67 (m, 1H), 2.52-2.46 (m, 1H), 1.21 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 141.1, 131.0, 128.0, 125.6, 124.7, 115.5, 60.0, 51.3, 44.3, 35.3, 34.4, 28.6. HRMS (ESI) m/z: calcd for C₁₅H₂₂N₂NaO₃S⁺, 333.1243; found, 333.1250.

2-(1-acetylindolin-2-yl)-*N*-(*tert*-butyl)acetamide (31): Yellow solid; mp 162-164 °C. IR (KBr): 3662, 3323, 2972, 1654, 1545, 1477, 1400, 942, 751; ¹H NMR (400 MHz, (CD₃)₂C=O) δ 8.04 (s, 1H), 7.21 (d, *J* = 6.8 Hz, 1H), 7.16-7.12 (m, 1H), 7.01-6.97 (m, 1H), 4.82 (br. s, 1H), 3.30 (d, *J* = 7.2 Hz, 1H), 2.95 (s, 1H), 2.84 (d, *J* = 16.0 Hz, 1H), 2.52-2.33 (m, 2H), 2.25 (s, 3H), 1.31 (s, 9H); ¹³C NMR (100 MHz, (CD₃)₂C=O) δ 169.6, 168.6, 143.3, 131.7, 127.8, 125.9, 124.2, 118.2, 58.9, 51.4, 42.6, 34.9, 29.0, 23.5. HRMS (ESI) m/z: calcd for C₁₆H₂₃N₂O₂⁺, 275.1754; found, 275.1759.

2-(1-benzoylindolin-2-yl)-*N*-(*tert*-butyl)acetamide (3m): Yellow solid; mp 172-174 °C. IR (KBr): 3693, 3323, 2971, 1646, 1480, 1393, 926, 753; ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.35 (m, 6H), 7.15 (d, *J* = 7.2 Hz, 1H), 6.92-6.89 (m, 2H), 5.72 (br. s, 1H), 4.92 (s, 1H), 3.39-3.32 (m, 1H), 2.99 (d, *J* = 16.4 Hz, 1H), 2.56 (s, 1H), 2.25-2.19 (m, 1H), 1.21 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 168.7, 141.4, 136.4, 131.7, 130.6, 128.8, 127.2, 126.9, 125.7, 124.0, 116.2, 58.9, 51.2, 41.2, 33.6, 28.7. HRMS (ESI) m/z: calcd for C₂₁H₂₄N₂NaO₂⁺, 359.1730; found, 359.1737.

tert-butyl 2-(2-(tert-butylamino)-2-oxoethyl)indoline-1-carboxylate (3n): Yellow solid; mp 129-131 °C. IR (KBr): 3662, 3323, 2975, 1754, 1645, 1477, 942, 751; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 1H), 7.14-7.10 (m, 2H), 6.91 (t, J = 7.2 Hz, 1H), 5.42 (br. s, 1H), 4.72-4.67 (m, 1H), 3.36-3.29 (m, 1H), 2.95 (d, J = 15.2 Hz, 1H), 2.66-2.62 (m, 1H), 2.27-2.22 (m, 1H), 1.55 (s, 9H), 1.26 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 169.4,152.3, 141.7, 130.2, 127.4, 125.2, 122.8, 115.3, 81.4, 57.1, 41.9, 33.4, 28.8, 28.5. HRMS (ESI) m/z: calcd for C₁₉H₂₉N₂O₃⁺, 333.2173; found, 333.2179.

yl)acetamide (30): Yellow solid; mp 153-155 °C. IR (KBr): 3694, 3308, 2972, 1722, 1539, 1352, 1160, 1024, 835; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 8.0 Hz, 1H), 7.54 (d, *J* = 8.8 Hz, 2H), 7.15 (t, *J* = 7.2 Hz, 1H), 7.00-6.95 (m, 2H), 6.78 (d, *J* = 8.8 Hz, 2H), 5.67 (br. s, 1H), 4.51-4.46 (m, 1H), 3.75 (s, 3H), 2.90-2.82 (m, 1H), 2.74-2.65 (m, 2H), 2.52-2.46 (m, 1H), 1.21 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 163.3, 141.3, 131.9, 129.2, 128.9, 127.7, 125.4, 124.9, 117.1, 114.2, 59.5, 55.5, 51.3, 44.0, 34.1, 28.6. HRMS (ESI) m/z: calcd for C₂₁H₂₇N₂O₄S⁺, 403.1686; found, 403.1682.

