Electronic Supplementary Information

Redox-switchable host-guest systems based on a bisthiotetrathiafulvalene-bridged cryptand

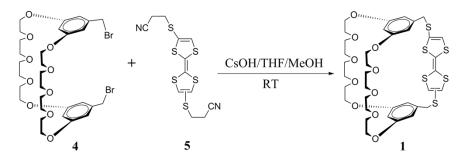
Qi Wang,^a Ming Cheng,^a Yue Zhao,^b Zhen Yang,^a Juli Jiang,^{*a} Leyong Wang^{*a} and Yi Pan^b

^a Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China;

^b State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.

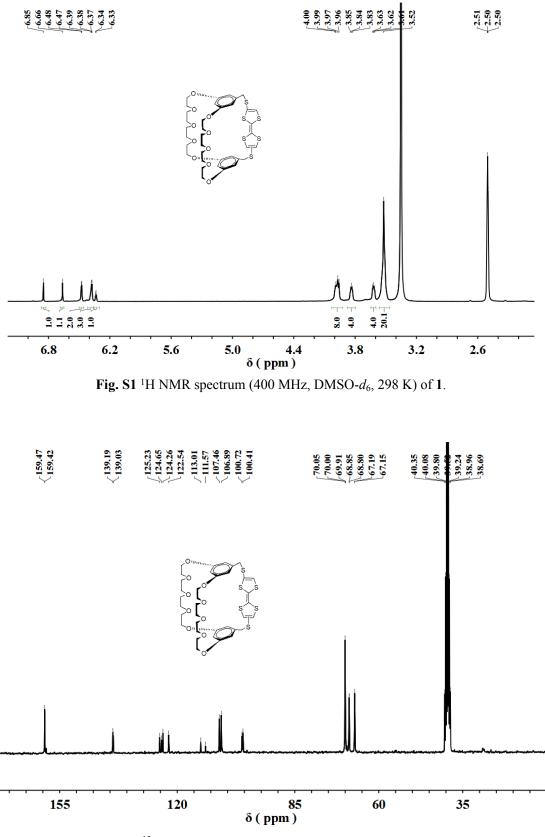
Fax: +86 25-83597090; Tel: +86 25-83592529;

E-mail: jjl@nju.edu.cn (JJ); lywang@nju.edu.cn (LW).

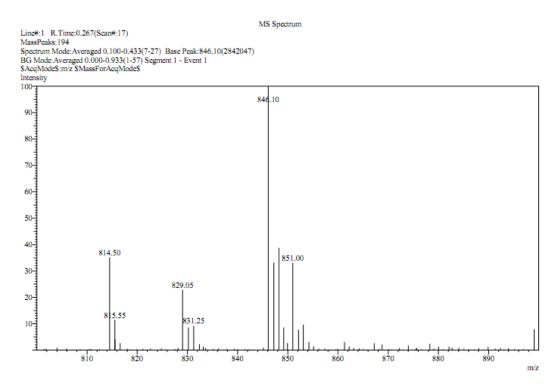

Table of Contents

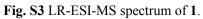
1. Materials and methods	S2
2. Synthesis of compound 1	S3
3. ¹ <i>H</i> NMR spectra of 1, $1 \supset 2$ and $1 \supset 3$ in CD_3CN_1	S6
<i>4. Partial 2D NOESY spectra of</i> $1 \supset 2$ <i>and</i> $1 \supset 3$ <i></i>	S8
5. Job plots for the complexes of $1 \supset 2$ and $1 \supset 3$	S9
6. LR-ESI-MS for the complexes of $1 \supset 2$ and $1 \supset 3$	S10
7. Determination of the association constants of $1 \supset 2$ and $1 \supset 3$ by ¹ H NMR	S11
8. Studies of charge transfer interactions by UV-vis spectra	S11
9. Switchable behaviors of $1 \supset 2$ investigated by ¹ H NMR experiment	S14
10. Redox-responsive complexation between 1 and 3	S15
11. ¹ H NMR spectrum of the single crystal of $1 \supset 2$	S16
12. X-ray crystal data for $1 \supset 2$	S16

