Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2014

Supporting Information

1.1	General Information	2
1.2	General Experimental Procedures	3
1.3	Optimisation of Ynamide Synthesis from Dichloroenamide 2a	4
1.4	Experimental Procedures and Characterisation Data	5
	1.4a Dichloroenamides	5
	1.4b Ynamides	18
	1.4c Chloroynamide S1	33
1.5	References	34
2.1	Copies of ¹ H and ¹³ C NMR spectra	35
	2.1a Dichloroenamides	35
	2.2b Ynamides	64
	2.3c Chloroynamide S1	95

3.1 X-ray crystallographic data for compounds 2a and 2t 96

1.1 General information.

NMR Spectroscopy: Proton (¹H) and carbon (¹³C) NMR spectra were recorded on a Bruker DPX400 (400 MHz), Bruker AVN400 (400 MHz) or Bruker AVC500 (500 MHz) spectrometer. Proton and carbon chemical shifts ($\delta_{H_1} \delta_{C}$) are quoted in ppm. ¹H NMR spectra were recorded using an internal deuterium lock for the residual protons in CDCl₃ (δ 7.26) and C₆D₆ (δ 7.16). ¹³C NMR Spectra were recorded using an internal deuterium lock using solvents CDCl₃ (δ 77.0) and C₆D₆ (δ 128.06). Assignments were determined either on the basis of unambiguous chemical shift or coupling patterns, COSY and/or HSQC experiments. Peak multiplicities are defined as: s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, sxt = sextet, spt = septet, m = multiplet, app. = apparent, br. = broad; and coupling constants (*J*) are reported to the nearest 0.1 Hz.

Infrared Spectroscopy: Infrared spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer with the sample being prepared as a thin film on a diamond ATR module. Absorption maxima (v_{max}) are quoted in wavenumbers (cm⁻¹).

Mass Spectroscopy: Low resolution mass spectra were recorded on a Micromass LCT Premier Open Access using electrospray ionisation (ESI). Accurate mass (HRMS) data was determined under conditions of ESI on a Bruker MicroTOF. High resolution values are calculated to 4 decimal places from the molecular formula, and all values are within a tolerance of 5 ppm.

Melting Points: Melting points were obtained using a Griffin melting point apparatus and are uncorrected.

Reagents, solvents and techniques: All reagents, obtained from Acros, Aldrich, Fluka, Lancaster, Strem and Fluorochem fine chemicals suppliers, were used directly as supplied. Solvents were either used as commercially supplied, or as purified by standard techniques. Anhydrous THF was obtained from solvent dispenser units having been passed through an activated alumina column under argon. Unless otherwise stated, non-aqueous reactions were performed in oven dried apparatus under argon atmospheres at room temperature.

Reactions were monitored by thin layer chromatography on pre-coated aluminium-backed plates (Merck Kieselgel 60 with fluorescent indicator UV254). Spots were visualised by quenching of UV fluorescence or by staining with potassium permanganate or vanillin, and retention factors are reported with the solvent system in parentheses. Flash column chromatography was performed on silica gel obtained from Macherey Nagel (MN 60, 230–400 mesh) under positive nitrogen pressure, using the solvent system quoted in parentheses.

1.2 Experimental Procedures

1.2a: General procedure for the Cs₂CO₃ promoted synthesis of 1,2-dichloroenamides.

To a stirring suspension of amide (1.0 eq.), powdered Cs_2CO_3 (1.5 eq.) and DMF (0.75 mL mmol⁻¹ of amide substrate), at 50 °C, was added trichloroethylene (1.1 eq.) dropwise over 10 minutes. The resulting mixture was stirred at 50 °C until reaction completion, as analysed by TLC (~1–2 h). Upon cooling to room temperature, the mixture was partitioned between EtOAc and H₂O (roughly 2:1 of EtOAc:H₂O), the organic layer was separated and further washed with water (×3). The organic layer was then dried (Na₂SO₄), filtered and concentrated *in vacuo*. Purification was then performed as described for each compound. Note: The use of an inert atmosphere or rigorously dried solvent is not necessary for this transformation.

1.2b: General procedure for the NaH promoted synthesis of 1,2-dichloroenamides.

To a stirring suspension of NaH (2.1 eq.) in anhydrous DMF (0.75 mL mmol⁻¹ of amide substrate), at 0 °C under an argon atmosphere, was added a solution of amide (1.0 eq.) in anhydrous DMF (0.75 mL mmol⁻¹ of amide substrate) dropwise over 5 minutes, and H₂ gas was evolved. The mixture was allowed to warm to room temperature and stirred for a further 2 hours. Trichloroethylene (1.0 eq.) was then added dropwise over 30 minutes at room temperature, with further evolution of H₂ observed. The mixture was then stirred at room temperature until reaction completion, as analysed by TLC (overnight). The reaction mixture was quenched with EtOAc, and washed with aqueous saturated NaHCO₃ (×3). The organic layer was then dried (Na₂SO₄), and concentrated *in vacuo*. Purification was then performed as described for each compound.

1.2c: General procedure for the phase-transfer catalysed synthesis of 1,2-dichloroenamides.

To a stirring mixture of amide (1.0 eq.), tetrabutylammonium hydrogensulfate (TBAHS) (0.2 eq.), toluene (3 mL mmol⁻¹ of amide substrate) and CH_2Cl_2 (2.5 mL mmol⁻¹ of amide substrate), at room temperature under argon, was added 25% w/v aqueous NaOH (3 mL mmol⁻¹ of amide substrate). The solution was then stirred vigorously for 15 minutes, followed by the dropwise addition of trichloroethylene (3.0 eq.) over 30 minutes. The reaction was then stirred until reaction completion, as analysed by TLC (overnight). The aqueous layer was then extracted with Et₂O (×3), organic extracts combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification was then performed as described for each compound.

1.2d: General procedure for the synthesis of ynamides using phenyllithium.

To an oven dried, argon flushed flask was added 1,2-dichloroenamide (1.0 eq.) and anhydrous THF (10 mL mmol⁻¹ of enamide substrate), and cooled to -78 °C whilst stirring. A solution of phenyllithium (2.0 M solution in dibutyl ether, 2.2 eq.) was then added dropwise over 10 minutes, and left to stir at -78 °C for 1 hour. After complete conversion to the lithiated ynamide (confirmed by TLC), the electrophile (1.2 eq.) was added at -78 °C and the stirring mixture was allowed to warm to room temperature. Upon reaction completion, as analysed by TLC (\sim 1 h), the reaction mixture was quenched with water, followed by extraction with Et₂O (\times 2). The organic extracts were combined and dried (Na₂SO₄), filtered and concentrated *in vacuo*. Purification was then performed as described for each compound.

1.2e: General procedure for the synthesis of ynamides using *n*-butyllithium.

To an oven dried, argon flushed flask was added 1,2-dichloroenamide (1.0 eq.) and anhydrous THF (4 mL mmol⁻¹ of enamide substrate), and cooled to -78 °C whilst stirring. A solution of *n*-butyllithium (2.5 M solution in hexanes, 1.2 eq.) was then added dropwise over 10 minutes, such that the reaction does not exceed -70 °C, and the resulting mixture was then stirred at -78 °C for 5 minutes, followed by warming to -41 °C for 30 minutes. Upon cooling to -78 °C, another portion of *n*-butyllithium (2.5 M solution in hexanes, 1.0 eq.) was added dropwise over 10 minutes, and stirred for a further 10 minutes. Next, the electrophile (1.2 eq.) was added at -78 °C and the stirring mixture was allowed to warm to room temperature. Upon reaction completion, as analysed by TLC (~ 1 h), the reaction mixture was quenched with water, followed by extraction with Et₂O (×2). The organic extracts were combined and dried (Na₂SO₄), filtered and concentrated *in vacuo*. Purification was then performed as described for each compound.

1.3 Optimisation of ynamide synthesis and preparation of chloroynamide S1

Conditions to convert dichloroenamide 2a into ynamide 1a are shown in Table S1.

For the purposes of the optimisation, the *in situ* generated ynamide anion was trapped with iodomethane to give methyl ynamide **1a**. *n*-BuLi served as a suitable base (Entry 1), however careful control of reaction temperature and slow addition of this base was required. We believe this prevents deprotonation at other sites which occurs when the rate of *n*-BuLi addition exceeds that of chloroynamide formation, thus resulting in an excess of base accumulating in the reaction.

Phenyllithium proved efficient and procedurally robust (Entry 2), and was our preferred base for the conversion. Treatment of **2a** with 1.2 equivalents of phenyllithium afforded only the intermediate chloroynamide **S1** (Entry 3), which was formed as the exclusive product using LiHMDS (Entry 5). Weaker bases were ineffective, with starting material returned in these cases (Entries 6, 7).

Table S1. Optimization of ynamide synthesis.

Entry	Base (2.2 equiv.)	Yield [%]
1	<i>n</i> -BuLi	83 ^{<i>a</i>}
2	PhLi	85^a
3	$PhLi^b$	62^c
4	LiN(<i>i</i> -Pr) ₂	dec.
5	LiN(SiMe ₃) ₂	74^c
6	<i>i</i> -PrMgCl	n.r. ^d
7	<i>t</i> -BuOK ^{<i>e</i>}	n.r. ^e

^{*a*} Isolated yield of **1a**. ^{*b*} 1.2 equiv. of base. ^{*c*} Isolated yield of **S1**. ^{*d*} No reaction after reflux for 24 h. ^{*e*} No reaction with up to 5.0 equiv. *t*-BuOK at reflux for 24 h.

1.4 Experimental Procedures and Characterisation Data.

1.4a Dichloroenamides:

(E)-N-Benzyl-N-(1,2-dichlorovinyl)-4-methylbenzenesulfonamide, 2a

Synthesised from *N*-benzyl tosylamide (4.10 g, 15.7 mmol, 1.0 eq.) with Cs₂CO₃ (7.67 g, 23.5 mmol, 1.5 eq.), DMF (11.8 mL) and trichloroethylene (1.55 mL, 17.3 mmol, 1.1 eq.), taking approximately 1.5 hours following general procedure **1.2a**. Recrystallisation from Et₂O afforded **2a** (5.32 g, 14.9 mmol, 95%) as colourless crystals. Crystals suitable for X-ray diffraction were grown by slow evaporation of a solution of **2a** in CH₂Cl₂; **m.p.** 136–137 °C; **R**_f 0.53 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm^{-1}) 3088, 3033, 2925, 1597, 1496, 1456, 1402, 1167, 1122, 1090, 948, 818, 704, 659, 608; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.86 (2H, d, *J* = 8.0 Hz, *H*5), 7.36 (2H, d, *J* = 8.0 Hz, *H*6), 7.35–7.28 (5H, m, *H*1, *H*2, *H*3), 6.27 (1H, s, *H*8), 5.05–3.70 (2H, br. s*, *H*4), 2.47 (3H, s, *H*7); ¹³C **NMR** (101 MHz, CDCl₃) $\delta_{\rm c}$ 144.7, 135.1, 133.3, 129.8, 129.39, 129.35, 128.4, 128.3, 121.7, 51.8, 21.7;** **HRMS** (ES+) calc. for C₁₆H₁₅³⁵Cl₂NNaO₂S [M+Na]⁺ 378.0093, found 378.0110. *Peak spanning 5.05–3.70 ppm is unresolved due to rotameric forms of this molecule. ** Note: a single ¹³C resonance is obscured due to signal overlap.

(E)-N-(1,2-Dichlorovinyl)-4-methyl-N-phenylbenzenesulfonamide, 2b

Synthesised from *N*-tosyl aniline (200 mg, 809 µmol, 1.0 eq.) with Cs₂CO₃ (395 mg, 1.21 mmol, 1.5 eq.), DMF (0.6 mL) and trichloroethylene (80 µL, 890 µmol, 1.1 eq.), taking approximately 2 hours following general procedure **1.2a**. Column chromatography (10% EtOAc/40-60 petroleum ether) afforded **2b** (255 mg, 745 µmol, 92%) as colourless crystals; **m.p**. 115 °C; **R**_f 0.52 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 3087, 2315, 1720, 1596, 1490, 1365, 1283, 1169, 1090, 948, 813, 695, 662; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.65 (2H, d, *J* = 8.4 Hz, *H*4), 7.39–7.30 (5H, m, *H*1, *H*2, *H*3), 7.24 (2H, d, *J* = 8.4 Hz, *H*5), 6.45 (1H, s, *H*7), 2.42 (3H, s, *H*6); ¹³**C NMR** (101 MHz, CDCl₃) $\delta_{\rm c}$ 144.6, 137.7, 135.6, 130.7, 129.43, 129.35, 129.1, 128.7, 128.6, 120.5, 21.7; **MS** (ESI+) *m/z* 359.0 (61, [{³⁵Cl₃}M+NH₄]⁺), 361.1 (41, [{³⁵Cl³⁷Cl}M+NH₄]⁺), 363.1 (7, [{³⁷Cl₂}M+NH₄]⁺), 364.0 (100, [{³⁵Cl₂}M+Na]⁺), 366.0 (67, $[{^{35}Cl^{37}Cl}M+Na]^+)$, 368.1 (11, $[{^{37}Cl_2}M+Na]^+)$, 380.0 (57, $[{^{35}Cl_2}M+K]^+)$, 382.0 (38, $[{^{35}Cl^{37}Cl}M+K]^+)$, 384.0 (6, $[{^{37}Cl_2}M+K]^+)$. Data are consistent with literature values.¹

(E)-N-(n-Butyl)-N-(1,2-dichlorovinyl)-4-methylbenzenesulfonamide, 2c

Synthesised from *N*-(*n*-butyl)tosylamide (100 mg, 440 µmol, 1.0 eq.) with Cs₂CO₃ (215 mg, 660 µmol, 1.5 eq.), DMF (0.3 mL) and trichloroethylene (43 µL, 484 µmol, 1.1 eq.), taking approximately 1 hour following general procedure **1.2a**. Column chromatography (10% Et₂O/40-60 petroleum ether) afforded **2c** (112 mg, 347 µmol, 79%) as colourless crystals; **m.p.** 45–46 °C; **R**_f 0.60 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 3089, 2962, 2934, 2874, 1738, 1598, 1459, 1362, 1168, 1090, 1027, 816, 673; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.79 (2H, d, *J* = 8.3 Hz, *H*5), 7.32 (2H, d, *J* = 8.3 Hz, *H*6), 6.49 (1H, s, *H*8), 3.48–2.93 (2H, br. app. s, *H*4), 2.44 (3H, s, *H*7), 1.50 (2H, quin, *J* = 7.3 Hz, *H*3), 1.36 (2H, sxt, *J* = 7.3 Hz, *H*2), 0.89 (3H, t, *J* = 7.3 Hz, *H*1); ¹³**C NMR** (101 MHz, CDCl₃) $\delta_{\rm c}$ 144.5, 135.1, 129.7, 129.6, 128.3, 121.3, 47.6, 29.5, 21.6, 19.8, 13.6; **HRMS** (ES+) calc. for C₁₃H₁₇³⁵Cl₂NNaO₂S [M+Na]⁺ 344.0249, found 344.0263.

