Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Supporting Information for Stable carboxylic acid derivatized alkoxy silanes

A. Feinle, S. Flaig, M. Puchberger, U. Schubert, and N. Hüsing

Expected side reactions:

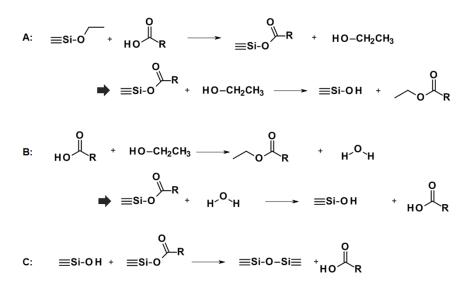


Fig. 1 Summary of the expected reactions between trialkoxysilanes and carboxylic acids.

Experimental Details

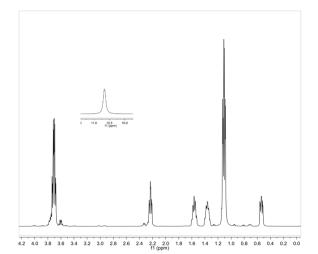
• Materials

Triethoxysilane (97%, ABCR), trimethoxysilane (95%, Aldrich), 4-pentenoic acid (97%, Aldrich), 3butenoic acid (97%, Aldrich), 9-decenoic acid (\geq 90%, Aldrich), and platinum(IV) oxide (Aldrich) were used as received.

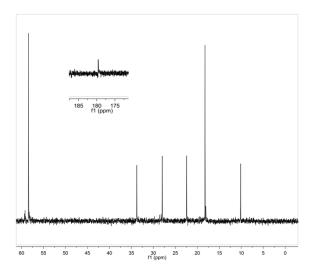
• Characterization

The ¹H-NMR, ¹³C-NMR, and spin-lock ²⁹Si-NMR spectra of the carboxylic acid derivatives were measured on a Bruker AMX 400 spectrometer (Bruker BioSpin, USA). The ¹H-NMR spectra were recorded with 400.1 MHz, the ¹³C-NMR spectra with 100.6 MHz, and the spin-lock ²⁹Si-NMR spectra with 79.5 MHz and a lock time of 150 ms, respectively. For the hydrolysis experiments, the ¹H-NMR spectra were taken on a Bruker DPX AVANCE 300 spectrometer with 300.13 MHz. IR-ATR (infrared spectroscopy in the attenuated total reflection mode) spectra were recorded on a Bruker VERTEX 70 spectrometer and MS (mass spectrometry) spectra on a Finnisam MAT SSQ 7000.

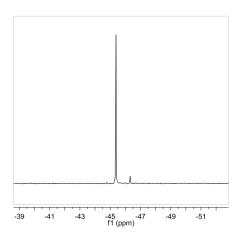
• Typical procedure: Hydrosilylation of carbenoic acids with trialkoxysilanes and PtO₂ as catalyst


The hydrosilylated products were synthesized in a solvent-free hydrosilylation reaction with PtO_2 as catalyst. The general procedure was as follows: 0.05 mol of trialkoxysilane was added slowly via a dropping funnel to an icecold suspension of 0.05 mol of the carbenoic acid and 0.05 mmol platinum(IV) oxide. The respective amounts of the carbenoic acids and the silanes are listed in table1. After stirring the mixture for 6 h at 0 °C and 12 h at room temperature and filtration over a polytetrafluoroethylene syringe filter the product could be obtained as a light brown coloured liquid.

The colour results from colloidal Pt(0) particles, which can be removed by the addition of charcoal and dunning filtration. Since the product was not further purified, no quantitative yield was determined.


sample	n (carbenoic acid) [mol]	V (carbenoic acid) [mL]	n (silane) [mol]	V (silane) [mL]
4-(trimethoxysilyl)butanoic acid	0.05	4.3	0.05	6.4
4-(triethoxysilyl)butanoic acid	0.05	4.3	0.05	9.2
5-(trimethoxysilyl)pentanoic acid	0.05	5.1	0.05	6.4
5-(triethoxysilyl)pentanoic acid	0.05	5.1	0.05	9.2
10-(trimethoxysilyl)decanoic acid	0.05	9.3	0.05	6.4
10-(triethoxysilyl)decanoic acid	0.05	9.3	0.05	9.2

5-(triethoxysilyl)pentanoic acid


¹H-NMR (400.1 MHz, CDCl₃): δ [ppm] = 0.53-0.58 (m, 2H, SiC<u>H</u>₂), 1.11-1.15 (m, 9H, SiOCH₂C<u>H</u>₃), 1.34-1.42 (m, 2H, SiCH₂C<u>H</u>₂), 1.55-1.62 (m, 2H, SiCH₂CH₂C<u>H</u>₂), 2.23-2.27 (SiCH₂CH₂CH₂C<u>H</u>₂) 3.58-3.63 (ethanol), 3.70-3.78 (m, 6H, SiOC<u>H</u>₂CH₃), 10.68 (s, 1H, CH₂COO<u>H</u>).

