Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Trienamine-Mediated Asymmetric [4+2]-Cycloaddition of α,β-Unsaturated Ester Surrogates Applying 4-Nitro-5-Styrylisoxazoles

Yang Li, Francisco Javier López-Delgado, Danny Kaare Bech Jørgensen, Rune Pagh Nielsen, Hao Jiang and Karl Anker Jørgensen*

[*] Center for Catalysis

Department of Chemistry, Aarhus University

DK-8000 Aarhus C, Denmark

Fax (45) 8919 6199, e-mail: kaj@chem.au.dk

Contents

1.	General methods	S2
2.	Starting materials	S 3
3.	Procedures and products	S4
4.	X-Ray structure	S15
5.	¹ H and ¹³ C NMR spectra	S16

1. GENERAL METHODS

NMR spectra were acquired on a bruker AS 400 spectrometer, running at 400 MHz for ¹H and 100 MHz for ¹³C, respectively. Chemical shifts (δ) are reported in ppm relative to residual solvent signals (CHCl₃, 7.26 ppm for ¹H NMR, CDCl₃, 77.0 ppm for ¹³C NMR). The following abbreviations are used to indicate the multiplicity in NMR spectra: s, singlet; d, doublet; t, triplet; q, quartet; hept, heptet; m, multiplet; br, broad resonance; app., apparent. ¹³C NMR spectra were acquired on a broad band decoupled mode. For characterization of diastereomeric mixtures, *denotes minor diastereoisomer, ⁺denotes overlap of signals from both diastereoisomers, while the major diastereomer is characterized without further denotations. The number of protons/carbons given in the parenthesis is the sum over both diastereomers. Mass spectra were recorded on a Bruker MicroTOF-Q High-Performance LC-MS system. Analytical thin layer chromatography (TLC) was performed using pre-coated aluminium-backed plates (Merck Kieselgel 60 F254) and visualized by ultraviolet irradiation, KMnO₄ or *p*-anisaldehyde dip. Optical rotations were measured on a Perkin-Elmer 241 polarimeter. The enantiomeric excess (ee) of the products was either determined by: i) Ultraperformance Convergence Chromatography (UPC²) using Daicel Chiralpak IA-3, IB-3, IC-3 and ID-3 columns as chiral stationary phases; or by ii) chiral stationary phase HPLC on a Daicel Chiralpak IA-5, IB-5 column. Unless otherwise noted, analytical grade solvents and commercially available reagents were used without further purification. For flash chromatography (FC) silica gel (SiO₂ 60, 230-400 mesh, Fluka) was used. Racemic samples were prepared using a mixture of enantiomers of 3 (20 mol%) in combination with DABCO (20 mol%), H₂O (10 equiv.) in THF.

2. STARTING MATERIALS

Dienals 1 were prepared from the corresponding alkenyl bromides according to the procedure reported by Fabrizi *et al.*¹ 4-Nitro-5-styrylisoxazoles 2^2 were prepared following literature procedures. For **1n** and **2c,h,i** the data are given below.

Dienal **1n** was obtained after FC on silica gel (CH_2Cl_2) in 61% yield as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 9.60 (d, J = 7.8 Hz, 1H), 7.66 (d, J = 15.3 Hz, 1H), 6.12 (dd, J = 15.3, 7.8 Hz, 1H), 2.01 (s, 3H), 1.94 (s, 3H), 1.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.6, 151.6, 144.6,

127.0, 126.8, 22.9, 21.1, 14.2. **HRMS** (ESI+) *m/z* calcd. for C₈H₁₂O [M+H]⁺: 125.0961; found: 125.0961.

4-Nitro-5-styrylisoxazole **2c** was obtained in 53% yield as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.68 (m, 6H), 2.62 (s, 3H). ¹³C NMR (100 MHz, **CDCl**₃) δ 166.4, 156.2, 140.9, 137.6, 128.4 (2C), 126.1 (q, J = 3.8 Hz, 2C), 113.2,

11.8 (two of the signals in the aromatic/olefinic region denotes two overlapping carbons; signals for CF3carbons were not detected after prolonged scans). **HRMS** (ESI+) m/z calcd. for C₁₃H₉F₃N₂O₃ [M+H]⁺: 299.0638; found: 299.0641.

4-Nitro-5-styrylisoxazole 2h was obtained in 56% yield as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.67 (m, 3H), 7.65 – 7.57 (m, 2H), 2.61 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 156.2, 139.4, 137.8, 136.0, 129.7 (2C), 123.7 (2C), 113.4, 11.8 (one of the signals in the aromatic/olefinic region denotes two

overlapping carbons). **HRMS** (ESI+) m/z calcd. for $C_{12}H_8Br_2N_2O_3[M+H]^+$: 386.8974; found: 386.8982.