N-(*tert*-butyl)-2-(1-(4-(trifluoromethyl)phenyl)indolin-2-

yl)acetamide (3p): White solid; mp 137-138 °C. IR (KBr): 3661, 3322, 2972, 1662, 1537, 1324,1172, 842, 715; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.0 Hz, 2H), 7.61-7.59 (m, 3H), 7.17 (t, J = 6.8 Hz, 1H), 7.03-6.98 (m, 2H), 5.65 (br. s, 1H), 4.56-4.51 (m, 1H), 2.91-2.84 (m, 1H), 2.77-2.70 (m, 2H), 2.50-2.45 (m, 1H), 1.23 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 140.8, 140.5, 134.8 (q, J = 32.7 Hz), 131.7, 127.9, 127.6, 126.2 (q, J = 3.5 Hz), 125.7, 125.3, 123.1 (q, J = 271.2 Hz), 116.8, 59.8, 51.4, 43.8, 34.1, 28.6. HRMS (ESI) m/z: calcd for C₂₁H₂₄F₃N₂O₃S⁺, 441.1454; found, 441.1457.

N-(tert-butyl)-2-(1-(mesitylsulfonyl)indolin-2-yl)acetamide (3q): Yellow solid; mp 126-128 °C. IR (KBr): 3693, 3321, 2972, 1660, 1541, 1338, 1158, 1045, 750, 663; ¹H NMR (400 MHz, CDCl₃) δ 7.07 (d, J = 7.2 Hz, 1H), 7.01-6.85 (m, 5H), 5.81 (br. s, 1H), 4.60 (d, J = 1.6 Hz, 1H), 3.26-3.20 (m, 1H), 2.99 (d, J = 16.0 Hz, 1H), 2.59-2.54 (m, 1H), 2.52 (s, 6H), 2.46-2.42 (m, 1H), 2.23 (s, 3H), 1.10 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 143.1, 141.8, 140.3, 132.8, 132.3, 130.3, 127.4, 125.6, 123.4, 114.1, 59.3, 51.2, 43.2, 33.5, 28.3, 22.9, 21.0. HRMS (ESI) m/z: calcd for C₂₃H₃₁N₂O₃S⁺, 415.2050; found, 415.2048.

(**3r**): Yellow solid; mp 158-160 °C. IR (KBr): 3693, 3313, 2972, 1663, 1538, 1350, 1164, 753, 660; ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.82 (d, *J* = 8.4 Hz, 1H), 7.77-7.68 (m, 3H), 7.56-7.50 (m, 3H), 7.18 (t, *J* = 6.8 Hz, 1H), 6.98-6.94 (m, 2H), 5.76 (br. s, 1H), 4.65-4.61 (m, 1H), 2.84-2.69 (m, 3H), 2.56-2.50 (m, 1H), 1.23 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 141.1, 135.0, 134.4, 132.0, 131.8, 129.3, 128.9, 128.7, 127.8, 127.8, 127.6, 125.5, 125.0, 122.1, 117.0, 59.7, 51.4, 44.0, 34.1, 28.6. HRMS (ESI) m/z: calcd for C₂₄H₂₇N₂O₃S⁺, 423.1737; found, 423.1745.

tert-butyl)-2-(1-(naphthalen-1-ylsulfonyl)indolin-2-yl)acetamide

3-yl)acetamide (3s): Yellow oil. IR (KBr): 3689, 3316, 2972, 1661, 1538, 1343, 1158, 979, 759; ¹H NMR (400 MHz, CDCl₃) δ 7.17-7.06 (m, 4H), 5.63 (br. s, 1H), 4.60 (d, *J* = 8.4 Hz, 1H), 4.38-4.34 (m, 1H), 4.25 (d, *J* = 16.8 Hz, 1H), 3.14-3.08 (m, 1H), 2.79-2.74 (m, 1H), 2.64 (s, 3H), 2.45-2.40 (m, 1H), 2.28-2.23 (m, 1H), 1.28 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 132.9, 132.3, 129.3, 127.6, 126.7, 125.8, 51.4, 50.3, 43.8, 41.2, 38.4, 32.9, 28.7. HRMS (ESI) m/z: calcd for C₁₆H₂₅N₂O₃S⁺, 325.1580; found, 325.1584.

N-(tert-butyl)-2-(2-methyl-1-tosylindolin-2-yl)acetamide (3t):

Grey solid; mp 89-91 °C. IR (KBr): 3403.9, 2960.3, 2355.7, 1661.8, 1343.0, 1013.2, 577.0; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 7.6 Hz, 1H), 7.19 (d, J = 7.2 Hz, 2H), 7.01 (d, J = 6.8 Hz, 2H), 6.85 (t, J = 7.2 Hz, 1H), 5.89 (s, 1H), 3.78 (d, J = 16.0 Hz, 1H), 3.04 (d, J = 13.6 Hz, 1H), 2.89 (d, J = 16.4 Hz, 1H), 2.37 (d, J = 13.2 Hz, 1H), 2.32 (s, 3H), 1.60 (s, 3H), 1.18 (s, 3H), 1.05 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 143.9, 141.9, 138.4, 129.7, 128.7, 127.4, 126.8, 125.2, 123.1, 113.4, 70.9, 51.2, 49.6, 42.4, 28.2, 27.9, 21.5. HRMS (ESI) m/z: calcd for C₂₂H₂₉N₂O₃S⁺, 401.1893; found, 401.1895.