1. Materials and methods


All reactions were performed in atmosphere unless noted. The commercially available reagents and solvents were either employed as purchased or dried according to procedures described in the literature. Compounds $2,^{S1}$ $3,^{S2}$ 4^{S3} and 5^{S4} were prepared by published literature procedures. NMR spectra were recorded on a Bruker DPX 300 MHz or 400 MHz spectrometer with internal standard tetramethylsilane (TMS) and solvent signals as internal references, and the chemical shifts (δ) were expressed in ppm and *J* values were given in Hz. 2D NOESY experiments were performed on a Bruker DPX 400 MHz spectrometer. Low-resolution electrospray ionization mass spectra (LR-ESI-MS) were obtained on Finnigan MatTSQ 7000 instruments. High-resolution electrospray ionization mass spectra (HR-ESI-MS) were recorded on an Agilent 6540Q-TOF LCMS equipped with an electrospray ionization (ESI) probe operating in positive-ion mode with direct infusion.

2. Synthesis of compound 1




Scheme S1 Synthesis of cryptand 1.

A solution of **4** (0.39 g, 0.54 mmol) and **5** (0.20 g, 0.54 mmol) in anhydrous THF (100 mL) was added very slowly to a solution of CsOH·H₂O (0.45 g, 2.70 mmol) in anhydrous THF (200 mL) and MeOH (20 mL) under nitrogen gas protection. ^{S5} After complete addition, the mixture was stirred for 2 days. After the solvent was removed under vacuum, the residue was purified by column chromatography (silica, CH₂Cl₂/CH₃OH = 100:1, ν/ν) to afford **1** as a yellow wax (0.17 g, 38%). ¹H NMR (400 MHz, DMSO-*d*₆): δ (ppm): 6.85 (s, 1H), 6.66 (s, 1H), 6.48 (d, *J* = 1.9 Hz, 2H), 6.39–6.37 (m, 3H), 6.33 (t, *J* =1.9 Hz, 1H), 4.00–3.96 (m, 8H), 3.85–3.83 (m, 4H), 3.63–3.61 (m, 4H), 3.52 (br s, 20H). ¹³C NMR (75 MHz, DMSO-*d*₆): δ (ppm): 159.5, 159.4, 139.2, 139.0, 125.2, 124.7, 124.3, 122.5, 113.0, 111.6, 107.5, 106.9, 100.7, 100.4, 70.1, 70.0, 69.91, 68.85, 68.8, 67.19, 67.15. LR-ESI-MS: *m/z* calcd for [M + H]⁺, 829.13, found 829.05 (23%); calcd for [M + NH₄]⁺, 846.16, found 846.10 (100%); calcd for [M + Na]⁺, 851.12, found 851.00 (35%); HR-ESI-MS: *m/z* calcd for [M + Na]⁺ C₃₆H₄₄O₁₀S₆Na⁺, 851.1156, found 851.1153, error 0.4 ppm.

Fig. S2 ¹³C NMR spectrum (75 MHz, DMSO-*d*₆, 298 K) of **1**.

	851.1153				
		852,1180			
			853.1137		

Fig. S4 HR-ESI-MS spectrum of 1.