4-Nitro-5-styrylisoxazole 2i was obtained in 57% yield as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 16.5 Hz, 1H), 7.75 (d, J = 8.5 Hz, 1H), 7.65 (d, J = 16.5 Hz, 1H), 7.50 (d, J = 2.0 Hz, 1H), 7.35 (dd, J = 8.5, 2.0 Hz, 1H), 2.62 (s, 3H). ¹³C NMR

(100 MHz, CDCl₃) δ 166.4, 156.2, 137.2, 137.2, 135.9, 131.1, 130.2, 128.3, 127.8, 113.4, 11.8 (one of the signals in the aromatic/olefinic region denotes two overlapping carbons). HRMS (ESI+) m/z calcd. for C₁₂H₈Cl₂N₂O₃ [M+H]⁺: 298.9985; found: 298.9984.

¹ (a) G. Battistuzzi, S. Cacchi and G. Fabrizi, Org. Lett., 2003, 5, 777. All spectroscopic data matched those previously reported: (b) Z.-J. Jia, Q. Zhou, Q.-Q. Zhou, P.-Q. Chen and Y.-C. Chen, Angew. Chem. Int. Ed., 2011, 50, 8638.

² H. Kawai, K. Tachi, E. Tokunaga, M. Shiro and N. Shibata, *Angew. Chem. Int. Ed.*, 2011, **50**, 7803.

3. PROCEDURES AND PRODUCTS

General Procedure for the Trienamine-mediated [4+2]-Cycloaddition

A mixture of the dienal **1** (0.15 mmol, 1.5 equiv), olefin substrate **2** (0.1 mmol, 1 equiv), DABCO (0.02 mmol, 0.2 equiv), H_2O (10 equiv) and catalyst **3e** (0.02 mmol, 0.2 equiv) were dissolved in 0.4 mL of THF and brought to 40 °C and stirred until complete consumption of **2**, which usually was reached in 24-72 h (unless specific reaction time is given). Excess solvents were removed *in vacuo* and the crude mixture was purified by FC on silica gel to afford the corresponding cycloadduct **4**.

General Derivatization Procedure for Determination of the Enantioselectivities

To a solution of the aldehyde **4** (0.05 mmol, 1 equiv) in CH_2CI_2 (0.2 mL) was added $Ph_3P=COPh$ (0.1 mmol, 2 equiv). The reaction mixture was heated to 40 °C and stirring for 2-48 h (unless specific reaction time is given; monitored by TLC or ¹H NMR), after which it was allowed to cool to rt. The crude mixture of the Wittig reaction was directly purified by FC on silica gel to afford the pure enone products **5**.

Following the general procedure, cycloadduct **4a** was obtained after FC on silica gel (gradient: pentane/EtOAc 20:1 to 10:1) in 68% yield and 8.7:1 dr as a pale yellow oil. $[\alpha]_D^{20} = -10.0 \ (c \ 0.2, \ CH_2Cl_2)$. ¹H NMR (**400** MHz, CDCl₃): δ 9.57 (s, 1H), 7.24 – 7.03 (m, 5H), 5.51 (d, $J = 3.3 \ Hz$, 1H), 4.51 (dd, $J = 11.7, 5.3 \ Hz$, 1H), 3.44 – 3.27 (m, 2H), 2.68 (dd, $J = 18.1, 7.1 \ Hz$, 1H), 2.56 (dd, $J = 18.1, 6.3 \ Hz$, 1H), 2.38 (s, 3H), 2.35 – 2.20 (m, 2H), 1.75 (s, 3H). ¹³C NMR (**100** MHz, CDCl₃): δ 199.6, 175.1, 171.1, 155.3, 142.7, 134.7,

128.7 (2C), 127.0 (2C), 126.9, 122.7, 46.4, 41.5, 39.3, 39.0, 31.8, 23.1, 11. 6. **HRMS** (ESI+) m/z calcd. for $C_{19}H_{20}N_2O_4$ [M+Na]⁺: 363.1315; found: 363.1317. The enantioselectivity was determined after derivatization.