N-(tert-butyl)-2-(4,4-diphenyl-1-tosylpyrrolidin-2-yl)acetamide (3u): White solid; mp 99-101 °C. IR (KBr): 3387.5, 3057.0, 2968.2, 1663.4, 1532.2, 1339.4, 1159.0, 706.2, 663.2; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 8.0 Hz, 2H), 7.19 (d, *J* = 4.4 Hz, 4H), 7.11-7.05 (m, 3H), 7.00 (s, 5H), 5.58 (br. s, 1H), 4.32 (d, *J* = 10.8 Hz, 1H), 4.05-3.97 (m, 1H), 3.73 (d, *J* = 10.4 Hz, 1H), 2.87-2.76 (m, 2H), 2.57-2.52 (m, 1H), 2.29 (s, 3H), 2.12-2.06 (m, 1H), 1.29 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 145.5, 144.3, 143.3, 133.6, 129.7, 128.6, 127.3, 126.7, 126.5, 126.5, 126.2, 59.0, 56.9, 52.3, 51.1, 43.2, 42.7, 28.8, 21.5. HRMS (ESI) m/z: calcd for C₂₉H₃₅N₂O₃S⁺, 491.2363; found, 491.2369.

N-(tert-butyl)-2-(2-methyl-4,4-diphenyl-1-tosylpyrrolidin-2-

yl)acetamide (3v): White solid; mp 167-168 °C. IR (KBr): 3722.4, 2971.3, 2355.4, 1634.4, 1327.0, 1052.1, 663.6; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 8.0 Hz, 2H), 7.29 – 7.25 (m, 4H), 7.21 (t, J = 7.2 Hz, 2H), 7.14 – 7.09 (m, 4H), 7.03 (s, 2H), 5.49 (s, 1H), 4.15 (d, J = 10.0 Hz, 1H), 3.79 (d, J = 10.8 Hz, 1H), 3.59 (d, J = 13.2 Hz, 1H), 2.77 (d, J = 13.6 Hz, 1H), 2.57 (d, J = 13.2 Hz, 1H), 2.42 (s, 3H), 2.26 (d, J = 10.0 Hz, 1H), 1.35 (s, 3H), 1.30 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 145.2, 143.2, 137.6, 129.6, 128.6, 128.4, 127.6, 126.9, 126.5, 126.4, 66.9, 56.8, 51.4, 51.2, 49.7, 48.7, 28.6, 27.0, 21.5. HRMS (ESI) m/z: calcd for C₃₀H₃₇N₂O₃S⁺, 505.2519; found, 505.2519.

N-butyl-2-(2-methyl-4,4-diphenyl-1-tosylpyrrolidin-2-

yl)acetamide (3w): White solid; mp 122-124 °C. IR (KBr): 3382.4, 2930.5, 2356.4, 1645.1, 1329.2, 1154.2, 664.0; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.6 Hz, 2H), 7.30 – 7.26 (m, 4H), 7.22 (t, J = 7.2 Hz, 2H), 7.12 (d, J = 5.6 Hz, 4H), 7.05 (d, J = 6.8 Hz, 2H), 5.68 (d, J = 4.4 Hz, 1H), 4.19 (d, J = 10.4 Hz, 1H), 3.74 (d, J = 10.0 Hz, 1H), 3.59 (d, J = 13.2 Hz, 1H), 3.22 – 3.06 (m, 2H), 2.88 (d, J = 14.0 Hz, 1H), 2.57 (d, J = 13.2 Hz, 1H), 2.43 (s, 3H), 2.27 (d, J = 13.6 Hz, 1H), 1.45 – 1.40 (m, 2H), 1.36 (s, 3H), 1.34 – 1.23 (m, 3H), 0.89 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 145.3, 145.1, 143.3, 137.4, 129.6, 128.6, 128.5, 127.6, 126.9, 126.5, 126.4, 126.4, 66.7, 56.6, 51.4, 49.9, 47.6, 39.1, 31.5, 26.9, 21.5, 20.1, 13.8. HRMS (ESI) m/z: calcd for C₃₀H₃₇N₂O₃S⁺, 505.2519; found, 505.2517.