3. ¹*H* NMR spectra of 1, $1 \supset 2$ and $1 \supset 3$ in CD_3CN

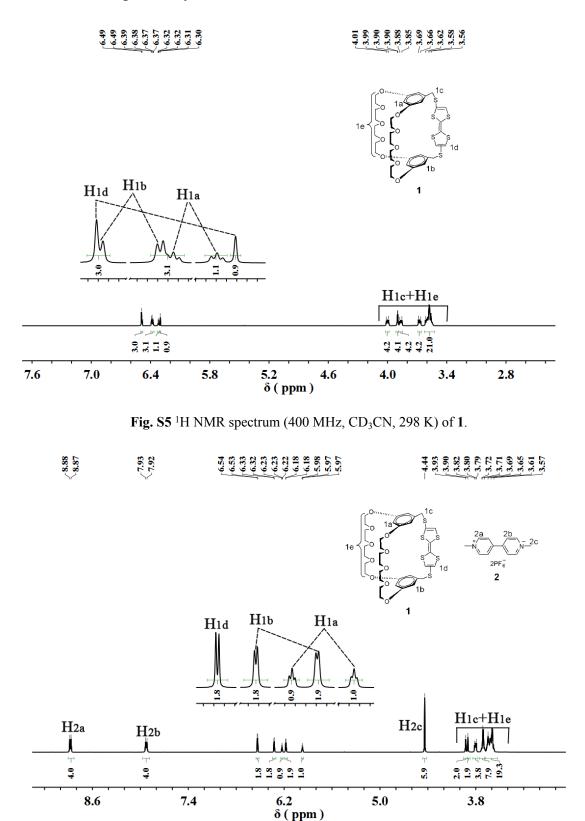


Fig. S6 ¹H NMR spectrum (400 MHz, CD₃CN, 298 K) of a solution of 4.50 mM 1 and 4.50 mM 2.

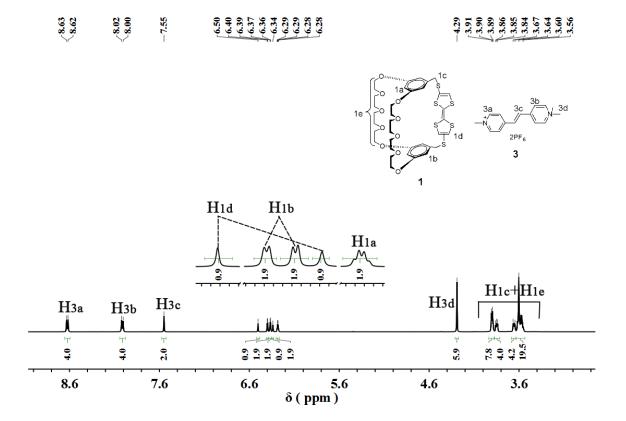
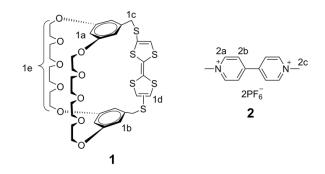



Fig. S7 ¹H NMR spectrum (400 MHz, CD₃CN, 298 K) of a solution of 4.50 mM 1 and 4.50 mM 3.

4. Partial 2D NOESY spectra of $1 \supset 2$ and $1 \supset 3$

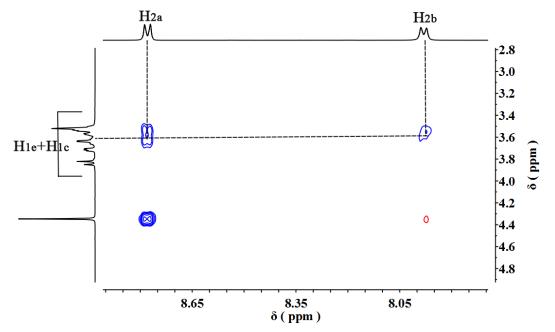
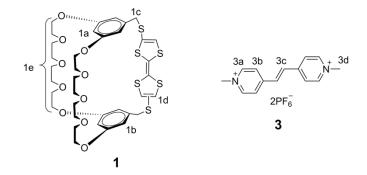



Fig. S8 Partial 2D NOESY spectrum (400 MHz, CD_3CN , 298 K) of a solution of 4.00 mM 1 and 4.00 mM 2.

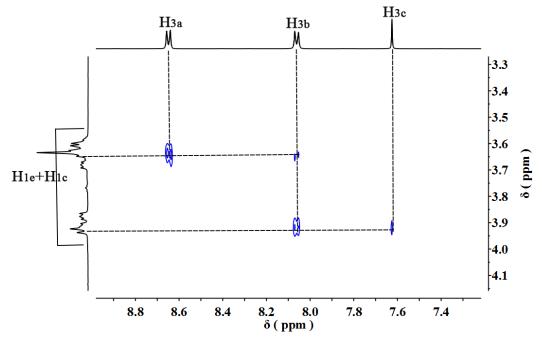


Fig. S9 Partial 2D NOESY spectrum (400 MHz, CD₃CN, 298 K) of a solution of 4.00 mM 1 and 4.00 mM 3.