Following the derivatization procedure, enone **5a** was obtained after FC on silica gel (gradient: pentane/EtOAc 20:1 to 10:1) in 63% yield and 7:1 dr as a pale yellow oil. $[\alpha]_D^{20}$ = +60.0 (*c* 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 7.3 Hz, 2H), 7.56 (t, *J* = 7.3 Hz, 1H), 7.46 (t, *J* = 7.3 Hz, 2H), 7.25 – 7.05 (m, 5H), 6.78 – 6.73 (m, 2H), 5.56 (d, *J* = 3.0 Hz, 1H), 4.45 (dd, *J* = 11.4, 5.6 Hz, 1H), 3.48 (ddd, *J* = 11.3, 10.3,

5.9 Hz, 1H), 3.05 - 2.90 (m, 1H), 2.49 - 2.15 (m, 7H), 1.77 (s, 3H). ¹³**C NMR (100 MHz, CDCl₃)**: δ 189.7, 175. 6, 155.2, 145.7, 143.2, 137.6, 134.5, 132.8, 128.7 (2C), 128.5 (2C), 128.5 (2C), 127.0 (2C), 126.8, 126.6, 122.9, 42.1, 39.2, 38.7, 38.2, 36.0, 30.9, 23.2, 11.4. **HRMS** (ESI+) *m/z* calcd. for C₂₇H₂₆N₂O₄ [M+Na]⁺: 465.1785; found: 465.1786. **UPC**²: IC-3, CO₂/*i*-PrOH gradient [99:1 (1 min); 99:1 to 60:40 (over 4 min), 60:40 (3 min)], 3.0 mL·min⁻¹, 40 °C, 120 bar; major diastereomer: t_{major} = 4.7 min; t_{minor} = 4.2 min (94% ee).

Following the general procedure, cycloadduct **4b** was obtained after FC on silica gel (gradient: pentane/EtOAc 20:1 to 10:1 to 4:1) in 76% yield and 4.2:1 dr as a pale yellow solid. $[\alpha]_D^{20} = +13.2$ (*c* 1.5, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 9.66* (s, 1H*), 9.55 (s, 1H), 7.46 – 7.28⁺ (m, 2H, 2H*), 7.06 (d, *J* = 8.3 Hz, 2H), 6.98* (d, *J* = 8.3 Hz, 2H*), 5.51 (d, *J* = 2.9 Hz, 1H), 5.39* (s, 1H*), 4.46 (dd, *J* = 11.7, 5.2 Hz, 1H), 4.00* (app. t, *J* = 11.2 Hz, 1H), 3.43 – 3.28⁺ (m, 2H, 2H*), 2.71 – 2.14⁺ (m, 7H, 7H*), 1.75 – 1.74⁺ (m, 3H, 3H*). ¹³C NMR (100 MHz, CDCl₃): δ 200.1*, 199.3, 174.7*, 174.6, 155.4, 155.1*, 141.8, 140.9*,

135.8*, 135.6, 135.0*, 134.4, 131.9 (2C), 131.8* (2C*), 128.8 (2C), 128.6* (2C), 122.8, 122.5*, 121.0*, 120.7, 47.9, 46.3*, 41.4⁺ (1C, 1C*), 39.1, 38.9*, 38.5, 35.8*, 31.7⁺ (1C, 1C*), 23.1, 23.1*, 11.6⁺ (1C, 1C*). **HRMS** (ESI+) m/z calcd. for $C_{19}H_{19}BrN_2O_4$ [M+Na]⁺: 441.0420, 443.0400; found: 441.0424, 443.0402. The enantioselectivity was determined after derivatization.

Following the derivatization procedure, enone **5b** was obtained after FC on silica gel (gradient: pentane/EtOAc 20:1 to 10:1 to 4:1) in 86% yield and 3:1 dr as a pale yellow oil. $[\alpha]_D^{20} = +134.0 (c \ 0.5, CH_2Cl_2)$. ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.84⁺ (m, 2H, 2H^{*}), 7.56⁺ (app. t, *J* = 7.3 Hz, 1H, 1H^{*}), 7.46⁺ (app. t, *J* = 7.6 Hz, 2H, 2H^{*}), 7.34 (d, *J* = 8.4 Hz, 2H), 7.28^{*} (d, *J* = 8.4 Hz, 2H^{*}), 7.07 (d, *J* = 8.4 Hz, 2H), 6.97^{*} (d, *J* = 8.4 Hz, 2H), 6.85 – 6.72⁺ (m, 2H, 2H^{*}), 5.56 (d, *J* = 3.2 Hz, 1H), 5.45^{*} (s, 1H^{*}), 4.40 (dd, *J* = 11.5, 5.6 Hz, 1H), 3.97^{*} (app. t, *J* = 11.2 Hz, 1H^{*}), 3.46 (ddd, *J* = 11.5, 10.6, 5.8 Hz, 1H), 3.40 – 3.29^{*} (m, 1H^{*}), 3.16 – 3.05^{*} (m, 1H^{*}), 3.05 –

