Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2015

First-principles study of electronic structure and photocatalytic properties of MnNiO₃ as an alkaline oxygen-evolution photocatalyst

Jie Yu a, b, c, Qimin Yan c, d, Wei Chen b, Anubhav Jain b, Jeffrey B. Neaton c, d, e and Kristin A. Persson b, *

- ^a Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States.
- ^b Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States. E-mail: kapersson@lbl.gov
- ^c Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
- ^d Department of Physics, University of California, Berkeley, California 94720, United States.
- ^e Kavli Energy NanoSciences Institute, Berkeley, CA 94720, United States

Supplementary Matserials

Structure relaxation

The primitive cell of rhombohedral MnNiO₃ (black dashed line) used in our DFT-HSE calculations is shown in Fig. 1. The Mn and Ni atoms are both surrounded by a distorted oxygen octahedron, with nearest neighbour distances ranging from 1.932 to 1.957 Å for Mn and from 2.029 to 2.141 Å for Ni. The structure of the ilmenite ABO_x is similar to that of Cr_2O_3 , where both A and B sites are occupied by Cr atoms. In ilmenite structures, A and B atoms form an AB-BA-AB-BA arrangement with oxygen atom layers stacked along the rhombohedron body diagonal. The positions of the A, B, and O atoms in the rhombohedral cell of the ilmenite structure can be described with the following Wyckoff positions 2 : metal A: $\pm u$, u, u; metal B: $\pm v$, v, v; oxygens: $\pm (xyz, zxy, yzx)$ with the restriction of the oxygen positions as x + y = 2z.

Table S1 Equilibrium lattice parameters for various magnetic phases of MnNiO₃ obtained with DFT-PBE+U and DFT-HSE calculations. The experimental data from Ref.2 is also listed for comparison.

Functional	Magnetic configuration	a = b = c (Å)	$\alpha = \beta = \gamma \text{ (degree)}$	Volume (Å ³)
PBE+U	Ferrimagnetic (ground state)	5.419	54.763	98.783
	Ferromagnetic	5.431	54.861	99.743
	Antiferromagnetic (+-++)	5.432	54.654	99.200
	Antiferromagnetic (+++-)	5.423	54.854	99.250
	Antiferromagnetic (+-+-)	5.431	54.691	99.237
	Antiferromagnetic (++)	5.433	54.603	99.114
HSE	Ferrimagnetic (ground state)	5.334	54.622	93.871
	Ferromagnetic	5.351	54.677	94.905
	Antiferromagnetic (+-++)	5.341	54.578	94.128
	Antiferromagnetic (+++-)	5.344	54.623	94.363
	Antiferromagnetic (+-+-)	5.337	54.658	94.128
	Antiferromagnetic (++)	5.353	54.448	94.416
Experimental ²	Ferrimagnetic (ground state)	5.343	54.650	94.411

Table S2 Equilibrium lattice parameters and atomic coordinates of MnNiO3 in the ferrimagnetic ground state obtained from HSE calculations. The experimental data from Ref.² is also listed for comparison.

	Experimental ²	HSE (ferrimagnetic)	
a = b = c (Å)	5.3529	5.3341	
$\alpha = \beta = \gamma \text{ (Degree)}$	54.4480	54.6224	
Volume (Å ³)	94.4163	93.8712	
u	0.352	0.343	
v	0.148	0.146	
x	0.560	0.550	
y	-0.060	-0.059	
z	0.250	0.272	

Magnetic properties of MnNiO₃

In order to find the DFT magnetic ground state of MnNiO₃, we calculate several possible magnetic configurations corresponding to ferromagnetic, ferromagnetic, and antiferromagnetic states with both PBE+U and HSE functionals. The initial magnetic moments are set on Mn and Ni atoms along the rhombohedron body diagonal (Mn1, Ni1, Ni2, Mn2) as shown in Fig. 1. To simulate a ferromagnetic state, the initial magnetic moments are all positive (+++++) from the top Mn1 to the bottom Mn2 atom. It is experimentally confirmed in Ref.^{2, 4-8} that the ground state of MnNiO₃ is ferrimagnetic with magnetic moments of alternating sign and differing magnitude on the A and B atoms, respectively. We set the initial magnetic moments as -++-, which means the magnetic moments on Mn atoms are negative while those on Ni atoms are positive. We also consider four different antiferromagnetic configurations in the unit cell with the magnetic moments from Mn1 atom to Mn2 atom along the rhombohedron body diagonal set as: +-++, +++-, +-+-, +--+.