yl)acetamide (3x): Brown solid; mp 156-158 °C. IR (KBr): 3709.9, 2929.5, 2355.58, 1672.3, 1150.9, 1052.6, 697.6; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.6 Hz, 2H), 7.31 – 7.21 (m, 6H), 7.16 – 7.12 (m, 4H), 7.04 (d, J = 6.4 Hz, 2H), 5.44 (d, J = 7.6 Hz, 1H), 4.20 (d, J = 10.0 Hz, 1H), 3.73 (d, J = 10.0 Hz, 1H), 3.57 (d, J = 13.2 Hz, 1H), 2.82 (d, J = 14.0 Hz, 1H), 2.55 (d, J = 13.2 Hz, 1H), 2.44 (s, 3H), 2.24 (d, J = 13.6 Hz, 1H), 1.85 (s, 3H), 1.67 – 1.57 (m, 3H), 1.35 (s, 3H), 1.28 (d, J = 15.6 Hz, 2H), 1.18 – 1.05 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 145.3, 145.1, 143.3, 137.5, 129.6, 128.6, 128.5, 127.6, 126.9, 126.5, 126.4, 66.7, 56.7, 51.3, 49.7, 48.3, 47.8, 33.0, 32.9, 27.0, 25.5, 24.9, 24.9, 21.5. HRMS (ESI) m/z: calcd for C₃₂H₃₈N₂NaO₃S⁺, 553.2495; found, 553.2504.

Ts *N-(tert-butyl)-2-(2-tosyl-2-azaspiro[4.5]decan-3-yl)acetamide (3y):* Yellow oil; IR (KBr): 3381.6, 2927.3, 1654.8, 1540.5, 1157.1, 661.9; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.6 Hz, 1H), 7.33 (d, *J* = 7.6 Hz, 1H), 6.12 (s, 0H), 3.73 (d, *J* = 7.6 Hz, 0H), 3.28 (d, *J* = 10.8 Hz, 1H), 3.09 (d, *J* = 10.8 Hz, 1H), 2.74 (d, *J* = 14.0 Hz, 1H), 2.65 – 2.60 (m, 1H), 2.42 (s, 3H), 1.88 – 1.83 (m, 1H), 1.76 – 1.71 (m, 1H), 1.37 (s, 9H), 1.27 – 1.15 (m, 8H), 0.69 – 0.64 (m, 1H), 0.49 – 0.46 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 143.6, 133.7, 129.6, 127.5, 56.6, 51.0, 43.2, 40.7, 36.3, 33.6, 28.7, 25.7, 23.6, 22.6, 21.5. HRMS (ESI) m/z: calcd for C₂₂H₃₅N₂O₃S⁺, 407.2363; found, 407.2361.

Light yellow solid; mp 118-120 °C. IR (KBr): 3133.0, 2964.5, 2355.6, 1667.7, 1399.9, 1046.3, 661.4; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.6 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 6.04 (s, 1H), 3.79 (q, *J* = 7.5 Hz, 1H), 3.16 (d, *J* = 10.4 Hz, 1H), 3.08 (d, *J* = 10.4 Hz, 1H), 2.74 (d, *J* = 14.0 Hz, 1H), 2.66 – 2.60 (m, 1H), 2.43 (s, 3H), 1.86 – 1.74 (m, 2H), 1.37 (s, 9H), 1.00 (s, 3H), 0.37 (s, 3H)... ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 143.6, 133.9, 129.7, 127.6, 61.9, 57.42 (s, 3H), 51.1, 45.7, 43.2, 36.8, 28.7, 26.2, 25.5, 21.5. HRMS (ESI) m/z: calcd for C₁₉H₃₁N₂O₃S⁺, 367.2050; found, 367.2045.

Ts *N*-butyl-2-(1-tosylindolin-2-yl)acetamide (3za): Yellow solid; mp 106-108 °C. IR (KBr): 3690, 3304, 2953, 1722, 1551, 1351, 1164, 966, 756, 576; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.0 Hz, 1H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.17-7.11 (m, 3H), 7.09-6.95 (m, 2H), 5.98 (br. s, 1H), 4.55-4.48 (m, 1H), 3.22-3.07 (m, 2H), 2.88-2.69 (m, 3H), 2.54-2.48 (m, 1H), 2.30 (s, 3H), 1.42-1.35 (m, 2H), 1.31-1.20 (m, 2H), 0.86 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 144.2, 141.1, 134.3, 131.8, 129.7, 127.7, 127.1, 125.3, 124.9, 117.2, 59.5, 43.2, 39.3, 34.3, 31.5, 21.5, 20.1, 13.7. HRMS (ESI) m/z: calcd for C₂₁H₂₆N₂NaO₃S⁺, 409.1556; found, 409.1565.