2.94 (m, 1H), 2.51 – 2.10⁺ (m, 7H, 7H^{*}), 1.77⁺ (s, 3H, 3H^{*}). ¹³C NMR (100 MHz, CDCl₃) δ 189.7⁺ (1C, 1C^{*}), 175.2^{*}, 175.1, 155.4, 155.3^{*}, 145.4, 145.2^{*}, 142.3⁺ (1C, 1C^{*}), 137.5⁺ (1C, 1C^{*}), 134.9^{*}, 134.2, 132.9⁺ (1C, 1C^{*}), 131.9 (2C), 131.75^{*} (2C), 128.8⁺ (2C, 2C^{*}), 128.7⁺ (1C, 1C^{*}), 128.6⁺ (2C, 2C^{*}), 128.5⁺ (2C, 2C^{*}), 127.6^{*}, 126.6, 123.0, 122.9^{*}, 120.9^{*}, 120.6, 42.0⁺ (1C, 1C^{*}), 39.1⁺ (1C, 1C^{*}), 38.3⁺ (1C, 1C^{*}), 38.2⁺ (1C, 1C^{*}), 35.9⁺ (1C, 1C^{*}), 23.2, 23.1^{*}, 11.5^{*}, 11.4. HRMS (ESI+) *m/z* calcd. for C₂₇H₂₅N₂O₄Br [M+Na]⁺: 543.0890, 545.0869; found: 543.0899, 545.0886. UPC²: IC-3, CO₂/MeOH gradient [99:1 (1 min); 99:1 to 60:40 (over 4 min), 60:40 (3 min)], 3.0 mL·min⁻¹, 40 °C, 120 bar; major diastereomer: t_{maior} = 5.5 min; t_{minor} = 4.8 min (94% ee).

3H*). ¹³C NMR (100 MHz, CDCl₃): δ 200.0*, 199.2, 174.4⁺ (1C, 1C*), 155.5, 155.1*, 146.9, 145.9*, 135.6⁺ (1C, 1C*), 134.9*, 134.3, 129.2⁺ (q, *J* = 33.2 Hz, 1C, 1C*), 127.4 (2C), 127.3* (2C), 125.8⁺ (q, *J* = 3.7 Hz, 2C, 2C*),

122.9, 122.6^{*}, 47.9^{*}, 46.3, 41.2⁺ (1C, 1C^{*}), 39.0, 38.9, 38.7^{*}, 35.7^{*}, 31.6⁺ (1C, 1C^{*}), 23.1⁺ (1C, 1C^{*}), 11.5, 11.5^{*} (signals for CF3-carbons were not detected after prolonged scans). **HRMS** (ESI+) m/z calcd. for C₂₀H₁₉N₂O₃F₃ [M+Na]⁺: 431.1189; found: 431.1195. The enantioselectivity was determined after derivatization.

Following the derivatization procedure, enone **5c** was obtained after FC on silica gel (pentane/EtOAc 20:1 to 10:1) in 80% yield and 5:1 dr as a pale yellow oil. $[\alpha]_D^{20} = +125.0 (c \ 0.4, CHCl_3)$. ¹H NMR (400 MHz, CDCl_3) δ 7.90⁺ (d, J = 7.3 Hz, 2H, 2H*), 7.56⁺ (t, J = 7.3 Hz, 1H, 1H*), 7.52 – 7.37⁺ (m, 4H, 4H*), 7.31 (d, J = 8.1 Hz, 2H), 7.22* (d, J = 8.1 Hz, 2H*), 6.86 – 6.69⁺ (m, 2H, 2H*), 5.58 (d, J = 3.1 Hz, 1H), 5.47* (br, 1H*), 4.46 (dd, J = 11.5, 5.6 Hz, 1H), 4.02* (app. t, J = 10.7 Hz, 1H*), 3.57 (ddd, J = 11.0, 10.7, 5.8 Hz, 1H), 3.51 – 3.38* (m, 1H), 3.17 – 3.08* (m, 1H*), 3.08 – 2.94 (m, 1H), 2.50 – 2.14⁺ (m, 7H, 7H*), 1.78⁺ (s, 3H, 3H*). ¹³C NMR (100

MHz, CDCl₃) δ 189.6, 174.9, 155.4, 147.4, 145.2, 137.5, 134.8, 134.1, 132.9, 129.1 (q, *J* = 33.4 Hz), 128.6 (2C), 128.5 (2C), 127.4 (2C), 126.6, 125.8 (q, *J* = 3.7 Hz, 2C), 124.0 (q, *J* = 271.1 Hz), 123.1, 41.8, 39.0, 38.6, 38.2, 35.9, 23.1, 11.4 (only the major diastereomer is characterized). **HRMS** (ESI+) *m/z* calcd. for C₂₈H₂₅N₂O₄F₃ [M+Na]⁺: 533.1659; found: 533.1664. **UPC**²: IC-3, CO₂/*i*-PrOH gradient [99:1 (1 min); 99:1 to 60:40 (over 4 min), 60:40 (3 min)] 3.0 mL·min⁻¹, 40 °C, 120 bar; major diastereomer: t_{major} = 5.2 min; t_{minor} = 3.8 min (93% ee).