N-((E)-1,2-Dichlorovinyl)-N-((E)-hex-4-en-1-yl)-4-methylbenzenesulfonamide, 2d

Synthesised from (*E*)-*N*-(hex-4-en-1-yl)tosylamide (100 mg, 395 µmol, 1.0 eq.) with Cs₂CO₃ (193 mg, 592 µmol, 1.5 eq.), DMF (0.3 mL) and trichloroethylene (39 µL, 434 µmol, 1.1 eq.), taking approximately 1 hour following general procedure **1.2a**. Column chromatography (5% EtOAc/40-60 petroleum ether) afforded **2d** (128 mg, 367 µmol, 93%) as a pale yellow oil; **R**_f 0.46 (10% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm^{-1}) 2923, 1598, 1441, 1361, 1166, 1090, 967, 805, 707; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.78 (2H, d, J = 8.2 Hz, H7), 7.31 (2H, d, J = 8.2 Hz, H8), 6.48 (1H, s, H10), 5.51–5.25 (2H, m, H2, H3), 3.50–2.93 (2H, br. app. s, H6), 2.42 (3H, s, H9), 2.07–1.96 (2H, m, H5), 1.61 (3H, dd, J = 6.0, 1.1 Hz, H1), 1.60–1.52 (2H, m, H4); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm c}$ 144.4, 135.1, 129.7, 129.6, 129.5, 128.3, 126.0, 121.2, 47.3, 29.3, 27.3, 21.5, 17.8; **HRMS** (ES+) calc. for C₁₅H₁₉³⁵Cl₂NNaO₂S [M+Na]⁺ 370.0406, found 370.0419.

(E)-N-(But-3-yn-1-yl)-N-(1,2-dichlorovinyl)-4-methylbenzenesulfonamide, 2e

Synthesised from *N*-(but-3-yn-1-yl) tosylamide (51 mg, 227 µmol, 1.0 eq.) with Cs₂CO₃ (111 mg, 341 µmol, 1.5 eq.), DMF (0.1 mL) and trichloroethylene (23 µL, 250 µmol, 1.1 eq.), taking approximately 1 hour following general procedure **1.2a**. Column chromatography (10% EtOAc/40-60 petroleum ether) afforded **2e** (66 mg, 208 µmol, 92%) as colourless crystals; **m.p.** 90 °C; **R**_f 0.43 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 3296, 3080, 2915, 1597, 1362, 1167, 1091, 979, 816, 709; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.80 (2H, d, *J* = 8.2 Hz, *H*4), 7.33 (2H, d, *J* = 8.2 Hz, *H*5), 6.51 (1H, s, *H*7), 3.42 (2H, br. app. s, *H*3), 2.48 (2H, td, *J* = 7.8, 2.6 Hz, *H*2), 2.44 (3H, s, *H*6), 1.98 (1H, t, *J* = 2.6 Hz, *H*1); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm c}$ 144.8, 135.0, 129.7, 129.2, 128.3, 122.0, 79.8, 70.5, 46.7, 21.6, 18.4; **HRMS** (ES+) calc. for C₁₃H₁₃³⁵Cl₂NNaO₂S [M+Na]⁺ 339.9936, found 339.9925.

N-((*E*)-4-Cyclopropyl-3-methylbut-3-en-1-yl)-*N*-((*E*)-1,2-dichlorovinyl)-4-methylbenzenesulfonamide, 2f

Synthesised from *N*-((*E*)-4-cyclopropyl-3-methylbut-3-en-1-yl)tosylamide (50 mg, 179 µmol, 1.0 eq.) with Cs₂CO₃ (88 mg, 268 µmol, 1.5 eq.), DMF (0.1 mL) and trichloroethylene (18 µL, 197 µmol, 1.1 eq.), taking approximately 1 hour following general procedure **1.2a**. Column chromatography (2% EtOAc/40-60 petroleum ether) afforded **2f** (53 mg, 141 µmol, 79%) as a colourless oil; **R**_f 0.65 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 2924, 1598, 1362, 1166, 1091, 957, 806, 661; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.79 (2H, d, *J* = 8.3 Hz, *H*7), 7.31 (2H, d, *J* = 8.2 Hz, *H*8), 6.48 (1H, s, *H*10), 4.57 (1H, dd, *J* = 9.4, 1.1 Hz, *H*3), 3.29 (2H, br. app. s, *H*6), 2.43 (3H, s, *H*9), 2.19 (2H, t, *J* = 7.8 Hz, *H*5), 1.70 (3H, d, *J* = 1.1 Hz, *H*4), 1.46-1.34 (1H, m, *H*2), 0.72–0.64 (2H, m, *H*1), 0.29–0.23 (2H, m, *H*1); ¹³C **NMR** (101 MHz, CDCl₃) $\delta_{\rm c}$ 144.5, 135.2, 131.6, 129.6, 129.1, 128.3, 121.3, 46.7, 37.5, 21.6, 16.2, 10.0, 6.6; **HRMS** (ES+) calc. for C₁₇H₂₁³⁵Cl₂NNaO₂S [M+Na]⁺ 396.0562, found 396.0565. * Note: a single ¹³C resonance is obscured due to signal overlap.

(R,E)-N-(1,2-Dichlorovinyl)-4-methyl-N-(1-phenylethyl)benzenesulfonamide, 2g

Synthesised from (*R*)-*N*-(1-phenylethyl)tosylamide (100 mg, 363 µmol, 1.0 eq.) with K₂CO₃ (151 mg, 1.09 mmol, 3.0 eq.), anhydrous DMF (0.3 mL) and trichloroethylene (0.10 mL, 1.09 mmol, 3.0 eq.) following general procedure **1.2a**. Column chromatography (5% EtOAc/40-60 petroleum ether) afforded **2g** (97 mg, 262 µmol, 72%) as a colourless oil; **R**_f 0.71 (20% EtOAc/40-60 petroleum ether); [*a*]²⁰_{*D*}+3.7 (c 1.0, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 3081, 2971, 1598, 1495, 1455, 1354, 1306, 1164, 1139, 1090, 1049, 971, 808, 766, 699; ¹**H NMR** (400 MHz, CDCl₃)* $\delta_{\rm H}$ 7.72 and 7.62 (2H, d (×2), *J* = 8.1 Hz, *H*6), 7.35–7.06 (7H, m, *H*1, *H*2, *H*3, *H*7), 6.56 and 6.39 (1H, s (×2), *H*9), 5.18–5.05 (*H*4), 2.40 and 2.38 (3H, s (×2), *H*8), 1.62 and 1.48 (3H, d (×2), *J* = 7.1 Hz, *H*5); ¹³**C NMR** (101 MHz, CDCl₃)* $\delta_{\rm c}$ 144.1, 143.9, 138.4, 138.2, 136.8, 129.4, 129.2, 128.5, 128.4, 128.2, 128.11, 128.06, 123.2, 60.5, 59.7, 21.5, 20.5, 18.6; **HRMS** (ES+) calc. for C₁₇H₁₇³⁵Cl₂NNaO₂S [M+Na]⁺ 392.0249, found 392.0236. *Note that the NMR spectra show highly rotameric behaviour.

(E)-N-(tert-Butyl)-N-(1,2-dichlorovinyl)-4-methylbenzenesulfonamide, 2h

Synthesised from *t*-butyltosylamide (100 mg, 440 µmol, 1.0 eq.) with Cs₂CO₃ (215 mg, 660 µmol, 1.5 eq.), DMF (0.3 mL) and trichloroethylene (43 µL, 484 µmol, 1.1 eq.), taking approximately 1–2 hours following general procedure **1.2a**. Column chromatography (5% EtOAc/40-60 petroleum ether) afforded **2h** (119 mg, 369 µmol, 84%) as colourless crystals; **m.p.** 92–93 °C; **R**_f 0.75 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 3087, 2984, 1598, 1351, 1159, 1107, 1089, 951, 812, 787, 706, 670; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.84 (2H, d, *J* = 8.2 Hz, *H*2), 7.26 (2H, d, *J* = 8.2 Hz, *H*3), 6.39 (1H, s, *H*5), 2.41 (3H, s, *H*4), 1.52 (9H, s, *H*1); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm c}$ 143.9, 138.0, 131.5, 129.2, 128.5, 121.6, 64.3, 29.8, 21.5; **HRMS** (ES+) calc. for C₁₃H₁₇³⁵Cl₂NNaO₂S [M+Na]⁺ 344.0249, found 344.0243.

(E)-N-(1,2-Dichlorovinyl)-N-(4-methoxyphenyl)-4-methylbenzenesulfonamide, 2i

Synthesised from *N*-(4-methoxyphenyl)tosylamide (200 mg, 721 µmol, 1.0 eq.) with Cs₂CO₃ (352 mg, 1.08 mmol, 1.5 eq.), DMF (0.5 mL) and trichloroethylene (71 µL, 793 µmol, 1.1 eq.), taking approximately 1–2 hours following general procedure **1.2a**. Column chromatography (20% Et₂O/ 40-60 petroleum ether) afforded **2i** (251 mg, 674 µmol, 94%) as a beige solid. **m.p.** 134 °C; **R**_f 0.28 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 2989, 1599, 1505, 1360, 1252.8, 1165, 1088, 1030, 811, 667; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.63 (2H, d, *J* = 8.3 Hz, *H*4), 7.27–7.21 (4H, m, *H*5, *H*2), 6.85-6.79 (2H, m, *H*3), 6.40 (1H, s, *H*7), 3.79 (3H, s, *H*1), 2.42 (3H, s, *H*6); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm c}$ 160.0, 144.4, 135.5, 130.9, 130.6, 130.0, 129.3, 128.6, 119.8, 114.4, 55.4, 21.6; **HRMS** (ES+) calc. for C₁₆H₁₅³⁵Cl₂NNaO₃S [M+Na]⁺ 394.0042, found 394.0039.

(E)-N-(3,5-Bis(trifluoromethyl)phenyl)-N-(1,2-dichlorovinyl)-4-methylbenzenesulfonamide, 2j

Synthesised from *N*-(3,5-bis(trifluoromethyl)phenyl)tosylamide (100 mg, 261 µmol, 1.0 eq.) with Cs₂CO₃ (171 mg, 523 µmol, 2.0 eq.), DMF (0.2 mL) and trichloroethylene (82 µL, 913 µmol, 3.5 eq.) following general procedure **1.2a** at 60 °C. The trichloroethylene was added in 3 equal portions (27 µL, 1.17 eq.), one portion every 1.5 hours; the reaction reached completion after approximately 5–6 hours. Column chromatography (10% Et₂O/40-60 petroleum ether) afforded **2j** (110 mg, 230 µmol, 88%) as yellow crystals; **m.p.** 86–87°C; **R**_f 0.65 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 3092, 1598, 1463, 1368, 1276, 1169, 1133, 1088, 980, 814, 701, 663; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.85 (1H, s, *H*1), 7.79 (2H, s, *H*2), 7.67 (2H, d, *J* = 8.4 Hz, *H*3), 7.31 (2H, d, *J* = 8.4 Hz, *H*4), 6.58 (1H, s, *H*6), 2.45 (3H, s, *H*5); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm c}$ 145.8, 139.3, 134.5, 133.0 (2C, q, *J* = 34.3 Hz), 129.8, 129.3, 128.6, 127.7 (2C, q, *J* = 3.2 Hz), 122.5 (2C, q, *J* = 273 Hz), 122.4, 122.2 (1C, spt, *J* = 3.6 Hz), 21.6; ¹⁹F NMR (376 MHz, CDCl₃) $\delta_{\rm F}$ –63.1; **HRMS** (ES+) calc. for C₁₇H₁₁³⁵Cl₂F₆NNaO₂S [M+Na]⁺ 499.9684, found 499.9691.

(E)-N-(2-Bromophenyl)-N-(1,2-dichlorovinyl)-4-methylbenzenesulfonamide, 2k

Synthesised from (2-bromophenyl)tosylamide (100 mg, 307 µmol, 1.0 eq.) with Cs₂CO₃ (150 mg, 460 µmol, 1.5 eq.), DMF (0.3 mL) and trichloroethylene (30 µL, 337 µmol, 1.1 eq.), taking approximately 1–2 hours following general procedure **1.2a**. Column chromatography (10% Et₂O/40-60 petroleum ether) afforded **2k** (93 mg, 221 µmol, 72%) as colourless crystals; **m.p.** 133–135 °C; **R**_f 0.37 (10% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 3075, 2922, 1597, 1470, 1369, 1289, 1227, 1169, 1088, 1048, 930, 813, 757, 707; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.67 (2H, d, *J* = 8.3 Hz, *H*5), 7.62–7.55 (2H, m, *H*1), 7.34–7.20 (3H, m, *H*2, *H*3, *H*4) 7.26 (2H, d, *J* = 8.3 Hz, *H*6), 6.42 (1H, s, *H*8), 2.43 (3H, s, *H*7); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm c}$ 144.9, 135.7, 135.3, 134.2, 133.9, 130.7, 129.4, 129.3, 128.9, 127.5, 124.9, 119.4, 21.7; **HRMS** (ES+) calc. for C₁₅H₁₂⁷⁹Br³⁵Cl₂NNaO₂S [M+Na]⁺ 441.9041, found 441.9057.

(E)-N-(1,2-Dichlorovinyl)-4-methyl-N-(2-vinylphenyl)benzenesulfonamide, 21

Synthesised from *N*-(2-vinylphenyl)tosylamide (145 mg, 530 µmol, 1.0 eq.) with K₂CO₃ (220 mg, 1.59 mmol, 3.0 eq.), anhydrous DMF (0.4 mL) and trichloroethylene (0.14 mL, 1.59 mmol, 3.0 eq.) following general procedure **1.2a**. Column chromatography (5% EtOAc/40-60 petroleum ether) afforded **2l** (161 mg, 437 µmol, 82%) as a pale grey solid; **m.p.** 102–104 °C; **R**_f 0.52 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 3086, 1597, 1482, 1449, 1366, 1286, 1168, 1111, 1076, 928, 814, 772, 705, 675, 666; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.66–7.59 (3H, m, *H*4, *H*8), 7.39–7.14 (6H, m, *H*3, *H*5, *H*6, *H*7, *H*9), 6.40 (1H, s, *H*11), 5.65 (1H, dd, *J* = 17.6, 1.2 Hz, *H*2), 5.24 (1H, dd, *J* = 11.0, 1.2 Hz, *H*1), 2.42 (3H, s, *H*10); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm c}$ 144.8, 138.6, 135.3, 134.6, 133.1, 131.2, 130.7, 129.7, 129.4, 128.9, 127.9, 126.4, 119.4, 116.0, 21.6; **HRMS** (ES+) calc. for C₁₇H₁₅³⁵Cl₂NNaO₂S [M+Na]⁺ 390.0093, found 390.0082.

(E)-N-(1,2-Dichlorovinyl)-N-(2,6-diisopropylphenyl)-4-methylbenzenesulfonamide, 2m

Synthesised from *N*-(2,6-diisopropylphenyl)tosylamide (100 mg, 302 µmol, 1.0 eq.) with Cs₂CO₃ (147 mg, 453 µmol, 1.5 eq.), DMF (0.2 mL) and trichloroethylene (30 µL, 332 µmol, 1.1 eq.), taking approximately 1 hour following general procedure **1.2a**. Column chromatography (20% Et₂O/40-60 petroleum ether) afforded **2m** (128 mg, 300 µmol, 99%) as pale yellow crystals; **m.p.** 140 °C; **R**_f 0.63 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 2973, 1598, 1466, 1359, 1168, 1075, 932, 809, 666; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.67–7.62 (2H, m, *H*5), 7.43–7.37 (1H, m, *H*1), 7.27–7.21 (4H, m, *H*2, *H*6), 6.19 (1H, s, *H*8), 3.37 (2H, spt, *J* = 6.6 Hz, *H*3), 2.41 (3H, s, *H*7), 1.17 (6H, d, *J* = 6.6 Hz, *H*4), 1.12 (6H, d, *J* = 6.6 Hz, *H*4); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm c}$ 150.6, 144.4, 136.9, 132.0, 131.7, 130.1, 129.1, 128.9, 125.3, 113.3, 28.9, 25.2, 24.0, 21.6; HRMS (ES+) calc. for C₂₁H₂₅³⁵Cl₂NNaO₂S [M+Na]⁺ 448.0875, found 448.0881.