¹³C-NMR (100.6 MHz, CDCl₃): δ [ppm] = 10.14 (Si<u>C</u>H₂), 18.07 (ethanol), 18.24 (SiOCH₂<u>C</u>H₃), 22.40 (SiCH₂<u>C</u>H₂), 27.98 (SiCH₂CH₂<u>C</u>H₂), 33.75 (SiCH₂CH₂CH₂CH₂), 58.40 (SiO<u>C</u>H₂CH₃), 59.19 (ethanol), 179.55 (CH₂<u>C</u>OOH).

²⁹Si-NMR spin lock (79.5 MHz, CDCl₃): δ[ppm] = -45.38, -46.32.

IR-ATR: \tilde{v} [cm⁻¹] = 1737 (CO of an ester, m), 1709 (CO of a carboxylic acid, s).

MS (Cl): calculated for $(C_{11}H_{24}SiO_5) = 264$; found: $m/z = 265 [M+H]^+$, 247 [M-OH]⁺, 219 [M-EtOH]⁺, 189 [M-C₂H₅]⁺, 163 [M-C₅H₉O₂]⁺.

4-(trimethoxysilyl)butanoic acid

¹H-NMR (400.1 MHz, DMSO-d6): δ [ppm] = 0.39-0.47 (m, 2H, SiC<u>H</u>₂), 1.40-1.41 (m, 2H, SiCH₂C<u>H</u>₂), 2.09-2.14 (m, 2H, SiCH₂CH₂C<u>H</u>₂), 3.15 (s, 0.8H, methanol), 3.29 (s, 9H, SiOC<u>H</u>₃), 3.39 (s, 0.4H, CH₂COOC<u>H</u>₃), 9.57 (s, 1H, CH₂COO<u>H</u>).

¹³C-NMR (100.6 MHz, DMSO-d6): δ [ppm] = 7.51 (Si<u>C</u>H₂), 8.87, 17.23 (SiCH₂<u>C</u>H₂), 35.30 (SiCH₂CH₂), 48.14 (methanol), 48.93 (SiO<u>C</u>H₃), 49.62 (methanol), 176.53 (CH₂<u>C</u>OOH).

²⁹Si-NMR spin lock (79.5 MHz, DMSO-d6): δ[ppm] = -42.7, -44.0.

IR-ATR: \tilde{v} [cm⁻¹] = 1736 (CO of an ester, m), 1708 (CO of a carboxylic acid, s).

4-(triethoxysilyl)butanoic acid

¹H-NMR (400.1 MHz, DMSO-d6): δ [ppm] = 0.52-0.56 (m, 2H, SiC<u>H</u>₂), 1.05-1.10 (m, 9H, SiOCH₂C<u>H</u>₃), 1.60-1.62 (m, 2H, SiCH₂C<u>H</u>₂), 2.22-2.26 (m, 2H, SiCH₂CH₂C<u>H</u>₂), 3.52-3.60 (m, 0.4H, ethanol), 3.64-3.71 (m, 6H, SiOC<u>H</u>₂CH₃), 10.34 (s, 1H, CH₂COO<u>H</u>).

¹³C-NMR (100.6 MHz, DMSO-d6): δ [ppm] = 9.64 (Si<u>C</u>H₂), 17.68 (ethanol), 17.85 (SiOCH₂<u>C</u>H₃), 18.06 (SiCH₂<u>C</u>H₂), 36.49 (SiCH₂CH₂<u>C</u>H₂), 57.95 (ethanol), 58.07 (SiO<u>C</u>H₂CH₃), 178.59 (CH₂<u>C</u>OOH).

²⁹Si-NMR spin lock (79.5 MHz, DMSO-d6): δ[ppm] = -45.9, -46.1.

IR-ATR: \tilde{v} [cm⁻¹] = 1737 (CO of an ester, m), 1709 (CO of a carboxylic acid, s).

5-(trimethoxysilyl)pentanoic acid

¹H-NMR (400.1 MHz, CDCl₃): δ [ppm] = 0.54-0.58 (m, 2H, SiC*H*₂), 1.31-1.39 (m, 2H, SiCH₂C*H*₂), 1.50-1.60 (m, 2H, SiCH₂CH₂C*H*₂), 2.21-2.25 (m, 2H, SiCH₂CH₂CH₂C*H*₂), 3.34 (s, 1H, methanol), 3.45 (s, 9H, SiOC*H*₃), 3.48 (s, 1H, CH₂COOC*H*₃), 9.43 (s, 1H, CH₂COO*H*).

¹³C-NMR (100.6 MHz, CDCl₃): δ [ppm] = 8.87 (Si<u>C</u>H₂), 22.21 (SiCH₂<u>C</u>H₂), 27.94 (SiCH₂CH₂<u>C</u>H₂), 33.69 (SiCH₂CH₂CH₂<u>C</u>H₂), 50.15 (methanol), 50.49 (SiO<u>C</u>H₃), 179.12 (CH₂<u>C</u>OOH).