5. Job plots for the complexes of $1 \supset 2$ and $1 \supset 3$

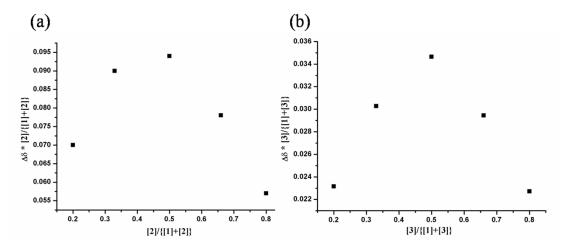
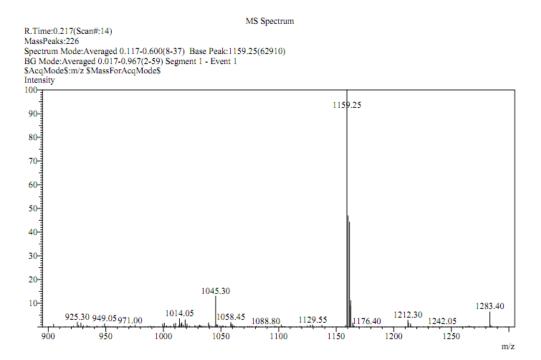
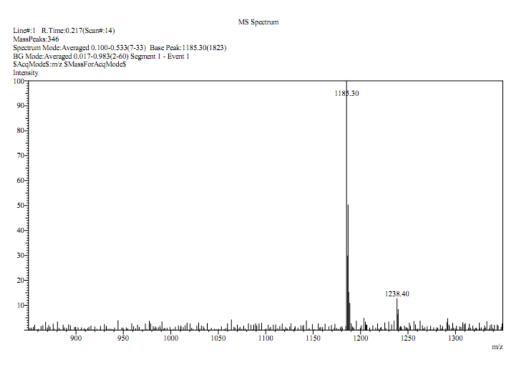
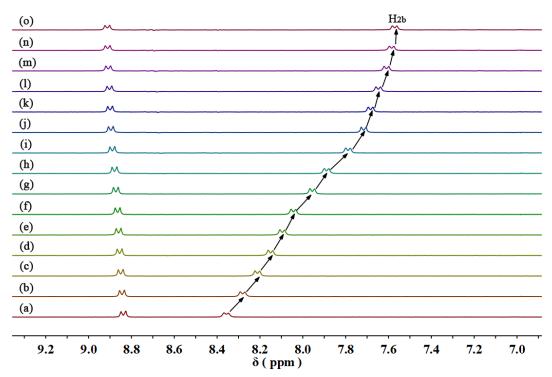




Fig. S10 Job Plots showing the 1:1 stoichiometry of the complexation between 1 and 2 (a) and 1 and 3 (b) in CD₃CN. ([H] + [G] = 4 mM).

6. LR-ESI-MS for the complexes of $1 \supset 2$ and $1 \supset 3$

Fig. S11 LR-ESI-MS of an equimolar mixture of **1** and **2**. Assignment of main peaks: m/z 1159.25 (100%) for $[1 \supset 2 - PF_6]^+$. This result confirmed the 1:1 stoichiometry of the complex between **1** and **2** further.


Fig. S12 LR-ESI-MS of an equimolar mixture of **1** and **3**. Assignment of main peaks: m/z 1185.30 (100%) for $[1 \supset 3 - PF_6]^+$. This result confirmed the 1:1 stoichiometry of the complex between **1** and **3** further.