(E)-N-(1,2-Dichlorovinyl)-5-nitro-1H-indole, 2n

Synthesised from 5-nitroindole (100 mg, 617 µmol, 1.0 eq.) with Cs₂CO₃ (301 mg, 925 µmol, 1.5 eq.), DMF (0.5 mL) and trichloroethylene (61 µL, 678 µmol, 1.1 eq.), taking approximately 2–3 hours following general procedure **1.2a**. Column chromatography (10% EtOAc/40-60 petroleum ether) afforded **2n** (125 mg, 486 µmol, 79%) as yellow crystals; **m.p.** 74–75 °C; **R**_f 0.56 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 3092, 1624, 1512, 1456, 1341, 1316, 1193, 1070, 898, 826, 740, 710; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 8.57 (1H, d, *J* = 2.2 Hz, *H*3), 8.19 (1H, dd, *J* = 9.0, 2.2 Hz, *H*4), 7.39 (1H, d, *J* = 9.0 Hz, *H*5), 7.33 (1H, d, *J* = 3.5 Hz, *H*1), 6.83 (1H, dd, *J* = 3.5, 0.7 Hz, *H*2), 6.65 (1H, s, *H*6); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm c}$ 143.1, 137.8, 130.0, 128.2, 126.6, 118.6, 118.0, 115.6, 111.4, 107.4; **HRMS** (ES+) calc. for C₁₀H₆³⁵Cl₂N₂NaO₂ [M+Na]⁺ 278.9699, found 278.9697.

(E)-N-(1,2-Dichlorovinyl)-1H-indole-3-carbaldehyde, 20

Synthesised from 1*H*-indole-3-carbaldehyde (100 mg, 689 µmol, 1.0 eq.) with Cs₂CO₃ (337 mg, 1.03 mmol, 1.5 eq.), DMF (0.5 mL) and trichloroethylene (68 µL, 758 µmol, 1.1 eq.), taking approximately 1–2 hours following general procedure **1.2a**. Column chromatography (10% Et₂O/40-60 petroleum ether) afforded **2o** (130 mg, 541 µmol, 79%) as a pale yellow solid; **m.p.** 85 °C; **R**_f 0.37 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 3078, 1664, 1537, 1453, 1167, 1047, 827, 746; ¹H NMR (400 MHz, CDCl₃) δ_{H} 10.10 (1H, s, CHO), 8.38–8.32 (1H, m, H2), 7.80 (1H, s, H1), 7.46–7.35 (3H, m, H3, H4, H5) 6.70 (1H, s, H6); ¹³C NMR (101 MHz, CDCl₃) δ_{c} 184.9, 137.3, 136.0, 126.4, 125.2, 124.8, 124.1, 122.4, 121.2, 116.5, 111.5; **HRMS** (ES+) calc. for C₁₁H₇³⁵Cl₂NNaO [M+Na]⁺ 261.9797, found 261.9804.

(E)-5-Bromo-1-(1,2-dichlorovinyl)-1H-indole, 2p

Synthesised from 5-bromoindole (100 mg, 510 µmol, 1.0 eq.) with Cs₂CO₃ (249 mg, 765 µmol, 1.5 eq.), DMF (0.4 mL) and trichloroethylene (50 µL, 561 µmol, 1.1 eq.), taking approximately 2–3 hours following the general procedure. Column chromatography (10% Et₂O/40-60 petroleum ether) afforded **2p** (101 mg, 347 µmol, 68%) as a colourless oil (yellows on standing); **R**_f 0.68 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 3089, 1623, 1446, 1365, 1189, 1054, 876, 823, 714; ¹H NMR (400 MHz, CDCl₃)* $\delta_{\rm H}$ 7.78 (1H, d, *J* = 1.5 Hz, (*Z*)-*H*3), 7.66 (1H, d, *J* = 1.7 Hz, (*E*)-*H*3), 7.33 (1H, dd, *J* = 8.5, 2.0 Hz, (*Z*)-*H*4), 7.29 (1H, dd, *J* = 8.7, 1.7 Hz, (*E*)-*H*4), 7.13 (1H, d, *J* = 8.7 Hz, (*E*)/(*Z*)-*H*5), 7.06 (1H, d, *J* = 3.4 Hz, (*E*)/(*Z*)-*H*1), 6.50 (1H, dd, *J* = 3.4, 0.7 Hz, (*E*)/(*Z*)-*H*2), 6.46 (1H, s, (*Z*)-*H*6), 6.43 (1H, s, (*E*)-*H*6); ¹³C NMR (101 MHz, CDCl₃)* $\delta_{\rm c}$ 133.8, 133.0, 131.6, 130.4, 128.1, 127.5, 127.3, 126.5, 126.0, 123.8, 123.1, 116.0, 115.4, 114.9, 114.2, 113.1, 112.9, 105.4, 100.7; HRMS (FI+) calc. for C₁₀H₆⁷⁹Br ³⁵Cl₂N [M]⁺ 288.9061, found 288.9059. *Note: the spectra show a mixture of inseparable (*E*)/(*Z*) isomers (94:6 (*E*):(*Z*)).

Synthesised from 1*H*-indole (100 mg, 854 µmol, 1.0 eq.), with NaH (68 mg (60% in mineral oil), 1.71 mmol, 2.0 eq.), anhydrous DMF (2 × 0.6 mL) and trichloroethylene (77 µL, 854 µmol, 1.0 eq.) following general procedure **1.2c**. Column chromatography (40-60 petroleum ether) afforded **2q** (146 mg, 688 µmol 80%) as a colourless oil; **R**_f 0.73 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 3088, 1739, 1622, 1452, 1326, 1209, 1190, 886, 820, 739, ; ¹H NMR (400 MHz, CDCl₃)* $\delta_{\rm H}$ 7.55 (1H, d, *J* = 7.8 Hz, *H*3), 7.32–7.26 (1H, m, *H*6), 7.21 (1H, td, *J* = 7.6, 1.1 Hz, *H*5), 7.17–7.10 (1H, m, *H*4), 7.06 (1H, d, *J* = 3.4 Hz, *H*1) 6.58 (1H, dd, *J* = 3.4, 0.7 Hz, *H*2), 6.40 (1H, s, *H*7); ¹³C NMR (101 MHz, CDCl₃)* $\delta_{\rm c}$ 135.1, 128.7, 128.0, 126.9, 123.1, 121.5, 121.3, 113.6, 111.5, 106.0; **HRMS** (FI+) calc. for C₁₀H₇³⁵Cl₂N [M]⁺ 210.9956, found 210.9954. *Note: the spectra show a mixture of inseparable (*E*)/(*Z*) isomers (93:7 (*E*):(*Z*)), data above is for (*E*)-isomer only.

(E)-1-(1,2-Dichlorovinyl)-1H-benzo[d][1,2,3]triazole, 2r

Synthesised from 1*H*-benzotriazole (100 mg, 839 µmol, 1.0 eq.) with Cs₂CO₃ (410 mg, 1.26 mmol, 1.5 eq.), DMF (0.6 mL) and trichloroethylene (83 µL, 923 µmol, 1.1 eq.), taking less than 1 hour following the general procedure. Column chromatography (10% Et₂O/40-60 petroleum ether) afforded **2r** (144 mg, 673 µmol, 80%) as a colourless oil; **R**_f 0.41 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 3086, 1624, 1451, 1382, 1289, 1155, 1032, 938, 834, 743; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 8.10 (1H, d, *J* = 8.3 Hz, *H*1), 7.58 (1H, ddd, *J* = 8.3, 6.9, 1.2 Hz, *H*3), 7.52 (1H, d, *J* = 8.3 Hz, *H*4), 7.43 (1H, ddd, *J* = 8.3, 6.9, 1.2 Hz, *H*2), 6.81 (1H, s, *H*5); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm c}$ 145.1, 131.8, 129.0, 124.9, 124.4, 120.4, 117.9, 110.2; **HRMS** (ES+) calc. for C₈H₅³⁵Cl₂N₃Na [M+Na]⁺ 235.9753, found 235.9755.

(E)-N-(1,2-Dichlorovinyl)-1H-imidazole, 2s

Synthesised from imidazole (100 mg, 1.47 mmol, 1.0 eq.) with Cs_2CO_3 (718 mg, 2.21 mmol, 1.5 eq.), DMF (1 mL) and trichloroethylene (0.15 mL, 1.62 mmol, 1.1 eq.), taking less than 1 hour following the general procedure. Column chromatography (30% EtOAc/40-60 petroleum ether) afforded **2s** (198 mg, 1.21 mmol,

83%) as a pale yellow oil; \mathbf{R}_{f} 0.15 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm^{-1}) 3093, 1626, 1516, 1477, 1371, 1304, 1204, 1103, 1073, 1030, 898, 830, 730, 652, 631; ¹H NMR (400 MHz, CDCl₃) δ_{H} 7.71 (1H, app. s, *H*3), 7.09 (1H, dd, *J* = 1.6, 1.4 Hz, *H*2), 7.04–7.01 (1H, m, *H*1), 6.28 (1H, s, *H*4); ¹³C NMR (101 MHz, CDCl₃) δ_{c} 136.9, 129.5, 124.9, 118.5, 111.1; MS (ESI⁺) *m/z* 163.0 (100, [{³⁵Cl₂}M+H]⁺), 185.0 (75, [{³⁵Cl₂}M+Na]⁺), 187.0 (50, [{³⁵Cl³⁷Cl}M+Na]⁺), 189.0 (8, [{³⁷Cl₂}M+Na]⁺). Data are consistent with literature values.²

(E)-3-(1,2-Dichlorovinyl)oxazolidin-2-one, 2t

Synthesised from 2-oxazolidinone (100 mg, 1.15 mmol, 1.0 eq.) with Cs₂CO₃ (561 mg, 1.72 mmol, 1.5 eq.), DMF (1 mL) and trichloroethylene (0.11 mL, 1.26 mmol, 1.1 eq.), taking approximately 1–2 hours following the general procedure. Column chromatography (25% EtOAc/40-60 petroleum ether) afforded **2t** (179 mg, 0.98 mmol, 85%) as colourless crystals. Crystals suitable for X-ray diffraction were grown by vapour diffusion of pentane into a concentrated solution of **2t** in benzene; **R**_f 0.10 (10% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 3094, 1757, 1622, 1480, 1395, 1312, 1221, 1100, 1033, 895, 820, 756; ¹H **NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 6.34 (1H, s, H3), 4.54–4.43 (2H, m, H1), 3.88–3.78 (2H, m, H2); ¹³C **NMR** (101 MHz, CDCl₃) $\delta_{\rm c}$ 153.7, 127.0, 116.8, 62.8, 44.0; **HRMS** (ES+) calc. for C₅H₅³⁵Cl₂NNaO₂ [M+Na]⁺ 203.9590, found 203.9591.

(E)-Methyl (2-bromophenyl)(1,2-dichlorovinyl)carbamate, 2u

Synthesised from methyl (2-bromophenyl)carbamate (100 mg, 435 µmol, 1.0 eq.) with Cs₂CO₃ (212 mg, 652 µmol, 1.5 eq.), DMF (0.3 mL) and trichloroethylene (43 µL, 478 µmol, 1.1 eq.), taking approximately 1–2 hours following the general procedure. Column chromatography (10% EtOAc/40-60 petroleum ether) afforded **2u** (123 mg, 378 µmol, 87%) as a low melting solid; **R**_f 0.31 (10% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 3074, 2949, 1740, 1475, 1439, 1309, 1264, 1157, 1070, 1019, 527, 757; ¹H NMR (400 MHz, CDCl₃)* $\delta_{\rm H}$ 7.66 (1H, dd, *J* = 8.1, 1.2 Hz, *H*1), 7.45–7.32 (2H, m, *H*2, *H*3), 7.27–7.19 (1H, m, H4), 6.33 (1H, br. s, *H*6), 3.82 and 3.80 (3H, br. s and s, *H*5); ¹³C NMR (101 MHz, CDCl₃)* $\delta_{\rm c}$ 152.0, 137.3, 133.8, 131.1, 129.8, 128.8, 128.5, 123.5, 155.7, 54.1; **HRMS** (ES+) calc. for C₁₀H₈⁷⁹Br³⁵Cl₂NNaO₂ [M+Na]⁺ 345.9008, found 345.9017. *Note that the spectra show a rotameric nature.

(E)-N-Benzyl-N-(1,2-dichlorovinyl)-4-nitrobenzenesulfonamide, 2v

Synthesised from *N*-benzyl nosylamide (200 mg, 684 µmol, 1.0 eq.) with Cs₂CO₃ (445 mg, 1.37 mmol, 2.0 eq.), DMF (0.6 mL) and trichloroethylene (0.19 mL, 2.05 mmol, 3.0 eq.) following the general procedure. The trichloroethylene was added in 3 equal portions (63 µL, 1.0 eq.), one portion every 1.5 hours; and reaction completion occurred after approximately 5–6 hours. Column chromatography (10% EtOAc/40-60 petroleum ether) afforded **2v** (235 mg, 607 µmol, 89%) as yellow crystals; **m.p.** 163–164 °C; **R**_f 0.57 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 3105, 1607, 1531, 1402, 1350, 1172, 1089, 1028, 855, 802, 738; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 8.44–8.35 (2H, m, *H*6), 8.17–8.07 (2H, m, *H*5), 7.36–7.27 (5H, m, *H*1, *H*2, *H*3), 6.34 (1H, s, *H*7), 5.28–3.70 (2H, br. m, *H*4); ¹³**C NMR** (101 MHz, CDCl₃) $\delta_{\rm c}$ 150.6, 144.0, 132.5, 129.6, 129.5, 128.8, 128.5, 124.3, 122.6, 52.5; **HRMS** (EI+) calc. for C₁₅H₁₂³⁵Cl₂NO₂S [M]⁺ 385.9895, found 385.9908. Note: a single ¹³C resonance is obscured due to signal overlap.

(E)-tert-Butyl benzyl(1,2-dichlorovinyl)carbamate, 2w

Synthesised from *t*-butyl benzylcarbamate (100 mg, 482 µmol, 1.0 eq.) with NaH (41 mg (60% in mineral oil), 1.01 mmol, 2.1 eq.), anhydrous DMF (2 × 0.3 mL), and trichloroethylene (43 µL, 482 µmol, 1.0 eq.) following general procedure **1.2b**. Column chromatography (40-60 petroleum ether \rightarrow 5% Et₂O/40-60 petroleum ether) afforded **2w** (97 mg, 321 µmol, 67%) as a colourless oil; **R**_f 0.72 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 2924, 2854, 1722, 1629, 1456, 1368, 1315, 1239, 1155, 930, 859, 825, 740, 699; ¹**H** NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.42–7.25 (5H, m, *H*1, *H*2, *H*3), 6.08 (1H, br. s, *H*7), 4.96–4.31 (2H, br. m, *H*4), 1.50 (9H, s, *H*5); ¹³**C** NMR (101 MHz, CDCl₃) $\delta_{\rm c}$ 152.2, 135.9, 131.7, 128.9, 128.2, 127.7, 115.3, 82.1, 49.8, 28.0; **HRMS** (ES+) calc. for C₁₄H₁₇³⁵Cl₂NNaO₂ [M+Na]⁺ 324.0529, found 324.0524.