2-(1-tosylindolin-2-yl)-N-(2,4,4-trimethylpentan-2-

yl)acetamide (3zb): Green solid; mp 130-132 °C. IR (KBr): 3694, 3311, 2956, 1665, 1540, 1353, 1164, 754, 665; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.0 Hz, 1H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.17-6.11 (m, 3H), 6.99-6.95 (m, 2H), 5.63 (br. s, 1H), 4.52-4.48 (m, 1H), 2.89-2.83 (m, 1H), 2.74-2.68 (m, 2H), 2.50-2.44 (m, 1H), 2.30 (s, 3H), 1.71 (d, *J* = 14.8 Hz, 1H), 1.57 (d, *J* = 14.8 Hz, 1H), 1.27 (d, *J* = 5.6 Hz, 6H), 0.96 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 144.1, 141.2, 134.3, 131.9, 129.7, 127.7, 127.1, 125.4, 124.9, 117.1, 59.5, 55.3, 51.6, 44.3, 34.2, 31.6, 31.5, 29.1, 28.9, 21.5. HRMS (ESI) m/z: calcd for C₂₅H₃₅N₂O₃S⁺, 443.2363; found, 443.2371.

N-cyclohexyl-2-(1-tosylindolin-2-yl)acetamide (3zc): Yellow solid; mp 173-175 °C. IR (KBr): 3692, 3299, 2931, 2855, 1544, 1351, 1165, 1096, 754; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 8.0 Hz, 1H), 7.49 (d, *J* = 7.6 Hz, 2H), 7.15-7.10 (m, 3H), 6.97-6.94 (m, 2H), 5.88 (br. s, 1H), 4.52-4.48 (m, 1H), 3.69-3.61 (m, 1H), 2.87-2.80 (m, 1H), 2.75-2.69 (m, 2H), 2.53-2.47 (m, 1H), 2.29 (s, 3H), 1.86 (d, *J* = 8.8 Hz, 1H), 1.67-1.51 (m, 4H), 1.32-1.21 (m, 2H), 1.13-0.90 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 144.2, 141.1, 134.3, 131.8, 129.7, 127.7, 127.1, 125.3, 124.9, 117.2, 59.5, 48.3, 43.3, 34.2, 32.9, 25.5, 24.9, 21.5. HRMS (ESI) m/z: calcd for C₂₃H₂₈N₂NaO₃S⁺, 435.1713; found, 435.1722.

yl)acetamide (3zd): Yellow solid; mp 99-101 °C. IR (KBr): 3684, 3328, 2955, 1661, 1538, 1346, 1159, 979, 758; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.0 Hz, 1H), 7.12 (t, *J* = 7.2 Hz, 2H), 7.00 (t, *J* = 7.6 Hz, 1H), 5.62 (br. s, 1H), 4.59-4.53 (m, 1H), 2.99-2.94 (m, 1H), 2.76 (s, 2H), 2.74-2.69 (m, 1H), 2.49-2.43 (m, 1H), 1.62 (q, *J*₁ = *J*₂ = 14.8 Hz, 2H), 1.25 (d, *J* = 6.4 Hz, 6H), 0.93 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 141.1, 131.0, 128.0, 125.6, 124.7, 115.5, 59.9, 55.3, 51.5, 44.5, 35.3, 34.6, 31.6, 31.4, 29.1, 28.9. HRMS (ESI) m/z: calcd for C₁₉H₃₁N₂O₃S⁺, 367.2050; found, 367.2058.

2-(1-(methylsulfonyl)indolin-2-yl)-*N*-(2,4,4-trimethylpentan-2-

Yellow oil. IR (KBr): 2923.8, 2249.7, 1472.1, 1353.3, 1165.8, 1097.5, 756.1, 666.6; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 8.4 Hz, 1H), 7.56 (d, J = 7.6 Hz, 2H), 7.26 (s, 1H), 7.20 (d, J = 8.0 Hz, 2H), 7.09-7.06 (m, 2H), 4.48-4.44 (m, 1H), 3.07-2.97 (m, 2H), 2.84-2.74 (m, 2H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.6, 140.5, 134.2, 129.9, 129.8, 128.4, 127.1, 125.4, 125.3, 117.0, 116.7, 58.0, 33.9, 25.5, 21.6. HRMS (ESI) m/z: calcd for C₁₇H₁₆N₂NaO₂S⁺, 335.0825; found, 335.0830.

2-(5-methoxy-1-tosylindolin-2-yl)acetonitrile (4b):

Yellow oil. IR (KBr): 2932.7, 2250.6, 1601.9, 1485.4, 1353.3, 1166.6, 1033.9, 750.3, 669.3; ¹H

NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 8.8 Hz, 1H), 7.49 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 7.6 Hz, 2H), 6.77 (d, J = 8.8 Hz, 1H), 6.61 (s, 1H), 4.44-4.40 (m, 1H), 3.74 (s, 3H), 2.91-2.84 (m, 2H), 2.76-2.66 (m, 2H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.9, 144.5, 133.9, 133.7, 131.9, 129.8, 127.1, 118.4, 116.7, 113.7, 110.9, 58.4, 55.6, 34.0, 25.3, 21.6. HRMS (ESI) m/z: calcd for C₁₈H₁₈N₂NaO₃S⁺, 365.0930; found, 365.0936.