7. Determination of the association constants of $1 \supset 2$ and $1 \supset 3$ by ¹H NMR

¹H NMR titrations were performed with a constant concentration of guest (2.00 mM) and varying concentrations of host in the range of 1.0 - 40.0 mM. Using a nonlinear curve-fitting method, the association constant was obtained for each host-guest combination from the following equation:

 $\Delta \delta = (\Delta \delta_{\infty} / [G]_0) (0.5[H]_0 + 0.5([G]_0 + 1/K_a) - (0.5 ([H]_0^2 + (2[H]_0(1/K_a - [G]_0)) + (1/K_a + [G]_0)^2)^{0.5})) (Eq. S1)$

Where $\Delta \delta$ is the chemical shift change of H_a on G at [H]₀, $\Delta \delta_{\infty}$ is the chemical shift change of H_a when the guest is completely complexed, [G]₀ is the fixed initial concentration of the guest, and [H]₀ is the initial concentration of the host.

Fig. S13 Partial ¹H NMR spectral changes (300 MHz, CD₃CN, 298 K) of **2** at a concentration of 2.00 mM upon gradual addition of **1**: (a) 0.00, (b) 1.00, (c) 2.00, (d) 3.00, (e) 4.00, (f) 5.00, (g) 7.00, (h) 9.00, (i) 13.00, (j) 17.00, (k) 20.00, (l) 24.00, (m) 30.00, (n) 36.00, (o) 40.00 mM.

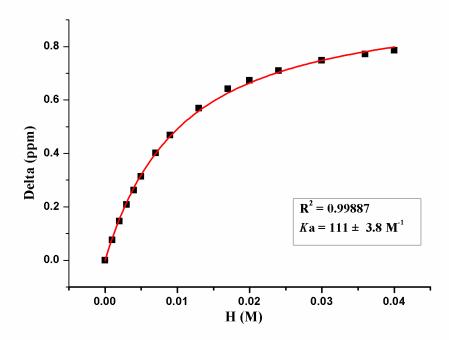
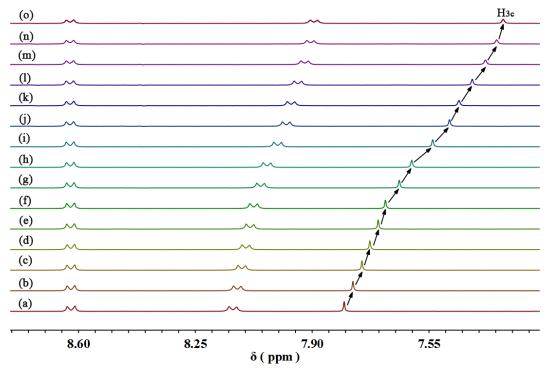
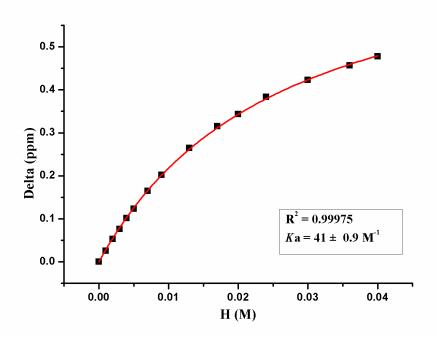
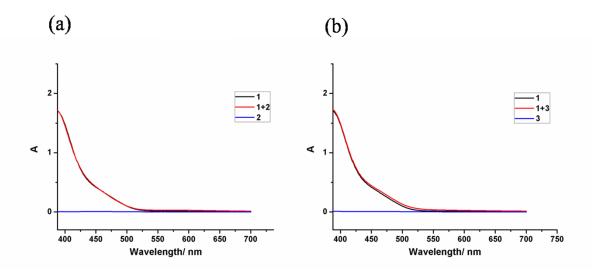
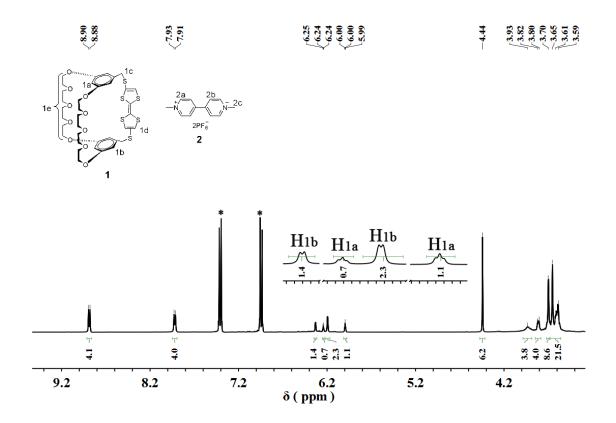
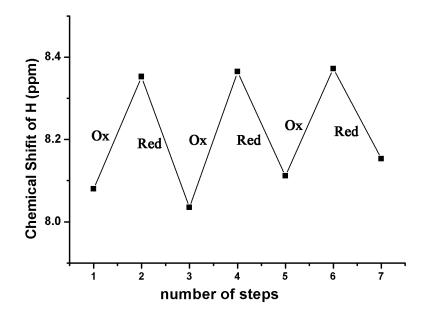