(E)-tert-Butyl butyl(1,2-dichlorovinyl)carbamate, 2x

Synthesised from *t*-butyl butylcarbamate (100 mg, 577 µmol, 1.0 eq.) with NaH (49 mg (60% in mineral oil), 1.21 mmol, 2.1 eq.), anhydrous DMF (2 × 0.4 mL), and trichloroethylene (49 µL, 577 µmol, 1.0 eq.) following general procedure **1.2b**. Column chromatography (40-60 petroleum ether) afforded **2x** (90 mg, 335 µmol, 58%) as a colourless oil; **R**_f 0.80 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm^{-1}) 2962, 1719, 1457, 1368, 1302, 1254, 1148, 1087, 916, 823; ¹**H NMR** (400 MHz, CDCl₃)* $\delta_{\rm H}$ 6.16 (1H, br. s, *H*6), 3.64–3.16 (2H, br. m, *H*4), 1.68–1.47 (2H, br. m, *H*3), 1.46 (9H, s, H5), 1.39–1.25 (2H, br. m, *H*2), 0.91 (3H, t, *J* = 7.3 Hz, *H*1); ¹³**C NMR** (101 MHz, CDCl₃)* $\delta_{\rm c}$ 152.2, 132.2, 114.7, 81.6, 45.3, 29.9, 28.0, 20.0, 13.7; **HRMS** (FI+) calc. for C₁₁H₁₉³⁵Cl₂NO₂ [M]⁺ 267.0793, found 267.0789. * Note: the spectra show a mixture of inseparable (*E*)/(*Z*) isomers (88:12 (*E*):(*Z*)), data above for (*E*) isomer only.

(E)-tert-Butyl (1,2-dichlorovinyl)(phenyl)carbamate, 2y

Synthesised from *t*-butyl phenylcarbamate (100 mg, 517 µmol, 1.0 eq.) with TBAHS (35 mg, 104 µmol, 0.2 eq.), toluene (1.5 mL), CH₂Cl₂ (1 mL), trichloroethylene (140 µL, 1.55 mmol, 3.0 eq.) and 25% w/v aqueous NaOH (1.5 mL) following general procedure **1.2c**. Column chromatography (5% Et₂O/40-60 petroleum ether) afforded **2y** (142 mg, 493 µmol, 95%) as a pale yellow oil; **R**_f 0.67 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 3081, 2928, 1730, 1598, 1495, 1369, 1315, 1154, 1014, 900, 826, 756, 693; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.41–7.34 (4H, m, *H*2, *H*3), 7.41–7.31–7.24 (1H, m, *H*1), 6.31 (1H, s, *H*5), 1.52 (9H, s, *H*4); ¹³**C NMR** (101 MHz, CDCl₃) $\delta_{\rm c}$ 151.3, 138.5, 132.0, 128.9, 127.0, 125.7, 115.9, 82.8, 28.0; **MS** (ESI+) *m*/*z* 232.0 (100, [{³⁵Cl₂}M-*t*Bu+2H]⁺), 234.1 (69, [{³⁵Cl³⁷Cl}M-*t*Bu+2H]⁺), 236.0 (15, [{³⁷Cl₂}M-*t*Bu+2H]⁺), 310.1 (26, [{³⁵Cl₂}M+Na]⁺), 234.1 (19, [{³⁵Cl³⁷Cl}M+Na]⁺). Data are consistent with literature values.²

(E)-1,1-Dibenzyl-3-(1,2-dichlorovinyl)-3-phenylurea, 2z

Synthesised from *N*,*N*-dibenzyl-*N*⁻phenylurea (500 mg, 1.58 mmol, 1.0 eq.) with TBAHS (107 mg, 316 μ mol, 0.2 eq.), toluene (5 mL), CH₂Cl₂ (4 mL), trichloroethylene (0.40 mL, 4.74 mmol, 3.0 eq.) and 25% w/v aqueous NaOH (5 mL) following general procedure **1.2c**. Column chromatography (5% Et₂O/40-60 petroleum ether) afforded **2z** (572 mg, 1.39 mmol, 88%) as colourless needles; **m.p.** 105–107 °C; **R**_f 0.65 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 2909, 1669, 1595, 1494, 1455, 1404, 1227, 1142, 1079, 908, 814, 731, 694; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.34–7.03 (15H, m, Ph*H* (×3)), 6.25 (1H, s, *H*2), 4.35 (1H, s, *H*1); ¹³**C NMR** (101 MHz, CDCl₃) $\delta_{\rm c}$ 157.9, 140.7, 136.1, 133.6, 129.5, 128.5, 128.4, 127.6, 126.2, 124.1, 113.9, 50.4; **HRMS** (ES+) calc. for C₂₃H₂₀³⁵Cl₂N₂NaO [M+Na]⁺ 433.0845, found 433.0842.

(E)-Di-tert-butyl 1-butyl-2-(1,2-dichlorovinyl)hydrazine-1,2-dicarboxylate, 2aa

Synthesised from di-*t*-butyl 1-butylhydrazine-1,2-dicarboxylate³ (150 mg, 520 µmol, 1.0 eq.) with TBAHS (35 mg, 104 µmol, 0.2 eq.), toluene (1.5 mL), trichloroethylene (0.14 mL, 1.56 mmol, 3.0 eq.) and 25% w/v aqueous NaOH (1.5 mL) following general procedure **1.2c**. Column chromatography (40-60 petroleum ether \rightarrow 5% Et₂O/40-60 petroleum ether) afforded **2aa** (151 mg, 394 µmol, 76%) as pale yellow oil; **R**_f 0.79 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max}/ cm⁻¹) 2978, 1744, 1716, 1456, 1393, 1368, 1298, 1255, 1147, 831; ¹H NMR (400 MHz, CDCl₃)* $\delta_{\rm H}$ 6.32–6.05 (1H, m, *H*7), 3.63–3.15 (2H, br. m, *H*4), 1.70–1.53 (2H, br. m, *H*3), 1.52–1.37 (18H, br. m, *H*5, *H*6), 1.36–1.19 (2H, br. m, *H*2), 0.99–0.80 (3H, br. m, *H*1); ¹³C NMR (101 MHz, CDCl₃)* $\delta_{\rm c}$ 154.2, 154.0, 150.2, 150.0, 130.5, 129.6, 115.8, 115.3, 114.5, 114.0, 83.1, 83.0, 81.5, 81.3, 50.5, 49.9, 49.0, 48.6, 30.1, 29.9, 29.7, 28.1, 28.0, 27.8, 19.9, 19.8, 13.7; HRMS (ES+) calc. for C₁₆H₂₈³⁵Cl₂N₂NaO₄ [M+Na]⁺ 405.1318, found 405.1312. *Note that the spectra show a highly rotameric nature.

(E)-Di-tert-butyl 1-(1,2-dichlorovinyl)-2-(oct-1-yn-1-yl)hydrazine-1,2-dicarboxylate, 2bb

Synthesised from di-*t*-butyl 1-(oct-1-yn-1-yl)hydrazine-1,2-dicarboxylate⁴ (100 mg, 294 µmol, 1.0 eq.) with TBAHS (20 mg, 58.7 µmol, 0.2 eq.), toluene (0.9 mL) trichloroethylene (79 µL, 882 µmol, 3.0 eq.) and 25% w/v aqueous NaOH (0.9 mL) following general procedure **1.2c**. Column chromatography (5% EtOAc/40-60 petroleum ether) afforded **2bb** (105 mg, 241 µmol, 82%) as a pale yellow oil; **R**_f 0.63 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 2932, 1752, 1458, 1370, 1321, 1253, 1151, 853; ¹H **NMR** (400 MHz, CDCl₃)* $\delta_{\rm H}$ 6.30 and 6.23 (1H, br. m, *H*9), 2.28 (2H, br. t, *J* = 6.4 Hz, *H*6), 1.58–1.17 (26H, br. m, *H*2, *H*3, *H*4, *H*5, *H*7, *H*8), 0.85 (3H, br. t, *J* = 6.7 Hz, *H*1); ¹³C **NMR** (101 MHz, CDCl₃)* $\delta_{\rm c}$ 152.0, 148.9, 138.9, 128.9, 128.4, 117.4, 116.8, 84.1, 83.8, 72.5, 71.6, 31.3, 28.4, 27.9, 28.0, 27.8, 22.5, 18.4, 14.0; **HRMS** (ES+) calc. for C₂₀H₃₂³⁵Cl₂N₂NaO₄ [M+Na]⁺ 457.1631, found 457.1627. *Note that the spectra show a highly rotameric nature.

1.4b Ynamides:

N-Benzyl-4-methyl-N-(prop-1-yn-1-yl)benzenesulfonamide, 1a

Synthesised from (*E*)-*N*-benzyl-*N*-(1,2-dichlorovinyl)tosylamide **2a** (100 mg, 281 µmol, 1.0 eq.) in anhydrous THF (2.8 mL) with phenyllithium (0.31 mL of a 2.0 M solution in dibutyl ether, 618 µmol, 2.2 eq.) and methyl iodide (21 µL, 337 µmol, 1.2 eq.) following general procedure **1.2d**. Column chromatography (5% EtOAc/40-60 petroleum ether) afforded **1a** (71 mg, 237 µmol, 85%); ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.65 (2H, d, *J* = 8.3 Hz, *H*3), 7.27–7.18 (7H, m, *H*2, *H*5, *H*6, *H*7), 4.34 (2H, s, *H*4), 2.34 (3H, s, *H*1), 1.71 (3H, s, *H*8); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm c}$ 144.5, 134.9, 134.8, 129.7, 128.7, 128.3, 128.2, 127.7, 72.3, 66.3, 55.6, 21.7, 3.4; MS (ESI+) *m/z* 300.1 (100, [M+H]⁺). Data are consistent with literature values.⁴

N-Benzyl-4-methyl-N-(pent-1-yn-1-yl)benzenesulfonamide, 1b

Synthesised from (*E*)-*N*-benzyl-*N*-(1,2-dichlorovinyl)tosylamide **2a** (100 mg, 281 µmol, 1.0 eq.) in anhydrous THF (2.8 mL) with phenyllithium (0.31 mL of a 2.0 M solution in dibutyl ether, 618 µmol, 2.2 eq.) and 1-iodopropane (33 µL, 337 µmol, 1.2 eq.) following general procedure **1.2d**. Column chromatography (10% EtOAc/40-60 petroleum ether) afforded **1b** (73 mg, 223 µmol, 79%) as a pale yellow oil; **R**_f 0.46 (10% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 2963, 2936, 2271, 1597, 1496, 1456, 1362, 1168, 1091, 1025, 814, 701, 654; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.75 (2H, d, *J* = 8.3 Hz, *H*3), 7.34–7.24 (7H, m, *H*2, *H*5, *H*6, *H*7), 4.44 (2H, s, *H*4), 2.44 (3H, s, *H*1), 2.14 (2H, t, *J* = 7.1 Hz, *H*8), 1.40 (2H, sxt, *J* = 7.1 Hz, *H*9), 0.83 (3H, t, *J* = 7.1 Hz, *H*10); ¹³**C NMR** (101 MHz, CDCl₃) $\delta_{\rm c}$ 144.2, 134.8, 134.7, 129.5, 128.7, 128.3, 128.0, 127.6, 73.4, 70.7, 55.5, 22.2, 21.6, 20.3, 13.2; **HRMS** (ES+) calc. for C₁₉H₂₁NNaO₂S [M+Na]⁺ 350.1185, found 350.1190.

N-Benzyl-4-methyl-N-(3-phenylprop-1-yn-1-yl)benzenesulfonamide, 1c

Synthesised from (*E*)-*N*-benzyl-*N*-(1,2-dichlorovinyl)tosylamide **2a** (100 mg, 281 µmol, 1.0 eq.) in anhydrous THF (2.8 mL) with phenyllithium (0.31 mL of a 2.0 M solution in dibutyl ether, 618 µmol, 2.2 eq.) and benzyl bromide (40 µL, 337 µmol, 1.2 eq.) following general procedure **1.2d**. Column chromatography (10% Et₂O /40-60 petroleum ether) afforded **1c** (80 mg, 213 µmol, 76%) as a colourless oil; **R**_f 0.47 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 3031, 2932, 2255, 1597, 1495, 1454, 1362, 1168, 968; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.72 (2H, d, *J* = 8.3 Hz, *H*3), 7.31–7.17 (10H, m, Ph*H* (×2), *H*2), 7.11-7.03 (2H, m, Ph*H*), 4.47 (2H, s, *H*4), 3.57 (2H, s, *H*8), 2.41 (3H, s, *H*1); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm c}$ 144.4, 136.7, 134.6, 134.6, 129.6, 128.7, 128.4, 128.3, 128.1, 127.7, 127.7, 126.4, 75.5, 66.5, 55.4, 24.7, 21.6; **HRMS** (ES+) calc. for C₂₃H₂₁NNaO₂S [M+Na]⁺ 398.1185, found 398.1190.

N-Benzyl-N-(3-hydroxy-3-phenylprop-1-yn-1-yl)-4-methylbenzenesulfonamide, 1d

Synthesised from (*E*)-*N*-benzyl-*N*-(1,2-dichlorovinyl)tosylamide **2a** (100 mg, 281 µmol, 1.0 eq.) in anhydrous THF (2.8 mL) with phenyllithium (0.31 mL of a 2.0 M solution in dibutyl ether, 618 µmol, 2.2 eq.) and benzaldehyde (34 µL, 337 µmol, 1.2 eq.) following general procedure **1.2d**. Column chromatography (20% EtOAc/40-60 petroleum ether) afforded **1d** (86 mg, 220 µmol, 78%) as a colourless oil; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.69 (2H, d, *J* = 8.3 Hz, *H*3), 7.31–7.22 (12H, Ph*H* (×2), *H*2), 5.44 (1H, d, *J* = 5.4 Hz, *H*8), 4.52 (1H, AB d, *J*_{AB} = 13.8 Hz, *H*4_A), 4.44 (2H, AB d, *J*_{BA} = 13.8 Hz, *H*4_B), 2.41 (3H, s, *H*1), 2.35 (1H, d, *J* = 5.4 Hz, O*H*); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm c}$ 144.7, 140.5, 134.4, 134.2, 129.7, 128.8, 128.5, 128.4, 128.3, 128.1, 127.7, 126.6, 80.2, 71.6, 64.6, 55.3, 21.6; MS (ESI⁺) *m/z* 378.1 (63, [M+H]⁺), 400.1 (100, [M+Na]⁺). Data are consistent with literature values.⁵

Ethyl 3-(N-benzyl-4-methylphenylsulfonamido)propiolate, 1e

Synthesised from (*E*)-*N*-benzyl-*N*-(1,2-dichlorovinyl)tosylamide **2a** (100 mg, 281 µmol, 1.0 eq.) in anhydrous THF (2.8 mL) with phenyllithium (0.31 mL of a 2.0 M solution in dibutyl ether, 618 µmol, 2.2 eq.) and ethyl chloroformate (32 µL, 337 µmol, 1.2 eq.) following general procedure **1.2d**. Column chromatography (10% EtOAc/40-60 petroleum ether) afforded **1e** (84 mg, 235 µmol, 84%) as a colourless oil; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.71 (2H, d, *J* = 8.4 Hz, *H*3), 7.37–7.22 (7H, m, *H*2, *H*5, *H*6, *H*7), 4.62 (2H, s, *H*4), 4.18 (2H, q, *J* = 7.2 Hz, *H*8), 2.44 (3H, s, *H*1), 1.28 (3H, t, *J* = 7.2 Hz, *H*9); ¹³**C NMR** (101 MHz, CDCl₃) $\delta_{\rm c}$ 154.0, 145.4, 134.3, 133.5, 129.9, 128.64, 128.60, 127.8, 82.7, 68.1, 61.5, 55.5, 21.7, 14.1;* **MS** (ES⁺) *m/z* 358.1 (78, [M+H]⁺), 380.1 (100, [M+Na]⁺). Data are consistent with literature values.⁶ * Note: a single ¹³C resonance is obscured due to signal overlap.