²⁹Si-NMR spin lock (79.5 MHz, CDCl₃): δ[ppm] = -41.9, -43.5.

IR-ATR: \tilde{v} [cm⁻¹] = 1737 (CO of an ester, m), 1708 (CO of a carboxylic acid, s).

10-(trimethoxysilyl)decanoic acid

¹H-NMR (400.1 MHz, CDCl₃): δ [ppm] = 0.46-0.50 (m, 2H, SiC<u>H</u>₂), 1.05-1.20 (m, 10H, -C<u>H</u>₂-), 1.21-1.32 (m, 2H, SiCH₂C<u>H</u>₂), 1.44-1.48 (m, 2H, SiCH₂CH₂C<u>H</u>₂), 2.15-2.19 (SiCH₂CH₂CH₂CH₂C<u>H</u>₂), 3.29 (methanol), 3.40-3.45 (m, 9H, SiOC<u>H</u>₃), 10.75 (s, 1H, CH₂COO<u>H</u>).

¹³C-NMR (100.6 MHz, CDCl₃): δ [ppm] = 9.01 (Si<u>C</u>H₂), 22.47 (-<u>C</u>H₂-), 24.65 (-<u>C</u>H₂-), 29.01, 32.97 (-<u>C</u>H₂-), 33.93 (-<u>C</u>H₂-), 50.27 (SiO<u>C</u>H₃), 51.06 (methanol), 179.25 (CH₂<u>C</u>OOH).

²⁹Si-NMR spin lock (79.5 MHz, CDCl₃): δ[ppm] = -41.4, -43.0.

IR-ATR: \tilde{v} [cm⁻¹] = 1738 (CO of an ester, m), 1708 (CO of a carboxylic acid, s).

10-(triethoxysilyl)decanoic acid

¹H-NMR (400.1 MHz, CDCl₃): δ [ppm] = 0.52-0.56 (m, 2H, SiC<u>H</u>₂), 1.12-1.16 (m, 9H, SiOCH₂C<u>H</u>₃), 1.20-1.29 (m, 10H, -C<u>H</u>₂-), 1.31-1.38 (m, 2H, SiCH₂C<u>H</u>₂), 1.50-1.60 (m, 2H, SiCH₂CH₂C<u>H</u>₂), 2.23-2.27 (SiCH₂CH₂CH₂C<u>H</u>₂) 3.70-3.78 (m, 6H, SiOC<u>H</u>₂CH₃), 10.67 (s, 1H, CH₂COO<u>H</u>).

¹³C-NMR (100.6 MHz, CDCl₃): δ [ppm] = 10.43 (Si<u>C</u>H₂), 18.33 (SiOCH₂<u>C</u>H₃), 22.80 (-<u>C</u>H₂-), 29.15 (-<u>C</u>H₂-), 33.20 (-<u>C</u>H₂-), 34.17 (-<u>C</u>H₂-), 58.39 (SiO<u>C</u>H₂CH₃), 179.84 (CH₂<u>C</u>OOH).

²⁹Si-NMR spin lock (79.5 MHz, CDCl₃): δ[ppm] = -44.5, -45.5.

IR-ATR: \tilde{v} [cm⁻¹] = 1736 (CO of an ester, m), 1709 (CO of a carboxylic acid, s).

Triethoxysilane

¹H-NMR (400.1 MHz, CDCl₃): δ [ppm] = 1.14-1.18 (t, 9H, Si(OCH₂C<u>H₃</u>)₃), 3.58-3.64 (ethanol), 3.74-3.79 (q, 6H, Si(OC<u>H₂CH₃</u>)₃), 4.20 (s, 1H, <u>H</u>Si(OCH₂CH₃)₃)

¹³C-NMR (100.6 MHz, CDCl₃): δ [ppm] = 18.3 (SiOCH₂CH₃), 18.4 (ethanol), 58.4 (SiO<u>C</u>H₂CH₃), 58.3 (ethanol).

General Procedure of the Hydrolysis Studies by ¹H-NMR Spectroscopy

0.2 mmol of the corresponding silane was mixed with 0.6 mL acetone-d6 in an NMR sample tube. After recording a ¹H-NMR spectrum of the sample, 0.1 mL diluted hydrochloric acid (0.01 M, pH = 2) or 0.1 mL distilled water (pH = 4.5) was added and 60 s after the addition, the first ¹H-NMR spectrum was recorded. Subsequently, a spectrum was recorded every 30 s.

For the evaluation, the kinetic equation $A_t = A_0^* e^{-kt}$ for first-order reactions was used. A_0 corresponds to the integral intensity of the ethoxy signals before the catalysis of hydrolysis and condensation reactions and A_t to the signal intensity at the corresponding time t after the addition of the catalyst. For the determination of the rate constant, the equation was converted into the linear equation: $ln(A_0/A_t) = kt$. Through a plot of $ln(A_0/A_t)$ against the time t, the rate constant can be obtained directly from the slope of the line.