Fig. S14 The chemical shift changes of H_{2b} on 2 upon addition of 1. The red solid line was obtained from the non-linear curve-fitting using Eq. S1. The association constant (K_a) of $1 \supset 2$ was estimated to be about 111 ± 3.8 M⁻¹.

Fig. S15 Partial ¹H NMR spectral changes (300 MHz, CD₃CN, 298 K) of **3** at a concentration of 2.00 mM upon gradual addition of **1**: (a) 0.00, (b) 1.00, (c) 2.00, (d) 3.00, (e) 4.00, (f) 5.00, (g) 7.00, (h) 9.00, (i) 13.00, (j) 17.00, (k) 20.00, (l) 24.00, (m) 30.00, (n) 36.00, (o) 40.00 mM.

Fig. S16 The chemical shift changes of H_{3c} on **3** upon addition of **1**. The red solid line was obtained from the non-linear curve-fitting using Eq. S1. The association constant (K_a) of **1** \supset **3** was estimated to be about 41 ± 0.9 M⁻¹.

8. Studies of charge transfer interactions by UV-vis spectra

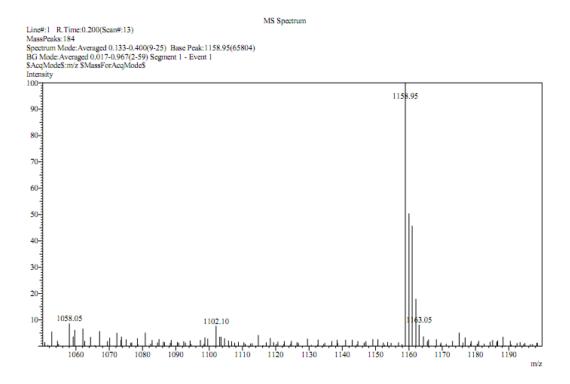

Fig. S17 UV-vis absorption spectra of between 1.00 mM 1 and 1.00 mM 2 (a) and 1.00 mM 1 and 1.00 mM 3 (b) in CH₃CN.

Fig. S18 Partial ¹H NMR spectrum (400 MHz, CD₃CN, 298 K) of $1 \supset 2$ (1:1, 4.50 mM each) after one oxidation/reduction cycle. The resonances indicated by an asterisk arise from the oxidant.

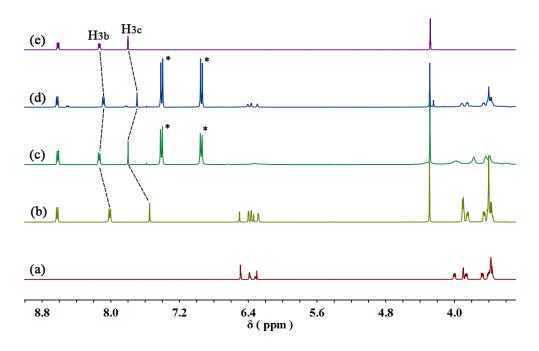


Fig. S19 The chemical shift changes of H_{2b} on $1 \supset 2$ (1:1, 4.00 mM each, 400 MHz, CD₃CN, 298 K) upon stepwise addition of oxidant or reductant.