N-Benzyl-N-(4-chloro-3-hydroxy-3-methylbut-1-yn-1-yl)-4-methylbenzenesulfonamide, 1f

Synthesised from (*E*)-*N*-benzyl-*N*-(1,2-dichlorovinyl)tosylamide **2a** (100 mg, 281 µmol, 1.0 eq.) in anhydrous THF (2.8 mL) with phenyllithium (0.31 mL of a 2.0 M solution in dibutyl ether, 618 µmol, 2.2 eq.) and chloroacetone (27 µL, 337 µmol, 1.2 eq.) following general procedure **1.2d**. Column chromatography (4% EtOAc/10% CH₂Cl₂/40-60 petroleum ether) afforded **1f** (78 mg, 205 µmol, 73%) as a colourless oil; **R**_f 0.24 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm^{-1}) 3502, 2932, 2247, 1597, 1496, 1364, 1168, 1090, 1022, 738, 700, 666; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.75 (2H, d, *J* = 8.6 Hz, *H*3), 7.30 (2H, d, *J* = 8.7 Hz, *H*2), 7.31–7.22 (5H, m, *H*5, *H*6, *H*7), 4.47 (1H, AB d, *J*_{AB} = 13.9 Hz, *H*4_A), 4.43 (1H, AB d, *J*_{BA} = 13.9 Hz, *H*4_B), 3.51 (1H, AB d, *J*_{AB} = 10.3 Hz, *H*9_ACl), 3.45 (1H, AB d, *J*_{BA} = 10.3 Hz, *H*9_B), 2.77 (1H, s, O*H*), 2.43 (3H, s, *H*1), 1.42 (3H, s, *H*8); ¹³C **NMR** (101 MHz, CDCl₃) $\delta_{\rm c}$ 144.8, 134.3, 134.0, 129.7, 129.0, 128.4, 128.4, 127.7, 78.1, 72.4, 67.8, 55.3, 54.0, 26.8, 21.6; **HRMS** (ES+) calc. for C₁₉H₂₀³⁵CINNaO₃S [M+Na]⁺ 400.0745, found 400.0748.

N-Benzyl-N-ethynyl-4-methylbenzenesulfonamide, 1g

Synthesised from (*E*)-*N*-benzyl-*N*-(1,2-dichlorovinyl)tosylamide **2a** (100 mg, 281 µmol, 1.0 eq.) in anhydrous THF (2.8 mL) with phenyllithium (0.31 mL of a 2.0 M solution in dibutyl ether, 618 µmol, 2.2 eq.). Water and Et₂O (2 mL each) was added and the reaction worked up following general procedure **1.2d**. Column chromatography (10% EtOAc/40-60 petroleum ether) afforded **1g** (73 mg, 256 µmol, 91%) as colourless crystals; **m.p.** 99–101 °C; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.77 (2H, d, *J* = 8.3 Hz, *H*3), 7.36–7.26 (7H, m, *H*2, *H*5, *H*6, *H*7), 4.50 (2H, s, *H*4), 2.70 (1H, s, *H*8), 2.44 (3H, s, *H*1); ¹³C **NMR** (101 MHz, CDCl₃) $\delta_{\rm c}$ 144.8, 134.6, 134.3, 129.8, 128.7, 128.5, 128.4, 127.7, 76.2, 59.7, 55.2, 21.7; **MS** (ESI+) *m/z* 286.1 (100, [M+H]⁺), 318.1 (86, [M+MeOH+H]⁺). Data are consistent with literature values.⁷ Note that this compound is sensitive to moisture.

N-benzyl-N-(4-hydroxypent-1-yn-1-yl)-4-methylbenzenesulfonamide, 1h

Synthesised from (*E*)-*N*-benzyl-*N*-(1,2-dichlorovinyl)tosylamide **2a** (100 mg, 281 µmol, 1.0 eq.) in anhydrous THF (2.8 mL) with phenyllithium (0.31 mL of a 2.0 M solution in dibutyl ether, 618 µmol, 2.2 eq.), followed by propylene oxide (23 µL, 337 µmol, 1.2 eq.) and BF₃·Et₂O (18 µL, 377 µmol, 1.2 eq), according to procedure **1.2d**. Column chromatography (20% EtOAc/40-60 petroleum ether \rightarrow 50% EtOAc/40-60 petroleum ether) afforded **1h** (79 mg, 229 µmol, 82%) as a colourless oil; **R**_f 0.37 (50% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max}/ cm⁻¹) 3397, 2925, 2253, 1597, 1496, 1360, 1168, 1089, 814, 709, 656; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.74 (2H, d, *J* = 8.3 Hz, *H*3), 7.35–7.20 (7H, m, *H2*, *H5*, *H*6, *H7*), 4.43 (2H, s, *H4*), 3.73 (1H, ABX ddq, *J*_{XA} = 5.1, *J*_{XB} = 6.4 Hz, *J*_{XCH3} = 6.4 Hz, *H9*), 2.42 (3H, s, *H1*), 2.34 (1H, ABX dd, *J*_{AB} = 16.5 Hz, *J*_{AX} = 5.1 Hz, *H8*_A), 2.25 (1H, ABX dd, *J*_{BA} = 16.5 Hz, *J*_{BX} = 6.4 Hz, *H8*_B), 1.90 (1H, br. s, O*H*), 1.06 (3H, d, *J* = 6.4 Hz, *H1*0); ¹³C **NMR** (101 MHz, CDCl₃)* δ_{c} 144.6, 134.4, 129.7, 128.6, 128.4, 128.2, 127.5, 75.4, 67.5, 66.3, 55.2, 28.9, 21.9, 21.5; **HRMS** (ES+) calc. for C₁₉H₂₁NNaO₃S [M+Na]⁺ 366.1134, found 366.1139. *Note: a single ¹³C resonance is obscured due to signal overlap.

N-Benzyl-N-(((1S*,2R*)-2-hydroxycyclohexyl)ethynyl)-4-methylbenzenesulfonamide, 1i

Synthesised from (*E*)-*N*-benzyl-*N*-(1,2-dichlorovinyl)tosylamide **2a** (100 mg, 281 µmol, 1.0 eq.) in anhydrous THF (2.8 mL) with phenyllithium (0.31 mL of a 2.0 M solution in dibutyl ether, 618 µmol, 2.2 eq.), followed by cyclohexene oxide (34 µL, 37 µmol, 1.2 eq.), and BF₃·Et₂O (18 µL, 377 µmol, 1.2 eq), according to procedure **1.2d**. Column chromatography (10% EtOAc/40-60 petroleum ether \rightarrow 30% EtOAc/40-60 petroleum ether) afforded **1i** (68 mg, 179 µmol, 64%) as a pale yellow oil; **R**_f 0.58 (50% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 3449, 2930, 2858, 2249, 1597, 1496, 1364, 1169, 1090, 814, 712, 655; ¹**H NMR** (400 MHz, C₆D₆) $\delta_{\rm H}$ 7.85 (2H, d, *J* = 8.3 Hz, *H*3), 7.21–7.15 (2H, m, *H*6), 7.10–6.99 (3H, m, *H*5, *H*7), 6.82 (2H, d, *J* = 8.3 Hz, H2), 4.32 (2H, s, *H*4), 3.22 (1H, dt, *J* = 9.2, 3.9 Hz, *H*13), 2.13 (1H, ddd, *J* = 11.2, 9.2, 3.7 Hz, *H*8), 2.10 (1H, br. s, O*H*), 1.88 (3H, s, *H*1), 1.92–1.82 (1H, m, *H*12), 1.72–1.63 (1H, m, *H*9), 1.45–1.33 (1H, m, *H*11), 1.32–1.22 (1H, m, *H*10), 1.18–1.08 (2H, m, *H*9,

*H*12), 1.04–0.89 (1H, m, *H*11), 0.89–0.74 (1H, m, *H*10); ¹³**C NMR** (101 MHz, C₆D₆) δ_c 144.3, 135.6, 135.3, 129.8, 129.2, 128.8, 128.5, 128.1, 76.2, 73.7, 73.0, 55.5, 39.1, 33.3, 30.9, 24.8, 24.2, 21.2; **HRMS** (ES+) calc. for C₂₂H₂₅NNaO₃S [M+Na]⁺ 406.1447, found 406.1453.

N-Benzyl-N-((1-hydroxycyclohex-2-en-1-yl)ethynyl)-4-methylbenzenesulfonamide, 1j

Synthesised from (*E*)-*N*-benzyl-*N*-(1,2-dichlorovinyl)tosylamide **2a** (100 mg, 281 µmol, 1.0 eq.) in anhydrous THF (2.8 mL) with phenyllithium (0.31 mL of a 2.0 M solution in dibutyl ether, 618 µmol, 2.2 eq.) and 2-cyclohexen-1-one (33 µL, 337 µmol, 1.2 eq.). Column chromatography (4% EtOAc/10% CH₂Cl₂/40-60 petroleum ether) afforded **1j** (89 mg, 233 µmol, 83%) as a colourless oil; **R**_f 0.24 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 3494, 2933, 2241, 1597, 1496, 1363, 1168, 1089, 736, 697, 662; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.75–7.69 (2H, m, *H*3), 7.31–7.21 (7H, m, *H*2, *H*5, *H*6, *H*7), 5.71 (1H, dt, *J* = 10.0, 3.7 Hz, *H*11), 5.58 (1H, br. dt, *J* = 10.0, 2.2 Hz, *H*12), 4.46 (1H, AB d, *J*_{AB} = 13.7 Hz, *H*4_A), 4.42 (1H, AB d, *J*_{BA} = 13.7 Hz, *H*4_BPh), 2.42 (3H, s, *H*1), 2.32 (1H, s, O*H*), 2.03–1.87 (2H, m, *H*10), 1.87–1.72 (2H, m, *H*8), 1.70–1.59 (1H, m, *H*9), 1.56–1.44 (1H, m, *H*9); ¹³C **NMR** (101 MHz, CDCl₃) $\delta_{\rm c}$ 144.5, 134.4, 134.2, 130.3, 129.6, 128.9, 128.8, 128.3, 128.2, 127.7, 77.6, 74.8, 65.3, 55.3, 37.7, 24.5, 21.6, 19.0; **HRMS** (ES+) calc. for C₂₂H₂₃NNaO₃S [M+Na]⁺ 404.1291, found 400.1298.

(*E*)-*N*-Benzyl-4-methyl-*N*-(3-(4-methylphenylsulfonamido)-5-phenylpent-4-en-1-yn-1-yl)benzenesulfonamide, 1k

Synthesised from (*E*)-*N*-benzyl-*N*-(1,2-dichlorovinyl)tosylamide **2a** (100 mg, 281 µmol, 1.0 eq.) in anhydrous THF (2.8 mL) with phenyllithium (0.31 mL of a 2.0 M solution in dibutyl ether, 618 µmol, 2.2 eq.) and a solution of (*E*)-cinnamylidenetosylamide (96 mg, 337 µmol, 1.2 eq.) in anhydrous THF (2 mL), following general procedure **1.2d**. Column chromatography (20% EtOAc/40-60 petroleum ether) afforded **1k** (133 mg, 233 µmol, 83%) as a yellow foam; **R**_f 0.10 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 3279, 2925, 2251, 1597, 1495, 1365, 1164, 1091, 1027, 814, 6695, 667; ¹H NMR (400 MHz,

CDCl₃) $\delta_{\rm H}$ 7.69 (2H, d, J = 8.3 Hz, $H\underline{3}$), 7.62 (2H, d, J = 8.3 Hz, H3), 7.29–7.09 (14H, m, PhH (×2), H2 (×2)), 6.51 (1H, dd, J = 15.9, 1.5 Hz, H7), 5.92 (1H, dd, J = 15.9, 5.4 Hz, H6), 5.00 (1H, d, J = 8.8 Hz, NH), 4.90 (1H, ddd, J = 8.8, 5.4, 1.5 Hz, H5), 4.30 (1H, AB d, $J_{AB} = 14.2$ Hz, $H4_A$), 4.23 (1H, AB d, $J_{BA} = 14.2$ Hz, $H4_B$), 2.35 (3H, s, H1), 2.28 (3H, s, H1); ¹³C NMR (101 MHz, CDCl₃) δ_c 144.7, 143.4, 137.5, 135.6, 134.4, 134.1, 132.5, 129.7, 129.5, 128.5, 128.5, 128.4, 128.3, 128.0, 127.5, 127.2, 126.7, 125.3, 80.0, 67.3, 55.1, 47.4, 21.5, 21.4; **HRMS** (ES+) calc. for C₃₂H₃₀N₂NaO₄S₂ [M+Na]⁺ 593.1539, found 593.1551.

N-Benzyl-*N*-((3-((*tert*-butyldimethylsilyl)oxy)cyclohex-2-en-1-yl)ethynyl)-4-methylbenzenesulfonamide, 11⁸

Synthesised from (*E*)-*N*-benzyl-*N*-(1,2-dichlorovinyl)tosylamide **2a** (100 mg, 281 µmol, 1.0 eq.) in anhydrous THF (2.8 mL) with phenyllithium (0.31 mL of a 2.0 M solution in dibutyl ether, 618 µmol, 2.2 eq.). Upon conversion to the alkynyllithium (as confirmed by TLC), a zinc(II) chloride solution (281 µL of a 1.0 M solution in Et₂O, 281 µmol, 1.0 eq.) was added, and the reaction warmed to room temperature and stirred for 10 minutes. The reaction was then cooled to –40 °C and 2-cyclohexen-1-one (28 µL, 281 µmol, 1.0 eq.), followed by *t*-butyldimethylsilyl triflate (64.5 µL, 281 µmol, 1.0 eq.), was added and the reaction mixture was stirred at –40 °C until reaction completion (3 hours, as analysed by TLC). Work-up as described by general procedure **1.2d**. Column chromatography (2% EtOAc/1% Et₃N/40-60 petroleum ether) afforded **11** (73 mg, 148 µmol, 53%) as a colourless oil; **R**_f 0.24 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 2929, 2858, 2248, 1664, 1598, 1456, 1366, 1170, 839, 780; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.73 (2H, d, *J* = 8.3 Hz, *H*3), 7.31–7.26 (7H, m, *H*2, *H*5, *H*6, *H*7), 4.73–4.69 (1H, m, *H*9), 4.43 (2H, s, *H*4), 3.17–3.10 (1H, m, *H*8), 2.44 (3H, s, *H*1), 1.97–1.90 (2H, m, *H*10), 1.72–1.59 (2H, m, *H*11, *H*12), 1.58–1.49 (1H, m, *H*11), 1.49–1.39 (1H, m, *H*12), 0.92 (9H, s, *H*14), 0.11 (6H, s, *H*13); ¹³C **NMR** (101 MHz, CDCl₃) $\delta_{\rm c}$ 151.4, 144.2, 134.7, 134.6, 129.4, 128.8, 128.3, 128.0, 127.7, 105.0, 74.1, 73.3, 55.6, 29.5, 29.1, 26.5, 25.6, 21.6, 20.7, 18.0, -4.5, -4.5; **HRMS** (ES+) calc. for C₂₈H₃₇NNaO₃SSi [M+Na]⁺ 518.2156, found 518.2154.