2-(5-isopropyl-1-tosylindolin-2-yl)acetonitrile (4c):

Yellow solid; mp 50-52 °C.. IR (KBr): 2959.4, 2250.7, 1486.0, 1354.1, 1165.6, 752.0, 667.4, 587.1; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.0 Hz, 3H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.17 (d, *J* = 7.6 Hz, 2H), 7.07 (d, *J* = 8.4 Hz, 1H), 6.92 (s, 1H), 4.43-4.39 (m, 1H), 3.00-2.92 (m, 2H), 2.86-2.70 (m, 3H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.3, 144.5, 138.3, 134.2, 129.8, 129.8, 127.1, 126.5, 123.3, 116.8, 58.2, 34.0, 33.7, 25.4, 24.1, 24.0, 21.6. HRMS (ESI) m/z: calcd for C₂₀H₂₂N₂NaO₂S⁺, 377.1294; found, 377.1298.

2-(5-fluoro-1-tosylindolin-2-yl)acetonitrile (4d):

Yellow oil. IR (KBr): 2923.6, 2250.8, 1481.6, 1354.9, 1167.0, 753.0; ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.57 (m, 1H), 7.50 (d, J = 7.2 Hz, 2H), 7.18 (d, J = 7.6 Hz, 2H), 6.92 (d, J = 8.8 Hz, 1H), 6.76 (d, J = 8.0 Hz, 1H), 4.46-4.42 (m, 1H), 2.97-2.88 (m, 2H), 2.79-2.71 (m, 2H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.6 (d, J = 242.9 Hz), 144.8, 136.6, 133.8, 132.2 (d, J = 8.8 Hz), 130.0, 127.1, 118.3 (d, J = 8.7 Hz), 116.5, 115.2 (d, J = 23.5 Hz), 112.6 (d, J = 24.2 Hz). HRMS (ESI) m/z: calcd for $C_{17}H_{16}FN_2O_2S^+$, 331.0911; found, 331.0909.

2-(1-((4-(trifluoromethyl)phenyl)sulfonyl)indolin-2-yl)acetonitrile (4e): Yellow oil. IR (KBr): 2924.4, 2249.1, 1323.3, 1170.0, 841, 3, 752.8; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.6 Hz, 2H), 7.61 (d, *J* = 8.4 Hz, 3H), 7.23-7.19 (m, 1H), 7.05-7.00 (m, 1H), 4.40 (s, 1H), 3.02-2.88 (m, 2H), 2.80-2.70 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 140.7, 139.8, 135.2 (q, *J* = 33.1 Hz), 129.6, 128.7, 127.6, 126.4 (q, *J* = 3.4 Hz), 125.9, 125.7, 123.0 (q, *J* = 271.3 Hz), 116.8, 116.3, 58.2, 33.9, 25.5. HRMS (ESI) m/z: calcd for C₁₇H₁₃F₃N₂NaO₂S⁺, 389.0542; found, 389.0543.

2-methyl-1-tosyl-1H-indole (5): Brown oil; IR (KBr): 2970.6, 2359.1, 1632.4, 1173.8, 1053.1, 696.2; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 7.6 Hz, 1H), 7.58 (d, *J* = 6.4 Hz, 2H), 7.31 (d, *J* = 6.0 Hz, 1H), 7.14 (d, *J* = 22.0 Hz, 4H), 6.25 (s, 1H), 2.52 (s, 3H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.7, 137.4, 136.4, 129.9, 126.3, 123.7, 123.4, 120.0, 114.5, 109.6, 21.5, 15.7. LR-MS (EI, 70 eV): m/z = 285, 207, 155, 132.

2-(indolin-2-yl)acetamide (6): Brown oil; IR (KBr): 3443.1, 2964.9,

2356.8, 1665.8, 1116.6, 752.8; ¹H NMR (400 MHz, CDCl₃) δ 7.05 (d, J = 7.2 Hz, 1H), 7.00 (t, J = 7.6 Hz, 1H), 6.69 (t, J = 7.2 Hz, 1H), 6.60 (d, J = 7.6 Hz, 1H), 5.85 (d, J = 56.8 Hz, 2H), 4.265 – 4.19 (m, 1H), 3.16 (dd, J = 15.6, 8.4 Hz, 1H), 2.68 (dd, J = 15.3, 7.8 Hz, 1H), 2.52 – 2.45 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 173.9, 150.4, 128.2, 127.5, 124.7, 119.0, 109.6, 56.2, 41.6, 35.7. HRMS (ESI) m/z: calcd for C₁₀H₁₃N₂O₁⁺, 177.1022; found, 177.1026.