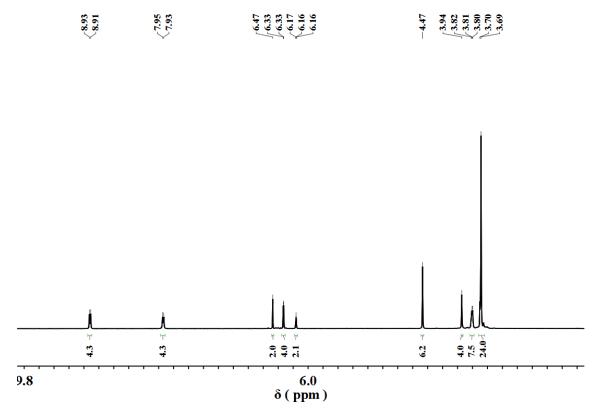


Fig. S20 LR-ESI-MS of 1⊃2 after one oxidation/reduction cycle.

10. Redox-responsive complexation between 1 and 3

Fig. S21 Partial ¹H NMR spectra (400 MHz, CD₃CN, 298 K): (a) **1**; (b) 4.50 mM **1** and 4.50 mM **3**; (c) after addition of 2.2 equiv. of tris(p-bromophenyl)aminium hexachloroantimonate to (b); (d) after addition excess Zn powder to (c); (e) **3**. The resonances indicated by an asterisk arise from the oxidant.

Fig. S22 ¹H NMR spectrum (400 MHz, CD₃CN, 298 K) of the single crystal of $1 \supset 2$.

12. X-ray crystal data for $1 \supset 2$

Table 1	Crystal	data and	structure	refinement	for $1 \supset 2$
I HOIV I	CI y bitai	aata ante	buactare	rennement	

CCDC number	1004106
Empirical formula	$C_{96}H_{116}F_{24}N_4O_{20}P_4S_{12}$
Formula weight	2610.53
Temperature	293(2)
Wavelength	1.54178 Å
Crystal system	monoclinic
Space group	Рс
а	11.7180(2) Å
Ь	25.4446(4) Å
С	26.3628(3) Å
α	90.00°
β	105.6740(10)°
γ	90.00°
Volume	7568.0(2) Å ³
Z	2

Density (calculated)	1.146
Absorption coefficient	2.711
F(000)	2696.0
Crystal size	$0.26\times0.24\times0.19\ mm^3$
Theta range for data collection	2.46 to 55.23°
Index ranges	-13<=h<=10, -28<=k<=29, -30<=l<=30
Reflections collected	29348
Independent reflections	15250 [R(int) = 0.0459]
Completeness to theta = 65.00°	97.4 %
Absorption correction	multi-scan
Refinement method	Full-matrix least-squares on F^2
Goodness-of-fit on F2	1.030
Final R indices [I > 2sigma(I)]	R1 = 0.0680, wR2 = 0.1512
<i>R</i> indices (all data)	R1 = 0.1064, wR2 = 0.1611
Largest diff. peak and hole	0.417 and -0.295 e·Å ⁻³

References

- S1. W. S. Bryant, J. W. Jones, P. E. Mason, I. Guzei, A. L. Rheingold, F. R. Fronczek, D. S. Nagvekar and H. W. Gibson, *Org. Lett.*, 1999, 1, 1001.
- S2. M. T. McCall and D. G. Whitten, J. Am. Chem. Soc., 1969, 91, 5681.
- S3. H. W. Gibson and D. S. Nagvekar, Can. J. Chem., 1997, 75, 1375.
- S4. X. Guo, D. Zhang, H. Zhang, Q. Fan, W. Xu, X. Ai, L. Fan and D. Zhu, *Tetrahedron*, 2003, **59**, 4843.
- S5. C. Wang, S. M. Dyar, D. Cao, A. C. Fahrenbach, N. Horwitz, M. T. Colvin, R. Carmieli, C. L. Stern, S. K. Dey, M. R. Wasielewski and J. F. Stoddart, *J. Am. Chem. Soc.*, 2012, **134**, 19136.