N-Benzyl-4-methyl-N-(phenylethynyl)benzenesulfonamide, 1m⁹

Synthesised from (*E*)-*N*-benzyl-*N*-(1,2-dichlorovinyl)tosylamide **2a** (100 mg, 281 µmol, 1.0 eq.) in anhydrous THF (2.8 mL) with phenyllithium (0.31 mL of a 2.0 M solution in dibutyl ether, 618 µmol, 2.2 eq.). Upon conversion to the alkynyllithium (as confirmed by TLC), a zinc(II) chloride solution (281 µL of a 1.0 M solution in Et₂O, 281 µmol, 1.0 eq.) was added, and the reaction warmed to room temperature and stirred for 10 minutes. The mixture was transferred to a solution of tris(dibenzylideneacetone)dipalladium(0) (7.7 mg, 8.42 µmol, 0.03 eq.), triphenylphosphine (4.4 mg, 16.8 µmol, 0.06 eq.) and iodobenzene (38 µL, 337 µmol, 1.2 eq.) in anhydrous THF (2 ml), and stirred at room temperature until reaction completion (5 hours, as analysed by TLC). Work-up as described by general procedure **1.2d**. Column chromatography (10% Et₂O/40-60 petroleum ether) afforded **1m** (51 mg, 141 µmol, 50%) as colourless crystals; ¹H **NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.78 (2H, d, *J* = 8.3 Hz, *H*3), 7.34–7.26 (7H, m, *H*2, *H*5, *H*6, *H*7), 7.21 (5H, app. s, *H*8, *H*9, *H*10), 4.56 (2H, s, *H*4), 2.41 (3H, s, *H*1); ¹³C **NMR** (101 MHz, CDCl₃) $\delta_{\rm c}$ 144.6, 134.6, 134.4, 131.0, 129.7, 128.9, 128.5, 128.3, 128.1, 127.7, 127.6, 122.7, 82.6, 71.3, 55.6, 21.6. Data are consistent with literature values.¹⁰

N-Benzyl-4-methyl-N-(((2-nitrophenyl)thio)ethynyl)benzenesulfonamide, 1n

Synthesised from (*E*)-*N*-benzyl-*N*-(1,2-dichlorovinyl)tosylamide **2a** (100 mg, 281 µmol, 1.0 eq.) in anhydrous THF (2.8 mL) with phenyllithium (0.31 mL of a 2.0 M solution in dibutyl ether, 618 µmol, 2.2 eq.) and a solution of 1,2-bis(2-nitrophenyl)disulfide (104 mg, 337 µmol, 1.2 eq.) in anhydrous THF (2 mL), following general procedure **1.2d**. Column chromatography (4% EtOAc/10% CH₂Cl₂/40-60 petroleum ether) afforded **1n** (100 mg, 227 µmol, 81%) of **1n** as yellow crystals; **m.p.** 96 °C, **R**_f 0.24 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm^{-1}) 3092, 2923, 2158, 1592, 1517, 1337, 1169, 734; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 8.24 (1H, dd, *J* = 8.2, 1.3 Hz, *H*11), 7.75 (2H, d, *J* = 8.3 Hz, *H*3), 7.62 (1H, dd, *J* = 8.2, 1.3 Hz, *H*8), 7.48–7.41 (1H, m, *H*9), 7.36–7.29 (8H, m, *H*10, *H*2, *H*5, *H*6, *H*7), 4.67 (2H, s, *H*4), 2.45 (3H, s, *H*1); ¹³**C NMR** (101 MHz, CDCl₃) δ_c 145.1, 144.5, 135.6, 134.6, 134.3, 134.0, 129.8, 128.9, 128.6, 128.5, 128.5, 127.8, 126.4, 125.8, 95.7, 61.6, 55.8, 21.7; **HRMS** (ES+) calc. for C₂₂H₁₈N₂NaO₄S₂ [M+Na]⁺ 461.0600, found 461.0622.

N-Butyl-N-ethynyl-4-methylbenzenesulfonamide, 10

Synthesised from (*E*)-*N*-butyl-*N*-(1,2-dichlorovinyl) tosylamide **2c** (100 mg, 310 µmol, 1.0 eq.) in anhydrous THF (3.1 mL) with phenyllithium (0.34 mL of a 2.0 M solution in dibutyl ether, 683 µmol, 2.2 eq.). Water and Et₂O (2 mL each) was added and the reaction worked up following general procedure **1.2d**. Column chromatography (5% EtOAc/40-60 petroleum ether) afforded **1o** (68 mg, 270 µmol, 87%) as colourless crystals; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.79 (2H, d, J = 8.2 Hz, H3), 7.34 (2H, d, J = 8.2 Hz, H2), 3.29 (2H, t, J = 7.3 Hz, H4), 2.72 (1H, s, H8), 2.44 (3H, s, H1), 1.61 (2H, quin, J = 7.3 Hz, H5), 1.33 (2H, sxt, J = 7.3 Hz, H6), 0.89 (3H, t, J = 7.3 Hz, H7); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm c}$ 144.6, 134.5, 129.7, 127.6, 76.0, 58.9, 50.9, 29.6, 21.6, 19.3, 13.5; **MS** (ESI+) m/z 252.1 (100, [M+H]⁺), 274.1 (53, [M+Na]⁺). Data are consistent with literature values.¹¹ Note that this compound is sensitive to moisture.

N-Butyl-4-methyl-N-(prop-1-yn-1-yl)benzenesulfonamide, 1p

Synthesised from (*E*)-*N*-butyl-*N*-(1,2-dichlorovinyl) tosylamide **2c** (100 mg, 310 µmol, 1.0 eq.) in anhydrous THF (3.1 mL) with phenyllithium (0.34 mL of a 2.0 M solution in dibutyl ether, 683 µmol, 2.2 eq.) and methyl iodide (23 µL, 372 µmol, 1.2 eq.), following general procedure **1.2d**. Column chromatography (10% CH₂Cl₂/2% EtOAc/40-60 petroleum ether) afforded **1p** (69 mg, 259 µmol, 83%) as a colourless oil; **R**_f 0.54 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 2960, 2253, 1597, 1360, 1170, 1091, 1041, 854, 814, 707; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.76 (2H, d, *J* = 8.2 Hz, *H*3), 7.32 (2H, d, *J* = 8.2 Hz, *H*2), 3.22 (2H, t, *J* = 7.2 Hz, *H*4), 2.43 (3H, s, *H*1), 1.88 (3H, s, *H*8), 1.58 (2H, quin, *J* = 7.2 Hz, *H*5), 1.32 (2H, sxt, *J* = 7.2 Hz, *H*6), 0.89 (3H, t, *J* = 7.2 Hz, *H*7); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm c}$ 144.1, 134.6, 129.5, 127.4, 71.9, 65.4, 51.1, 29.7, 21.5, 19.4, 13.5, 3.2; HRMS (ES+) calc. for C₁₄H₁₉NNaO₂S [M+Na]⁺ 288.1029, found 288.1030.

N-(But-3-yn-1-yl)-N-ethynyl-4-methylbenzenesulfonamide, 1q

Synthesised from (*E*)-*N*-(but-3-yn-1-yl)-*N*-(1,2-dichlorovinyl) tosylamide **2e** (50 mg, 157 µmol, 1.0 eq.) in anhydrous THF (1.6 mL) with phenyllithium (0.25 mL of a 2.0 M solution in dibutyl ether, 503 µmol, 3.2 eq.). Water and Et₂O (1 mL each) was added and the reaction worked up following general procedure **1.2d**. Column chromatography (10% Et₂O/40-60 petroleum ether) afforded **1q** (31 mg, 126 µmol, 80%) as colourless crystals; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.80 (2H, d, *J* = 8.3 Hz, *H*3), 7.35 (2H, d, *J* = 8.3 Hz, *H*2), 3.49 (2H, t, *J* = 7.6 Hz, *H*4), 2.78 (1H, s, *H*7), 2.53 (2H, td, *J* = 7.6, 2.7 Hz, *H*5), 2.45 (3H, s, *H*1), 1.97 (1H, t, *J* = 2.7 Hz, *H*6); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm c}$ 145.0, 134.4, 129.8, 127.6, 79.5, 75.3, 70.6, 59.7, 49.7, 21.6, 18.2; **MS** (ESI⁺) *m/z* 248.1 (14, [M+H]⁺), 270.1 (100, [M+Na]⁺), 280.1 (72, [M+MeOH+H]⁺). **HRMS** (ES+) calc. for C₁₃H₁₃NNaO₂S [M+Na]⁺ 270.0559, found 270.0563. Data are consistent with literature values.¹² Note that this compound is sensitive to moisture.

(R)-Ethyl 3-(4-methyl-N-(1-phenylethyl)phenylsulfonamido)propiolate, 1r

Synthesised from (*R*,*E*)-*N*-(1,2-Dichlorovinyl)-*N*-(1-phenylethyl)tosylamide **2g** (50 mg, 135 µmol, 1.0 eq.) in anhydrous THF (0.5 mL) with *n*-butyllithium (65 µL and 54 µL of a 2.5 M solution in hexanes, 297 µmol, 2.2 eq.) and ethyl chloroformate (16 µL, 162 µmol, 1.2 eq.), following general procedure **1.2e**. Column chromatography (10% EtOAc/40-60 petroleum ether) afforded **1r** (42 mg, 113 µmol, 83%) as a colourless oil; **R**_f 0.40 (20% EtOAc/40-60 petroleum ether); $[a]_D^{20}$ +79.6 (c 0.5, CHCl₃); **IR** (thin film, $v_{max} / \text{ cm}^{-1}$) 2975, 2212, 1702, 1597, 1455, 1373, 1306, 1170, 1148, 1090, 1020, 951, 888, 814, 775, 742, 718, 700; ¹**H NMR** (400 MHz, CDCl₃) δ_{H} 7.60 (2H, d, *J* = 8.3 Hz, *H*3), 7.27–7.18 (7H, m, *H*2, *H*6, *H*7, *H*8), 5.16 (1H, q, *J* = 7.1 Hz, *H*4), 4.22 (2H, q, *J* = 7.1 Hz, *H*9), 2.40 (3H, s, *H*1), 1.59 (3H, d, *J* = 7.1 Hz, *H*5), 1.3 (3H, t, *J* = 7.1 Hz, *H*10); ¹³**C NMR** (101 MHz, CDCl₃) δ_{c} 154.2, 145.1, 138.9, 134.6, 129.7, 128.5, 128.3, 127.7, 126.7, 81.0, 70.7, 61.4, 59.6, 21.6, 20.0, 14.2; **HRMS** (ES+) calc. for C₂₀H₂₁NNaO₄S [M+Na]⁺ 394.1083, found 394.075.

Ethyl 3-(N-(tert-butyl)-4-methylphenylsulfonamido)propiolate, 1s

Synthesised from (*E*)-*N*-(*t*-butyl)-*N*-(1,2-dichlorovinyl) tosylamide **2h** (100 mg, 310 µmol, 1.0 eq.) in anhydrous THF (3.1 mL) with phenyllithium (0.34 mL of a 2.0 M solution in dibutyl ether, 683 µmol, 2.2 eq.) and ethyl chloroformate (35 µL, 372 µmol, 1.2 eq.) following general procedure **1.2d**. Column chromatography (10% EtOAc/40-60 petroleum ether) afforded **1s** (81 mg, 251 µmol, 81%) as a colourless oil; **R**_f 0.46 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 2983, 2208, 1701, 1597, 1364, 1251, 1143, 1089, 1040, 922, 885, 813, 743, 705; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.85 (2H, d, *J* = 8.6 Hz, *H*3), 7.34 (2H, d, *J* = 8.6 Hz, *H*2), 4.21 (2H, d, *J* = 7.1 Hz, *H*6), 2.45 (3H, s, *H*1), 1.48 (9H, s, *H*4), 1.29 (3H, t, *J* = 7.1 Hz, *H*7); ¹³**C NMR** (101 MHz, CDCl₃) $\delta_{\rm c}$ 154.5, 145.0, 136.4, 129.7, 127.9, 83.5, 70.4, 65.6, 61.3, 29.3, 21.6, 14.2; **HRMS** (ES+) calc. for C₁₆H₂₁NNaO₄S [M+Na]⁺ 346.1083, found 346.1079.

N-Ethynyl-4-methyl-N-phenylbenzenesulfonamide, 1t

Synthesised from (*E*)-*N*-phenyl-*N*-(1,2-dichlorovinyl)tosylamide **2b** (100 mg, 292 µmol, 1.0 eq.) in anhydrous THF (2.9 mL) with phenyllithium (0.32 mL of a 2.0 M solution in dibutyl ether, 643 µmol, 2.2 eq.). Water and Et₂O (2 mL each) was added and the reaction worked up following general procedure **1.2d**. Column chromatography (10% Et₂O/40-60 petroleum ether) afforded **1t** (70 mg, 258 µmol, 88%) as a colourless solid; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.58 (2H, d, *J* = 8.3 Hz, *H*3), 7.36–7.23 (7H, m, *H*2, *H*4, *H*5, *H*6), 2.83 (1H, s, *H*7), 2.44 (3H, s, *H*1); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm c}$ 145.1, 138.2, 132.7, 129.5, 129.1, 128.4, 128.2, 126.3, 76.4, 58.9, 21.7; MS (ESI⁺) *m/z* 310.0 (100, [M+K]⁺). Data consistent with literature values.¹²

4-Methyl-N-phenyl-N-(prop-1-yn-1-yl)benzenesulfonamide, 1u

Synthesised from (*E*)-*N*-phenyl-*N*-(1,2-dichlorovinyl)tosylamide **2b** (100 mg, 292 µmol, 1.0 eq.) in anhydrous THF (2.9 mL) with phenyllithium (0.32 mL of a 2.0 M solution in dibutyl ether, 643 µmol, 2.2 eq.) and methyl iodide (22 µL, 351 µmol, 1.2 eq.), following general procedure **1.2d**. Column chromatography (10% Et₂O/40-60 petroleum ether) afforded **1u** (68 mg, 239 µmol, 82%) as colourless crystals; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.54 (2H, d, *J* = 8.3 Hz, *H*3), 7.32–7.21 (7H, m, *H*2, *H*4, *H*5, *H*6), 2.41 (3H, s, *H*1), 1.91 (3H, s, *H*7); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm c}$ 144.6, 139.2, 133.0, 129.3, 128.9, 128.1, 127.9, 126.1, 72.7, 65.6, 21.6, 3.25; MS (ESI⁺) *m/z* 308.1 (100, [M+Na]⁺). Data consistent with literature values.¹³

4-Methyl-N-(prop-1-yn-1-yl)-N-(2-vinylphenyl)benzenesulfonamide, 1v

Synthesised from (*E*)-*N*-(1,2-dichlorovinyl)-*N*-(2-vinylphenyl) tosylamide **21** (100 mg, 272 µmol, 1.0 eq.) in anhydrous THF (1 mL) with *n*-butyllithium (127 µL and 106 µL of a 2.5 M solution in hexanes, 580 µmol, 2.2 eq.) and methyl iodide (20 µL, 316 µmol, 1.2 eq.), following general procedure **1.2e**. Column chromatography (10% Et₂O/40-60 petroleum ether) afforded **1v** (59 mg, 188 µmol, 69%) as a pale yellow oil; **R**_f 0.45 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 2919, 2258, 1597, 1483, 1451, 1368, 1308, 1171, 1090, 927, 814, 770, 705, 677, 645; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.68 (2H, d, *J* = 8.3 Hz, *H*3), 7.64 (1H, dd, *J* = 7.8, 1.3 Hz, *H*7), 7.35–7.31 (3H, m, *H*2, *H*5), 7.18 (1H, td, *J* = 7.8, 1.2 Hz, *H*6), 6.96 (1H, dd, *J* = 17.6, 11.0 Hz, *H*8), 6.89 (1H, dd, *J* = 7.8, 1.2 Hz, *H*4), 5.74 (1H, dd, *J* = 17.6, 1.0 Hz, *H*9), 5.28 (1H, dd, *J* = 11.0, 1.0 Hz, *H*10), 2.47 (3H, s, *H*1), 1.88 (3H, s, *H*11); ¹³C **NMR** (101 MHz, CDCl₃) $\delta_{\rm c}$ 144.7, 136.8, 136.5, 133.9, 131.7, 129.5, 129.2, 128.4, 128.34, 128.26, 126.2, 116.2, 73.3, 64.8, 21.7, 3.3; **HRMS** (ES+) calc. for C₁₈H₁₇NNaO₂S [M+Na]⁺ 334.0872, found 334.0858.

