Supporting Information for:

## A twisted-intramolecular-charge-transfer (TICT) based ratiometric fluorescent thermometer with a mega-Stokes shift and a positive temperature coefficient

Cheng Cao,<sup>*ab*</sup> Xiaogang Liu,<sup>*bc*</sup> Qinglong Qiao,<sup>*b*</sup> Miao Zhao,<sup>*b*</sup> Wenting Yin,<sup>*b*</sup> Deqi Mao,<sup>*b*</sup> Hui Zhang<sup>*a*</sup> and Zhaochao Xu<sup>*b*</sup>

<sup>a</sup>The School Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China. E-mail: zh19683@163.com <sup>b</sup>Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. E-mail: zcxu@dicp.ac.cn <sup>c</sup>Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 CREATE Way, Singapore 138602, Singapore. E-mail: xgliu83@gmail.com **Materials and Instruments:** Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. <sup>1</sup>H-NMR and <sup>13</sup>C-NMR spectra were recorded on a Bruker 400 spectrometer, using TMS as an internal standard. Chemical shifts were given in ppm and coupling constants (*J*) in Hz. Mass spectrometry data were obtained with a HP1100LC/MSD mass spectrometer and a LC/Q-TOF MS spectrometer. UV—vis absorption spectra were collected on an Agilent Cary 60 UV-Vis Spectrophotometer. Fluorescence measurements were performed on a VAEIAN CARY Eclipse fluorescence spectrophotometer equipped with a Single Cell Peltier temperature controller. For temperature dependence studies, the cuvettes were tightly sealed with a cap to prevent solvent evaporation; the temperature was held for 20—30 min to ensure that the solution in the cuvettes reached thermal equilibrium before data collection.

Fluorescent quantum yields were determined using quinine sulfate (in 0.05 M  $H_2SO_4$ ) as a reference.<sup>1</sup> The quantum yield was calculated according to Equation 1:

$$\Phi_{F(x)} = \frac{A_s}{A_x} \frac{\int emission_x}{\int emission_s} \left(\frac{n_x}{n_s}\right)^2 \Phi_{F(s)} \quad (\text{Equation 1})$$

where  $\Phi_F$  represents the fluorescence quantum efficiency, *A* the absorbance at the excitation wavelength, *femission* the area under the fluorescence spectrum, and *n* the refractive index of the solvent in use. Subscripts *s* and *x* indicate the reference standard and the unknown, respectively.<sup>1</sup>

**Computational Details:** Quantum-chemical calculations were performed on 1 using Gaussian  $09.^2$  Becke's three-parameter and Lee-Yang-Parr hybrid functional  $(B3LYP)^{3-5}$  and a 6-31+G(d,p) basis set<sup>6</sup> were used.

The geometry of **1** was optimized in DMSO using the polarizable continuum model (PCM) to act as an implicit solvent incorporation.<sup>7, 8</sup> Following this, TD-DFT calculations were carried out on the optimized molecular structure in order to determine the photoexcitation mechanism of **1**.

## Synthesis:



Resublimed iodine (4.28 g, 16.8 mmol) was added in small portions over 45 min to a mixture of *N*,*N*-dimethylaniline (2.37 mL, 18.7 mmol) and NaHCO<sub>3</sub> (2.35 g, 27.9 mmol) in 16 mL water between 12 and 15 °C. The mixture was warmed up to room temperature (RT) and kept for 10 min. This mixture was then diluted with 500 mL ether, and the organic liquid was extracted consecutively with 50 mL water, 100 mL sodium thiosulfate, and another 100mL water. The organic layer was dried with Na<sub>2</sub>SO<sub>4</sub>, concentrated, and evaporated to give product **3**.<sup>9</sup> Yield: 3.98 g (86%). Mp: 63.5-66.1 °C.



Compound **3** (2.47 g, 10 mmol),  $Pd(PPh_3)_2Cl_2$  (0.035 g, 0.05 mmol), CuI (0.1 g), triethylamine (50 mL), PPh<sub>3</sub> (0.052 g, 0.2 mmol) and ethynyltrimethylsilane (1.6 ml, 11.3 mmol) were added to a round-bottomed flask (100 mL). The resulted mixture was stirred at RT for 5 h, and then filtered to remove salts, before the addition of 100 ml CH<sub>2</sub>Cl<sub>2</sub>. The extracted organic layer was dried over Na<sub>2</sub>SO<sub>4</sub> to yield **5**.<sup>9</sup> Yield: 1.4 g (64%).