(E)-*N*-(tert-butyl)-4-(2-(4-methylphenylsulfonamido)phenyl)but-3-enamide (7): To a stirred solution of **3a** (38.6 mg, 0.1 mmol) in EtOH (2.0 mL) was added KOH (15.1 mg, 268.1 umol). The reaction proceeded at a reflux for 4h before EtOH was removed by rotary evaporation. The remained mixture was extracted with EtOAc, the combined organic layers were washed with H₂O and brine and dried over anhydrous Na₂SO₄, evaporated in a vacuo. The residue was purified by column chromatography on a silica gel PE/EtOAc to provide **7** in 95 % yield as a yellow oil: IR (KBr): 3133.1, 2357.5, 1649.9, 1401.2, 1051.6, 664.8; ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.58 (m, 3H), 7.34 (d, *J* = 7.2 Hz, 1H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.11 – 7.05 (m, 2H), 7.02 (d, *J* = 7.2 Hz, 1H), 6.66 (d, *J* = 16.0 Hz, 1H), 6.07 – 6.00 (m, 1H), 5.80 (s, 1H), 2.96 (d, *J* = 7.6 Hz, 2H), 2.34 (s, 3H), 1.29 (s, 9H).; ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 143.7, 136.5, 133.3, 133.2, 129.6, 129.4, 128.1, 127.3, 127.0, 126.7, 126.3, 125.6, 51.4, 42.1, 28.7, 21.5. HRMS (ESI) m/z: calcd for C₂₁H₂₇N₂O₃S⁺, 387.1737; found, 387.1734.

NMR Spectra for Compounds 3a-3zd, 4a-4e, 5-7

*N-(tert-*butyl)-2-(5-methoxy-1-tosylindolin-2-yl)acetamide (3c)

2-(5-bromo-1-tosyl-2,3-dihydro-1H-inden-2-yl)-N-(tert-butyl)acetamide (3g)

555 5358 5388 1652 1455 1455 1455 1455	729	572 551 541 531 518	886 886 886 80 80 80 80 80 80 80 80 80 80 80 80 80	280
	ц,	4 4 4 4 4	<u>49999999999</u>	-

*N-(tert-*butyl)-2-(5-cyano-1-tosylindolin-2-yl)acetamide (3h)

70 683 70 71 70 70 70 70 70 70 70 70 70 70 70 70 70	835	86667 66667 6611 886168 88168 88168 88168 88168 88168 88168 88168 88168 88168 88168 88168 88168 88168 8811 8818	578 564 374 374	290
	ې ۲	444444	2000	-

N-(tert-butyl)-2-(7-fluoro-1-tosylindolin-2-yl)acetamide (3i)

*N-(tert-*butyl)-2-(6-fluoro-1-tosylindolin-2-yl)acetamide (3j)

*N-(tert-*butyl)-2-(1-(methylsulfonyl)indolin-2-yl)acetamide (3k)