Ethyl 3-(N-(2,6-diisopropylphenyl)-4-methylphenylsulfonamido)propiolate, 1w

Synthesised from (*E*)-*N*-(1,2-dichlorovinyl)-*N*-(2,6-diisopropylphenyl)tosylamide **2m** (50 mg, 117 µmol, 1.0 eq.) in anhydrous THF (1.2 mL) with phenyllithium (0.13 mL of a 2.0 M solution in dibutyl ether, 258 µmol, 2.2 eq.), and ethyl chloroformate (13 µL, 141 µmol, 1.2 eq.), following general procedure **1.2d**. Column chromatography (5% EtOAc/40-60 petroleum ether) afforded **1w** (42 mg, 99 µmol, 85%) as colourless crystals; **m.p.** 113–114 °C; **R**_f 0.56 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 2969, 2214, 1704, 1596, 1466, 1372, 1172, 1129, 1086, 913, 806, 727, 664; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.89 (2H, d, *J* = 8.5 Hz, *H*3), 7.41 (2H, d, *J* = 8.5 Hz, *H*2), 7.37 (1H, d, *J* = 7.8 Hz, *H*5), 7.19 (2H, d, *J* = 7.6 Hz, *H*4), 4.20 (2H, q, *J* = 7.3 Hz, *H*8), 2.92 (2H, spt, *J* = 6.8 Hz, *H*6), 2.50 (3H, s, *H*1), 1.28 (3H, t, *J* = 7.3 Hz, *H*9), 1.16 (6H, d, *J* = 6.8 Hz, *H*7), 1.12 (6H, d, *J* = 6.8 Hz, *H*7); ¹³C **NMR** (101 MHz, CDCl₃) $\delta_{\rm c}$ 154.2, 148.1, 145.8, 134.1, 132.1, 130.5, 129.9, 128.6, 124.8, 83.5, 66.8, 61.4, 29.1, 25.0, 23.1, 21.8, 14.1; **HRMS** (ES+) calc. for C₂₄H₃₀NO₄S [M+H]⁺ 428.1890, found 428.1881.

N-(4-Methoxyphenyl)-4-methyl-N-(prop-1-yn-1-yl)benzenesulfonamide, 1x

Synthesised from (*E*)-*N*-(4-methoxyphenyl)-*N*-(1,2-dichlorovinyl)tosylamide **2i** (50 mg, 134 µmol, 1.0 eq.) in anhydrous THF (1.2 mL) with phenyllithium (0.15 mL of a 2.0 M solution in dibutyl ether, 298 µmol, 2.2 eq.), and methyl iodide (10 µL, 161 µmol, 1.2 eq.), following general procedure **1.2d**. Column chromatography (5% Et₂O/40-60 petroleum ether) afforded **1x** (30 mg, 94 µmol, 70%) as a colourless oil; **R**_f 0.44 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 2919, 2256, 1597, 1505, 1366, 1251, 1170, 1090, 1031, 669; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.56 (2H, d, *J* = 8.3 Hz, *H*3), 7.27 (2H, d, *J* = 8.3 Hz, *H*2), 7.14–7.07 (2H, m, *H*4), 6.84–6.77 (2H, m, *H*5), 3.79 (3H, s, *H*6), 2.44 (3H, s, *H*1), 1.91 (3H, *H*7); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm c}$ 159.3, 144.5, 133.1, 131.9, 129.3, 128.2, 127.9, 114.1, 73.2, 65.0, 55.4, 21.7, 3.3; **HRMS** (ES+) calc. for C₁₇H₁₇NNaO₃S [M+Na]⁺ 338.0821, found 338.0821.

N-(3,5-Bis(trifluoromethyl)phenyl)-*N*-(3-hydroxy-3-methylbut-1-yn-1-yl)-4-methylbenzenesulfonamide, 1y

Synthesised from (*E*)-*N*-(3,5-bis(trifluoromethyl)phenyl)-*N*-(1,2-dichlorovinyl)tosylamide (39 mg, 82 µmol, 1.0 eq.) in anhydrous THF (1.0 mL) with phenyllithium (90 µL of a 2.0 M solution in dibutyl ether, 179 µmol, 2.2 eq.) and acetone (7 µL, 98 µmol, 1.2 eq.), following general procedure **1.2d**. Column chromatography (10% Et₂O \rightarrow 50% Et₂O/40-60 petroleum ether) afforded **1y** (30 mg, 64 µmol, 78%) as a yellow oil; **R**_f 0.34 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 3406, 2938, 2266, 1371, 1279, 1176, 1138, 963, 900; ¹**H NMR** (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.80 (1H, s, *H*5), 7.74 (2H, s, *H*4), 7.58 (2H, d, J = 8.2 Hz, *H*3), 7.33 (2H, d, J = 8.2 Hz, *H*2), 2.46 (3H, s, *H*1), 2.07 (1H, br. s, OH), 1.55 (6H, s, H6); ¹³**C NMR** (126 MHz, CDCl₃) $\delta_{\rm c}$ 146.1, 140.5, 132.6 (2C, q, J = 34.3 Hz), 132.1, 129.8, 128.2, 125.4 (2C, q, J = 2.9 Hz), 122.6 (2C, q, J = 273 Hz), 121.4 (1C, spt, J = 3.8 Hz), 77.3, 74.8, 65.4, 31.3, 21.7; ¹⁹**F NMR** (376 MHz, CDCl₃) $\delta_{\rm F}$ -63.0; **HRMS** (ES+) calc. for C₂₀H₁₈F₆NO₃S [M+H]⁺ 466.0906, found 466.0902.

1,1-Dibenzyl-3-ethynyl-3-phenylurea, 1z

Synthesised from (*E*)-1,1-dibenzyl-3-(1,2-dichlorovinyl)-3-phenylurea **2z** (100 mg, 243 µmol, 1.0 eq.) in anhydrous THF (2.4 mL) with phenyllithium (0.26 mL of a 2.0 M solution in dibutyl ether, 535 µmol, 2.2 eq.). Water and Et₂O (2 mL each) was added and the reaction worked up following general procedure **1.2d**. Column chromatography (5% Et₂O) afforded **1z** (75 mg, 221 µmol, 91%) as a pale yellow oil; **R**_f 0.55 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 3300, 3030, 2924, 2133, 1683, 1596, 1495, 1406, 1262, 1222, 752, 692; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.37–725 (10H, m, *H*1, *H*2, *H*3), 7.25–7.20 (4H, m, *H*5, *H*6), 7.13 (1H, tt, *J* = 7.0, 1.5 Hz, *H*7), 4.59 (4H, s, *H*4), 3.02 (1H, s, *H*8); ¹³**C NMR** (101 MHz, CDCl₃) $\delta_{\rm c}$ 158.0, 140.6, 136.4, 129.0, 128.6, 128.0, 127.6, 125.2, 121.5, 77.3, 60.2, 50.8; **HRMS** (ES+) calc. for C₂₃H₂₀N₂NaO [M+Na]⁺ 363.1468, found 363.1463.

tert-Butyl (3-(4-methylphenylsulfonamido)-3-phenylprop-1-yn-1-yl)(phenyl)carbamate, 1aa

Synthesised from (*E*)-*t*-Butyl (1,2-dichlorovinyl)(phenyl)carbamate **2y** (100 mg, 347 µmol, 1.0 eq.) in anhydrous THF (3.5 mL) with phenyllithium (0.38 mL of a 2.0 M solution in dibutyl ether, 763 µmol, 2.2 eq.) and a solution of *N*-benzylidenetosylamide (108 mg, 416 µmol, 1.2 eq.) in anhydrous THF (2 mL), following general procedure **1.2d**. Column chromatography (10% Et₂O \rightarrow 25% Et₂O/40-60 petroleum ether), followed by low temperature recrystallisation from benzene/pentane (2:1) afforded **1aa** (117 mg, 245 µmol, 71%) as colourless crystals; **m.p.** 156–157 °C; **R**_f 0.30 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm^{-1}) 3270, 2979, 2255, 1714, 1598, 1494, 1319, 1158, 910, 729, 699, 665; ¹H NMR (500 MHz, CDCl₃)* $\delta_{\rm H}$ 7.94–6.45 (14H, br. m, Ph*H* (×2), *H*9, *H*10), 6.14–5.37 (1H, br. m, *H*5), 5.14 (1H, d, *J* = 7.7 Hz, N*H*), 2.40 (3H, s, *H*11), 1.57–0.73 (9H, br. m, *H*4); ¹³C NMR (126 MHz, CDCl₃)* $\delta_{\rm c}$ 152.8, 143.1, 137.6, 136.8, 129.5, 129.3, 128.9, 128.7, 128.3, 127.9, 127.4, 127.1, 125.2, 124.2, 82.2, 81.8, 57.9, 27.6, 21.5; HRMS (ES+) calc. for C₂₇H₂₉N₂O₄S [M+H]⁺ 477.1843, found 477.1838. * Note that the spectra show a highly rotameric nature.

(E)-tert-butyl butyl(3-oxo-5-phenylpent-4-en-1-yn-1-yl)carbamate, 1bb

Synthesised from (*E*)-*t*-Butyl (1,2-dichlorovinyl)(butyl)carbamate **2x** (50 mg, 186 µmol, 1.0 eq.) in anhydrous THF (1.9 mL) with phenyllithium (0.25 mL of a 1.6 M solution in dibutyl ether, 409 µmol, 2.2 eq.) and a solution of cinnamoyl chloride (37 mg, 223 µmol, 1.2 eq.) in anhydrous THF (1 mL), following general procedure **1.2d**. Column chromatography (20% Et₂O/40-60 petroleum ether) afforded **1bb** (50 mg, 152 µmol, 82%) as a yellow oil; **R**_f 0.45 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm^{-1}) 2961, 2204, 1733, 1631, 1286, 1146, 762; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.77 (1H, br. d, *J* = 15.9 Hz, *H*7), 7.57–7.49 (2H, br. m, *H*9), 7.43–7.36 (3H, br. m, *H*8, *H*10), 6.75 (1H, d, *J* = 15.9 Hz, *H*6), 3.56 (2H, t, *J* = 7.3 Hz, *H*2), 1.72 (2H, qu, *J* = 7.3 Hz, *H*3), 1.58 (9H, s, *H*1), 1.39 (2H, sxt, *J* = 7.3 Hz, *H*4), 0.96 (3H, t, *J* = 7.3 Hz, *H*5); ¹³**C NMR** (101 MHz, CDCl₃)* δ_c 177.7, 153.0, 146.2, 134.5, 130.7, 129.0, 128.8, 128.3, 84.0, 49.9, 30.2, 28.1, 19.6, 13.7; **HRMS** (ES+) calc. for C₂₀H₂₆NO₃ [M+H]⁺ 328.1907, found 328.1902. * Note, alkyne carbons are not visible due to slow relaxation on NMR timescale.

Synthesised from (*E*)-1-(1,2-dichlorovinyl)-1*H*-indole (50 mg, 236 µmol, 1.0 eq.) in anhydrous THF (2.4 mL) with phenyllithium (0.32 mL of a 1.6 M solution in dibutyl ether, 519 µmol, 2.2 eq.) and ethyl chloroformate (27 µL, 283 µmol, 1.2 eq.), following general procedure **1.2d**. Column chromatography (toluene) yielded **1cc** (34 mg, 158 µmol, 67%) as a pale yellow oil; **R**_f 0.30 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm^{-1}) 2922, 2233, 1705, 1531, 1465, 1245, 1187, 741; ¹**H NMR** (400 MHz, C₆D₆) $\delta_{\rm H}$ 7.49–7.39 (1H, m, *H*3), 7.29–7.23 (1H, m, *H*6), 7.04–6.98 (2H, m, *H*4, *H*5), 6.44 (1H, d, *J* = 3.4 Hz, *H*1), 6.06 (1H, dd, *J* = 3.4, 0.9 Hz, *H*2), 4.02 (2H, q, *J* = 7.1 Hz, *H*7), 0.96 (3H, t, *J* = 7.1 Hz, *H*8); ¹³**C NMR** (101 MHz, C₆D₆) $\delta_{\rm c}$ 154.2, 138.5, 128.6, 128.6, 124.9, 123.6, 121.6, 111.9, 108.3, 79.3, 67.6, 61.6, 14.1; **HRMS** (ES+) calc. for C₁₃H₁₂NO₂ [M+H]⁺ 214.0863, found 214.0863.

N-(3-(1H-benzo[d][1,2,3]triazol-1-yl)-1-phenylprop-2-yn-1-yl)-4-methylbenzenesulfonamide, 1dd

Synthesised from (*E*)-1-(1,2-dichlorovinyl)-1*H*-benzotriazole **2r** (50 mg, 234 µmol, 1.0 eq.) in anhydrous THF (2.3 mL) with phenyllithium (0.32 mL of a 1.6 M solution in dibutyl ether, 514 µmol, 2.2 eq.) and a solution of *N*-benzylidenetosylamide (72.7 mg, 281 µmol, 1.2 eq.) in anhydrous THF (1 mL), following general procedure **1.2d**. Column chromatography (20% Et₂O \rightarrow 50% Et₂O/40-60 petroleum ether) afforded **1dd** (81 mg, 200 µmol, 86%) as colourless crystals; **m.p.** 150 °C; **R**_f 0.30 (20% EtOAc/40-60 petroleum ether); **IR** (thin film, v_{max} / cm^{-1}) 3277, 3016, 2225, 1599, 1495, 1454, 1325, 1159, 699, 671; ¹H **NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.57 (2H, d, *J* = 8.3 Hz, *H*9), 7.21–7.11 (9H, m, *H*1, *H*2, *H*3, *H*4, *H*6, *H*7, *H*8), 7.1 (2H, d, *J* = 8.3 Hz, H10), 5.82 (1H, d, *J* = 7.8 Hz, N*H*), 5.59 (1H, d, *J* = 7.8 Hz, *H*5), 2.36 (3H, s, *H*11); ¹³C **NMR** (101 MHz, CDCl₃) $\delta_{\rm c}$ 142.0, 140.5, 137.3, 129.2, 128.4, 127.3, 127.3, 127.0, 61.2, 21.4. Note, as observed by Katritzky¹⁴ in other benzotriazole systems, the carbons for the benzotriazole ring and the alkyne are not visible due to slow relaxation on NMR timescale. We were also unable to gain an accurate mass (FI+), due to decomposition upon ionisation; however, an unidentified peak was observed at 337.1132 (desired molecular ion at 402.1151).