Following a general deprotection procedure, the mixture of **5** (4.35 g, 20 mmol) with sodium fluoride (2.09 g, 5 mmol) and  $K_2CO_3$  (6.9 g, 5 mmol) in MeOH/THF (60 mL, 1:1, v/v) was heated at 40 °C for 4 h. After cooling to room temperature, the mixture was filtered to remove salts and evaporated to yield **6** as an orange solid.<sup>10</sup> Yield: 2.32 g (80%).



A mixture of **6** (2.17 g, 15 mmol), 6-bromo-2-methylquinoline (7) (2.2 g, 10 mmol),  $Pd(PPh_3)_2Cl_2$  (0.04 g, 0.056 mmol) and  $Et_3N$  (3 ml, 20 ml) in dimethylformamide (20

ml) was heated at 60 °C for 24 h. After cooling to RT, the mixture was filtered to remove salts, followed by the addition of 100 ml H<sub>2</sub>O. The resulting mixture was extracted with ethyl acetate (EA; 50 ml  $\times$  3). The organic solution was combined and dried with Na<sub>2</sub>SO<sub>4</sub> to yield a crude product. This product was recrystallised in EA/ petroleum ether to give **1**. Yield: 1.43 g (50%).

<sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 (d, *J* = 8.4 Hz, 1H, Ar-H), 7.94 (d, *J* = 8.4 Hz, 1H, Ar-H), 7.90 (d, *J* = 1.6 Hz, 1H, Ar-H), 7.75 (dd, *J* = 8.8, 1.6 Hz, 1H, Ar-H), 7.44 (d, *J* = 8.8 Hz, 2H, Ar-H), 7.28 (d, *J* = 8.4 Hz, 1H, Ar-H), 6.67 (d, *J* = 8.8 Hz, 2H, Ar-H), 2.99 (s, 6H, CH<sub>3</sub>), 2.73 (s, 3H, CH<sub>3</sub>). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.24, 150.26, 147.03, 135.71, 132.82, 132.27, 130.04, 128.60, 126.35, 122.50, 121.63, 111.87, 109.82, 91.67, 87.23, 77.34, 77.02, 76.70, 40.18, 25.37. HRMS(ESI) calcd for C<sub>20</sub>H<sub>19</sub>N<sub>2</sub> [MH<sup>+</sup>] 287.1548, found 287.1542.



Fig. S1. <sup>1</sup>H-NMR spectra of **1** in CDCl<sub>3</sub>.



Fig. S2. <sup>13</sup>C-NMR spectra of 1 in CDCl<sub>3</sub>.



Fig. S3. MS spectrum of 1.

Table S1. Spectral intensity maxima of UV-vis absorption and fluorescence [ $\lambda$  (nm) and  $\nu$  (cm<sup>-1</sup>)], molar extinction coefficients [ $\varepsilon$  (×10<sup>4</sup> L mol<sup>-1</sup> cm<sup>-1</sup>), at the peak UV—vis absorption wavelengths] and emission quantum yields ( $\varphi$ ) of **1** at 25 °C in various solvents, and the associated relative dielectric constants ( $\varepsilon_r$ ), refractive indices (n), and orientation polarisability ( $\Delta f$  and  $\Delta f$ ') of those solvents.<sup>*a*</sup>