The obtained final magnetic moments after structural and electronic relaxations for ferrimagnetic, ferromagnetic, and four antiferromagnetic states are shown in Table S3. We calculate that the ferrimagnetic state is the ground state using both PBE+U and HSE approaches, consistent with previous experimental observations^{2, 4-8}. As shown in Table S3, the energy per magnetic atom of the ferromagnetic state is 26 meV higher than that of the ferrimagnetic state with PBE+U, and 70 meV higher with the HSE functional. For antiferromagnetic states, the energy difference is between 13 to 34 meV for PBE+U, and 38 to 58 meV for HSE, respectively. Overall, the strength of the magnetic interactions is predicted to be greater with HSE method than PBE+U. Although HSE and PBE+U differ significantly in the absolute value of the band gap, the trend remains the same: the band gap for the ferromagnetic state is lowest compared with other magnetic states, and the antiferromagnetic phase with a +-+- configuration exhibits the largest band gap.

Table S3 Calculated total energy differences, the magnetic moments of each Mn and Ni ion for various magnetic phases of MnNiO₃, and the band gaps obtained with DFT-PBE+U and DFT-HSE. All total energies are reported relative to the ferrimagnetic state.

Functional	Magnetic configuration	Final magnetic moments for Mn and Ni atoms (μ _B)				Energy difference per	Band gap
		Mn1	Mn2	Ni1	Ni2	magnetic atom (meV)	(eV)
PBE+U	Ferrimagnetic (ground state)	-3.1	-3.1	+1.8	+1.8	0	1.75
	Ferromagnetic	+3.3	+3.3	+1.8	+1.8	26	1.40
	Antiferromagnetic (+-++)	+3.2	-3.1	+1.8	+1.7	25	1.78
	Antiferromagnetic (+++-)	+3.2	+3.2	+1.8	-1.8	13	1.56
	Antiferromagnetic (+-+-)	+3.1	-3.1	+1.8	-1.8	34	1.98
	Antiferromagnetic (++)	+3.2	-3.2	-1.7	+1.7	21	1.82
HSE	Ferrimagnetic (ground state)	-2.9	-2.9	+1.7	+1.7	0	2.98
	Ferromagnetic	+3.1	+3.1	+1.7	+1.7	70	2.87
	Antiferromagnetic (+-++)	+3.1	-2.9	+3.0	+3.0	50	3.07
	Antiferromagnetic (+++-)	+3.0	+3.0	+1.7	-1.7	37	2.94
	Antiferromagnetic (+-+-)	+2.9	-2.9	+1.7	-1.7	57	3.21
	Antiferromagnetic (++)	+3.0	-3.0	-1.7	+1.7	37	3.14

^{1.} Y. Y. Li, Phys Rev, 1956, 102, 1015.

^{2.} W. H. Cloud, Phys Rev, 1958, 111, 1046.

^{3.} R. W. G. Wyckoff, Crystal structures, Interscience Publishers, New York, 1948.

^{4.} E. F. Bertaut and F. Forrat, *J Appl Phys*, 1958, **29**, 247.

^{5.} H. S. Jarrett and R. K. Waring, *Phys Rev*, 1958, **111**, 1223.

^{6.} T. J. Swoboda, R. C. Toole and J. D. Vaughan, J Phys Chem Solids, 1958, 5, 293.

^{7.} M. Pernet, J. C. Joubert and B. Ferrand, Solid State Commun, 1975, 16, 503.

^{8.} I. O. Troyanchuk, A. A. Shemyakov and V. K. Prokopenko, *Phys Status Solidi A*, 1989, 113, K107.