367 240 154 136 032 032 995	610	598 575 564 553	48445 4459 4420 24420 4282	682 - 682	672 518 497 461	205
~~~~~~~~~	ې ا	4444	က်ယ်ယ်ယ်	-75 -12-	<u>999999</u>	1

![](_page_37_Figure_3.jpeg)

![](_page_38_Figure_0.jpeg)

2-(1-acetylindolin-2-yl)-N-(tert-butyl)acetamide (31)

![](_page_38_Figure_2.jpeg)

![](_page_39_Figure_0.jpeg)

![](_page_39_Figure_1.jpeg)

![](_page_40_Figure_0.jpeg)

tert-butyl 2-(2-(tert-butylamino)-2-oxoethyl)indoline-1-carboxylate (3n)

![](_page_40_Figure_2.jpeg)

![](_page_41_Figure_0.jpeg)

*N-(tert-*butyl)-2-(1-((4-methoxyphenyl)sulfonyl)indolin-2-yl)acetamide (30)

607 556 534 145	981 964 7946 772	667	505 494 484 473 462	748	892 8507 4964 459 864 459 8507 459 850 450 850 850 850 850 850 850 850 850 850 8	211
	ففففف	ப்	4 4 4 4 4	ကို		Ţ

![](_page_41_Figure_3.jpeg)

![](_page_42_Figure_0.jpeg)

![](_page_43_Figure_0.jpeg)

*N-(tert-*butyl)-2-(1-(mesitylsulfonyl)indolin-2-yl)acetamide (3q)

![](_page_44_Figure_0.jpeg)

fl (ppm)

3.6

4.8

6.6

6.0

5.4

![](_page_45_Figure_0.jpeg)

*N-(tert-*butyl)-2-(1-(naphthalen-1-ylsulfonyl)indolin-2-yl)acetamide (3r)

271	754 683 499	176 978 959 944	763	653 641 631 610 610 610	778 7124 7124 561 504 504 504 504 504 504	232
ά		000	ц,	4444	<u>444444999999</u>	4

![](_page_45_Figure_3.jpeg)

![](_page_46_Figure_0.jpeg)

(3s)

![](_page_47_Figure_0.jpeg)

*N-(tert-*butyl)-2-(2-methyl-1-tosylindolin-2-yl)acetamide (3t)

![](_page_48_Figure_0.jpeg)

*N*-(tert-butyl)-2-(4,4-diphenyl-1-tosylpyrrolidin-2-yl)acetamide (3u)

![](_page_49_Figure_0.jpeg)

*N-(tert-*butyl)-2-(2-methyl-4,4-diphenyl-1-tosylpyrrolidin-2-yl)acetamide (3v)

![](_page_50_Figure_0.jpeg)

*N*-butyl-2-(2-methyl-4,4-diphenyl-1-tosylpyrrolidin-2-yl)acetamide (3w)

![](_page_51_Figure_1.jpeg)

*N*-cyclohexyl-2-(2-methyl-4,4-diphenyl-1-tosylpyrrolidin-2-yl)acetamide (3x)

![](_page_52_Figure_1.jpeg)

*N-(tert-*butyl)-2-(2-tosyl-2-azaspiro[4.5]decan-3-yl)acetamide (3y)

![](_page_53_Figure_0.jpeg)

N-(tert-butyl)-2-(4,4-dimethyl-1-tosylpyrrolidin-2-yl)acetamide (3z)

![](_page_54_Figure_0.jpeg)

*N*-butyl-2-(1-tosylindolin-2-yl)acetamide (3za)

![](_page_55_Figure_0.jpeg)

![](_page_55_Figure_1.jpeg)

2-(1-tosylindolin-2-yl)-*N*-(2,4,4-trimethylpentan-2-yl)acetamide (3zb)

![](_page_56_Figure_0.jpeg)

*N*-cyclohexyl-2-(1-tosylindolin-2-yl)acetamide (3zc)

![](_page_57_Figure_0.jpeg)

![](_page_57_Figure_1.jpeg)

2-(1-(methylsulfonyl)indolin-2-yl)-*N*-(2,4,4-trimethylpentan-2-yl)acetamide (3zd)

![](_page_58_Figure_0.jpeg)

2-(1-tosylindolin-2-yl)acetonitrile (4a)

![](_page_59_Figure_1.jpeg)

![](_page_60_Figure_0.jpeg)

2-(5-methoxy-1-tosylindolin-2-yl)acetonitrile (4b)

5558 536 481 481	163	781 759 609	416 395 395	736	876 841 734 663	346
	Ę.	فوفونه	4.4.4	က်	1000	47

![](_page_60_Figure_3.jpeg)

![](_page_61_Figure_0.jpeg)

2-(5-isopropyl-1-tosylindolin-2-yl)acetonitrile (4c)

![](_page_62_Figure_0.jpeg)

![](_page_62_Figure_1.jpeg)

2-(5-fluoro-1-tosylindolin-2-yl)acetonitrile (4d)

![](_page_63_Figure_0.jpeg)

![](_page_64_Figure_0.jpeg)

![](_page_64_Figure_1.jpeg)

![](_page_65_Figure_0.jpeg)

2-methyl-1-tosyl-1H-indole (5)

![](_page_65_Figure_2.jpeg)

![](_page_66_Figure_0.jpeg)

![](_page_67_Figure_0.jpeg)

(E)-N-(tert-butyl)-4-(2-(4-methylphenylsulfonamido)phenyl)but-3-enamide (7)

(2.970)
(2.952)

--2.337

4.293

614 595 576	007 007	583 543	032 995 796
t- t- t-	<u>, , , , , , , , , , , , , , , , , , , </u>	وْن	ဖ်ကိုက်

![](_page_67_Figure_3.jpeg)

![](_page_68_Figure_0.jpeg)

NOE Spectra for Compound (E)-*N*-(tert-butyl)-4-(2-(4methylphenylsulfonamido)phenyl)but-3-enamide (7)

![](_page_68_Figure_2.jpeg)

![](_page_69_Figure_0.jpeg)

MS Spectra for Compounds 3a and 3a-¹⁸O

MS Spectra for Compounds 3a:

![](_page_69_Figure_3.jpeg)

MS Spectra for Compounds 3a-¹⁸O:

![](_page_70_Figure_0.jpeg)