| S/N | solvent           | absorption      |           | emission       |              | C    | (0    | c     | 10    | $\Lambda f$ | $\Lambda f'$ |
|-----|-------------------|-----------------|-----------|----------------|--------------|------|-------|-------|-------|-------------|--------------|
|     |                   | $\lambda_{abs}$ | $v_{abs}$ | $\lambda_{em}$ | $v_{\rm em}$ | C    | Ψ     | 6ŗ    | п     | Δy          | Дy           |
| 1   | acetone           | 334             | 29940     | 515            | 19417        | 2.75 | 0.119 | 21.36 | 1.359 | 0.285       | 0.762        |
| 2   | acetonitrile      | 332             | 30120     | 540            | 18519        | 2.91 | 0.143 | 35.94 | 1.344 | 0.305       | 0.815        |
| 3   | <i>n</i> -Butanol | 335             | 29851     | 474            | 21097        | 2.27 | 0.021 | 17.51 | 1.397 | 0.264       | 0.726        |
| 4   | chloroform        | 335             | 29851     | 461            | 21692        | 2.70 | 0.529 | 4.89  | 1.446 | 0.150       | 0.431        |
| 5   | dichloromethane   | 335             | 29851     | 481            | 20790        | 2.74 | 0.456 | 9.02  | 1.424 | 0.218       | 0.600        |
| 6   | DMF               | 335             | 29851     | 536            | 18657        | 2.36 | 0.220 | 37.06 | 1.430 | 0.275       | 0.794        |
| 7   | DMSO              | 338             | 29586     | 546            | 18315        | 2.50 | 0.189 | 46.71 | 1.479 | 0.263       | 0.797        |
| 8   | 1,4-dioxane       | 334             | 29940     | 439            | 22779        | 2.86 | 0.737 | 2.27  | 1.422 | 0.027       | 0.170        |
| 9   | ethanol           | 334             | 29940     | 493            | 20284        | 2.55 | 0.009 | 24.55 | 1.359 | 0.290       | 0.777        |
| 10  | ethyl acetate     | 332             | 30120     | 466            | 21459        | 2.97 | 0.552 | 6.03  | 1.372 | 0.200       | 0.513        |
| 11  | <i>n</i> -Hexane  | 332             | 30120     | 380            | 26316        | 2.66 | 0.617 | 1.886 | 1.375 | -0.001      | 0.114        |
| 12  | methanol          | 334             | 29940     | 496            | 20161        | 2.54 | 0.006 | 32.66 | 1.327 | 0.309       | 0.812        |
| 13  | tetrahydrofuran   | 334             | 29940     | 472            | 21186        | 2.77 | 0.471 | 7.47  | 1.406 | 0.209       | 0.560        |
| 14  | toluene           | 334             | 29940     | 420            | 23810        | 2.77 | 0.654 | 2.43  | 1.497 | 0.018       | 0.176        |

<sup>*a*</sup> The relative dielectric constants ( $\varepsilon_r$ ) and refractive indices (*n*) of various solvents are

imported from ref. 11 for non-alcoholic solvents, and ref. 12 for alcoholic solvents.



Fig. S4. The Lippert-Mataga plot for the fluorescence transition energies of 1, against  $\Delta f'$ .

| Temp.<br>Sol. | 25 °C | 35 °C | 45 °C | 55 °C | 65 °C |
|---------------|-------|-------|-------|-------|-------|
| DMSO          | 0.189 | 0.193 | 0.205 | 0.210 | 0.223 |
| Ethyl Acetate | 0.552 | 0.543 | 0.528 | 0.494 | 0.489 |

Table S2. Fluorescence quantum yields of **1** in DMSO and ethyl acetate at different temperatures.



Fig. S5. A reversibility study of the fluorescence intensities of **1** during 10 heating/cooling cycles in DMSO. Fluorescence intensities were monitored at 500 nm.

## **Reference:**

- 1. A. M. Brouwer, *Pure Appl. Chem.*, 2011, **83**, 2213-2228.
- 2. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson and et al., *Gaussian 09*, (2009) Gaussian Inc., Wallingford, CT.
- P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, *J. Phys. Chem.*, 1994, 98, 11623-11627.
- 4. A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- 5. C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785-789.
- 6. V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern and L. A. Curtiss, *J. Comput. Chem.*, 2001, **22**, 976-984.
- 7. D. M. Chipman, J. Chem. Phys., 2000, 112, 5558-5565.
- 8. S. Miertus, E. Scrocco and J. Tomasi, Chem. Phys., 1981, 55, 117-129.
- 9. J. J. La Clair, J. Am. Chem. Soc., 1997, 119, 7676-7684.
- 10. H. Jian and J. M. Tour, J. Org. Chem., 2003, 68, 5091-5103.
- 11. J. L. M. Abboud and R. Notario, Pure Appl. Chem., 1999, 71, 645-718.
- 12. M. L. Horng, J. A. Gardecki, A. Papazyan and M. Maroncelli, *J. Phys. Chem.*, 1995, **99**, 17311-17337.