1.4c Chloroynamide S1

N-Benzyl-N-(chloroethynyl)-4-methylbenzenesulfonamide, S1

To a a stirred solution of (*E*)-*N*-benzyl-*N*-(1,2-dichlorovinyl)tosylamide **2a** (400 mg, 1.12 mmol, 1.0 equiv) in anhydrous THF (1.1 mL) at 0 °C was added a solution of LiHMDS (1.35 mL, 1.0 M solution in THF, 1.2 equiv.) dropwise. The reaction was stirred at 0 °C until completion (~5 mins as analysed by TLC). The mixture was warmed to room temperature and quenched with water, followed by extraction with Et₂O (×2). The organic extracts were combined and dried (MgSO₄), filtered and concentrated *in vacuo*. Column chromatography (10% Et₂O/40-60 petroleum ether) afforded **S1** (304 mg, 0.95 mmol, 85%) as a colourless oil; **R**_f 0.52 (20% Et₂O/40-60 petroleum ether); **IR** (thin film, v_{max} / cm⁻¹) 2925, 2242, 1597, 1496, 1456, 1365, 1169, 1090, 1022, 813, 779, 745, 698, 663; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.73 (2H, d, *J* = 8.3 Hz, *H*3), 7.34–7.22 (7H, m, *H*2, *H*5, *H*6, *H*7), 4.46 (2H, s, *H*4), 2.44 (3H, s, *H*1); ¹³**C NMR** (101 MHz, CDCl₃) $\delta_{\rm c}$ 144.8, 134.4, 134.1, 129.8, 128.5, 128.5, 128.3, 127.5, 63.1, 55.2, 52.7, 21.6; **HRMS** (ES+) calc. for C₁₆H₁₄³⁵CINNaO₂S [M+Na]⁺ 342.0326, found 342.0321. Note that this compound is slightly moisture sensitive and polymerisation begins upon concentration *in vacuo* above 20 °C.

1.5 References

- 2. J. Pielichowski; D. Bogdal J. Prakt. Chem. (Leipzig) 1989, 331, 145-148.
- 3. Prepared according to the following procedure: R. E. Beveridge; R. A. Batey Org. Lett. 2012, 14, 540-543.
- 4. A. Coste; G. Karthikeyan; F. Couty; G. Evano Angew. Chem. Int. Ed. 2009, 48, 4381-4385.
- 5. Y.-P. Wang; R. L. Danheiser Tetrahedron Lett. 2011, 52, 2111-2114.
- 6. K. Villeneuve; N. Riddell; W. Tam Tetrahedron 2006, 62, 3823-3836.
- 7. K. Dooleweerdt; T. Skrydstrup; T. Ruhland Org. Lett. 2009, 11, 221-224.
- 8. According to the slightly modified procedure of: S. Kim; J. M. Lee *Tetrahedron Lett.* **1990**, *31*, 7627-7634.
- 9. According to the slightly modified procedure of: M. F. Martínez-Esperón, D. Rodríguez, L. Castedo, C. Saá, *Tetrahedron* **2006**, *62*, 3843.
- 10. Y. Zhang; R. P. Hsung; M. R. Tracey; K. C. M. Kurtz; E. L. Vera Org. Lett. 2004, 6, 1151-1154.
- 11. D. Brückner Tetrahedron 2006, 62, 3809-3814.
- 12. B. Witulski; T. Stengel Angew. Chem. Int. Ed. 1999, 38, 2426-2430.
- 13. D. Rodriguez; M. F. Martinez-Esperon; L. Castedo; C. Saá Synlett 2007, 12, 1963-1965.
- 14. A. R. Katritzky; D. C. Oniciu; I. Ghiviriga Synth. Commun. 1997, 27, 907-922.

^{1.} L. M. Geary; P. G. Hultin Org. Lett. 2009, 11, 5478-5481.

2.1 NMR Spectra.

2.1a Dichloroenamides: (E)-N-Benzyl-N-(1,2-dichlorovinyl)-4-methylbenzenesulfonamide, 2a

(E)-N-(1,2-Dichlorovinyl)-4-methyl-N-phenylbenzenesulfonamide, 2b

(E)-N-(n-Butyl)-N-(1,2-dichlorovinyl)-4-methylbenzenesulfonamide, 2c

N-((E)-1,2-Dichlorovinyl)-N-((E)-hex-4-en-1-yl)-4-methylbenzenesulfonamide, 2d

(E)-N-(But-3-yn-1-yl)-N-(1,2-dichlorovinyl)-4-methylbenzenesulfonamide, 2e

N-((*E*)-4-Cyclopropyl-3-methylbut-3-en-1-yl)-*N*-((*E*)-1,2-dichlorovinyl)-4-methylbenzenesulfonamide, 2f

(R,E)-N-(1,2-Dichlorovinyl)-4-methyl-N-(1-phenylethyl)benzenesulfonamide, 2g

(E)-N-(tert-Butyl)-N-(1,2-dichlorovinyl)-4-methylbenzenesulfonamide, 2h

(E)-N-(1,2-Dichlorovinyl)-N-(4-methoxyphenyl)-4-methylbenzenesulfonamide, 2i

(E)-N-(3,5-Bis(trifluoromethyl)phenyl)-N-(1,2-dichlorovinyl)-4-methylbenzenesulfonamide, 2j

...... C 192 184 136 128 112 104 96 Chemical Shift (ppm)

(E)-N-(2-Bromophenyl)-N-(1,2-dichlorovinyl)-4-methylbenzenesulfonamide, 2k

(E)-N-(1,2-Dichlorovinyl)-4-methyl-N-(2-vinylphenyl)benzenesulfonamide, 21

(E)-N-(1,2-Dichlorovinyl)-N-(2,6-diisopropylphenyl)-4-methylbenzenesulfonamide, 2m

(E)-N-(1,2-Dichlorovinyl)-5-nitro-1*H*-indole, 2n

(E)-N-(1,2-Dichlorovinyl)-1H-indole-3-carbaldehyde, 20

144 136 128 120 112 104 96 88 Chemical Shift (ppm) C

(E)-5-Bromo-1-(1,2-dichlorovinyl)-1*H*-indole, 2p

(E)-1-(1,2-Dichlorovinyl)-1H-indole, 2q

192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 55 48 40 32 24 16 8 C Chemical Shift (pm)

(E)-1-(1,2-Dichlorovinyl)-1H-benzo[d][1,2,3]triazole, 2r

(E)-N-(1,2-Dichlorovinyl)-1H-imidazole, 2s

(E)-3-(1,2-Dichlorovinyl)oxazolidin-2-one, 2t

(E)-Methyl (2-bromophenyl)(1,2-dichlorovinyl)carbamate, 2u

(E)-N-Benzyl-N-(1,2-dichlorovinyl)-4-nitrobenzenesulfonamide, 2v

(E)-tert-Butyl benzyl(1,2-dichlorovinyl)carbamate, 2w

112 104 96 Chemical Shift (ppm)

(E)-tert-Butyl butyl(1,2-dichlorovinyl)carbamate, 2x

(E)-tert-Butyl (1,2-dichlorovinyl)(phenyl)carbamate, 2y

(E)-1,1-Dibenzyl-3-(1,2-dichlorovinyl)-3-phenylurea, 2z

(E)-Di-tert-butyl 1-butyl-2-(1,2-dichlorovinyl)hydrazine-1,2-dicarboxylate, 2aa

(E)-Di-tert-butyl 1-(1,2-dichlorovinyl)-2-(oct-1-yn-1-yl)hydrazine-1,2-dicarboxylate, 2bb

2.1b Ynamides: N-Benzyl-4-methyl-N-(prop-1-yn-1-yl)benzenesulfonamide, 1a

N-Benzyl-4-methyl-N-(pent-1-yn-1-yl)benzenesulfonamide, 1b

N-Benzyl-4-methyl-N-(3-phenylprop-1-yn-1-yl)benzenesulfonamide, 1c

N-Benzyl-N-(3-hydroxy-3-phenylprop-1-yn-1-yl)-4-methylbenzenesulfonamide, 1d

Ethyl 3-(N-benzyl-4-methylphenylsulfonamido)propiolate, 1e

N-Benzyl-N-(4-chloro-3-hydroxy-3-methylbut-1-yn-1-yl)-4-methylbenzenesulfonamide, 1f

N-Benzyl-N-ethynyl-4-methylbenzenesulfonamide, 1g

N-benzyl-N-(4-hydroxypent-1-yn-1-yl)-4-methylbenzenesulfonamide, 1h

N-Benzyl-*N*-(((1*S**,2*R**)-2-hydroxycyclohexyl)ethynyl)-4-methylbenzenesulfonamide, 1i

N-Benzyl-N-((1-hydroxycyclohex-2-en-1-yl)ethynyl)-4-methylbenzenesulfonamide, 1j

(*E*)-*N*-Benzyl-4-methyl-*N*-(3-(4-methylphenylsulfonamido)-5-phenylpent-4-en-1-yn-1-yl)benzenesulfonamide, 1k

N-Benzyl-*N*-((3-((*tert*-butyldimethylsilyl)oxy)cyclohex-2-en-1-yl)ethynyl)-4-methylbenzenesulfonamide, 11

N-Benzyl-4-methyl-N-(phenylethynyl)benzenesulfonamide, 1m

192 184 176 168 160 152 144 136 128 120 112 104 95 88 80 72 64 56 48 40 32 24 16 8 0 Chemical Shift (ppm)

N-Benzyl-4-methyl-N-(((2-nitrophenyl)thio)ethynyl)benzenesulfonamide, 1n

N-Butyl-N-ethynyl-4-methylbenzenesulfonamide, 10

N-Butyl-4-methyl-N-(prop-1-yn-1-yl)benzenesulfonamide, 1p

N-(But-3-yn-1-yl)-*N*-ethynyl-4-methylbenzenesulfonamide, 1q

(R)-Ethyl 3-(4-methyl-N-(1-phenylethyl)phenylsulfonamido)propiolate, 1r

Ethyl 3-(N-(tert-butyl)-4-methylphenylsulfonamido)propiolate, 1s

N-Ethynyl-4-methyl-N-phenylbenzenesulfonamide, 1t

4-Methyl-N-phenyl-N-(prop-1-yn-1-yl)benzenesulfonamide, 1u

4-Methyl-N-(prop-1-yn-1-yl)-N-(2-vinylphenyl)benzenesulfonamide, 1v

Ethyl 3-(N-(2,6-diisopropylphenyl)-4-methylphenylsulfonamido)propiolate, 1w

N-(4-Methoxyphenyl)-4-methyl-*N*-(prop-1-yn-1-yl)benzenesulfonamide, 1x

 $\label{eq:N-(3,5-Bis(trifluoromethyl)phenyl)-N-(3-hydroxy-3-methylbut-1-yn-1-yl)-4-methylbenzenesulfonamide, 1y$

1,1-Dibenzyl-3-ethynyl-3-phenylurea, 1z

tert-Butyl (3-(4-methylphenylsulfonamido)-3-phenylprop-1-yn-1-yl)(phenyl)carbamate, 1aa

(E)-tert-butyl butyl(3-oxo-5-phenylpent-4-en-1-yn-1-yl)carbamate, 1bb

Ethyl 3-(1*H*-indol-1-yl)propiolate 1cc

N-(3-(1H-benzo[d][1,2,3]triazol-1-yl)-1-phenylprop-2-yn-1-yl)-4-methylbenzenesulfonamide, 1dd

2.1c Chloroynamides: N-Benzyl-N-(chloroethynyl)-4-methylbenzenesulfonamide, S1

3.1 X-ray crystallographic information

Single crystal X-ray diffraction data were obtained for compounds **2a** and **2t**. In each case, a typical crystal was mounted using the oil drop technique, in perfluoropolyether oil at 150(2) K using a Cryostream N₂ openflow cooling device.¹ Diffraction data were collected using graphite monochromatic Mo-K_a radiation ($\lambda = 0.71073 \text{ Å}$) on a Nonius Kappa CCD diffractometer. For all data collections, series of ω -scans were performed in such a way as to collect a complete data set to a maximum resolution of 0.77 Å. Data reduction including unit cell refinement and inter-frame scaling was carried out using DENZO-SMN/SCALEPACK.² Intensity data were processed and corrected for absorption effects by the multi-scan method, based on repeat measurements of identical and Laue equivalent reflections. Structure solution was carried out with direct methods using the program SIR92³ within the CRYSTALS software suite.⁴ Coordinates and anisotropic displacement parameters of all non-hydrogen atoms were refined freely. Hydrogen atoms were generally visible in the difference map and refined with soft restraints prior to inclusion in the final refinement using a riding model.⁵ A summary of the X-ray crystallographic data is provided below (Table SI1) and ORTEP depictions of the single crystal X-ray structures follow (Fig. S11–S12.) Crystallographic data (excluding structure factors) for all the structures have been deposited with the Cambridge Crystallographic Data Centre (CCDC 1022574 and 1022575).

	2a	2t
CCDC number	1022574	1022575
Chemical Formula	$C_{16}H_{15}Cl_2NO_2S$	C ₅ H ₅ Cl ₂ NO ₂
FW	356.27	182.01
Crystal system	Triclinic	Orthorhombic
Space group	P-1	P 21 c n
Crystal colour	Colourless	Colourless
Crystal size (mm)	$0.17 \times 0.23 \times 0.29$	$0.08 \times 0.16 \times 0.16$
a (Å)	8.2507(2)	5.8979(2)
b (Å)	9.1868(2)	10.4250(3)
c (Å)	10.7811(3)	11.8622(3)
α (°)	92.8871(10)	90
β (°)	100.0815(10)	90
γ (°)	91.7403(10)	90
V (Å ³)	802.90(3)	725.64(4)
Ζ	2	4
D_{calcd} (g/cm ³)	1.474	1.666
μ (mm ⁻¹)	0.540	0.828
F (000)	368	368
Reflections	13254	9210
Unique reflections (R _{int})	3627 (0.024)	909 (0.018)
$R_{I} (I > 2\sigma(I))$	0.0342	0.0305
$wR'_2(I>2\sigma(I))$	0.0784	0.0563

Table SI1 Summary of the X-ray crystallographic data for compounds 2a, 2t.

Fig. SI1 ORTEP representation of the X-ray crystal structure of **2a** with thermal ellipsoids at 50% probability.

Fig. SI2 ORTEP representation of the X-ray crystal structure of **2t** with thermal ellipsoids at 50% probability.

- 1. Cosier, J.; Glazer, A. M., *J Appl Crystallography* **1986**, *19*, 105-107.
- 2. Otwinowski, Z.; Minor, W., Macromol Crystallography Part A 1997, 276, 307-326.
- 3. Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.,. *J Appl Crystallography* **1994**, *27*, 1045-1050.
- 4. Watkin, D.; Cooper, R.; Prout, C. K., Zeitschrift Fur Kristallographie 2002, 217 (7-8), 429-430.
- 5. Cooper, R. I.; Thompson, A. L.; Watkin, D. J., J Appl Crystallography 2010, 43, 1100-1107.