Following the general procedure, cycloadduct **4d** was obtained after FC on silica gel (gradient: pentane/EtOAc 10:1 to 2:1) in 60% yield and 3.6:1 dr as a pale yellow oil. $[\alpha]_D^{20} = +22.0$ (*c* 1.0, CHCl₃). ¹H NMR (**400** MHz, CDCl₃): δ 9.67* (s, 1H*), 9.55 (s, 1H), 8.09 (d, *J* = 8.6 Hz, 2H), 8.05* (d, *J* = 8.6 Hz, 2H*), 7.37 (d, *J* = 8.6 Hz, 2H), 7.30* (d, *J* = 8.6 Hz, 2H*), 5.54 (d, *J* = 3.5 Hz, 1H), 5.42* (br, 1H*), 4.53 (dd, *J* = 11.7, 5.3 Hz, 1H), 4.13 – 4.03* (m, 1H), 3.61 – 3.49⁺ (m, 1H, 1H*), 3.43 – 3.32⁺ (m, 1H, 1H*), 2.65 (dd, *J* = 18.3, 7.2 Hz, 1H), 2.57 (dd, *J* = 18.3, 6.3 Hz, 1H), 2.53 – 2.19⁺ (m, 5H, 7H*), 1.80 – 1.73⁺ (m, 3H, 2H)

3H*). ¹³C NMR (100 MHz, CDCl₃): δ 199.8*, 199.0, 174.0*, 174.0, 155.6, 155.2*, 150.4, 149.4*, 147.0*, 146.9, 134.6⁺ (1C, 1C*), 134.0⁺ (1C, 1C*), 128.0 (2C), 128.0* (2C*), 124.1 (2C), 124.0* (2C*), 123.0, 122.7*, 47.8*, 46.2, 41.2⁺ (1C, 1C*), 39.0, 38.8, 38.6*, 35.7*, 31.6⁺ (1C, 1C*), 23.0, 23.0*, 11.5⁺ (1C, 1C*). HRMS (ESI+) m/z calcd. for C₁₉H₁₉N₃O₆ [M+Na]⁺: 408.1166; found: 408.1166. The enantioselectivity was determined after derivatization.

Following the derivatization procedure, enone **5d** was obtained after FC on silica gel (gradient: pentane/EtOAc 10:1 to 4:1) in 90% yield and 4:1 dr as a pale yellow oil. $[\alpha]_D^{20} = +69.0 \ (c \ 1.0, CHCl_3)$. ¹H NMR (400 MHz, CDCl_3) δ 8.10 (d, $J = 8.8 \ Hz, 2H$), 8.04* (d, $J = 8.7 \ Hz, 2H^*$), 7.90⁺ (d, $J = 7.1 \ Hz, 2H, 2H^*$), 7.62 – 7.52⁺ (m, 1H, 1H*), 7.46⁺ (t, $J = 7.6 \ Hz, 2H, 2H^*$), 7.37 (d, $J = 8.8 \ Hz, 2H$), 7.29* (d, $J = 8.7 \ Hz, 2H^*$), 6.87 – 6.67⁺ (m, 2H, 2H*), 5.60 (d, $J = 3.0 \ Hz, 1H$), 5.48* (s, 1H*), 4.46 (dd, $J = 11.6, 5.6 \ Hz, 1H$), 4.09 – 3.97* (m, 1H*), 3.63 (ddd, $J = 11.1, 10.7, 5.8 \ Hz, 1H$), 3.58 – 3.49* (m, 1H*), 3.18 – 3.10* (m, 1H*), 3.10 – 2.96 (m, 1H), 2.50 – 2.16⁺ (m, 7H, 7H*), 1.79⁺ (s,

3H, 3H*). ¹³C NMR (100 MHz, CDCl₃): δ 189.5, 174.4, 155.6, 150.9, 149.5, 146.9, 145.0, 137.4, 133.8, 132.9, 128.6 (2C), 128.4 (2C), 128.0 (2C), 126.6, 124.1 (2C), 123.2, 41.8, 38.8, 38.7, 38.3, 35.8, 23.1, 11.4 (only

major diastereomer is characterized). **HRMS** (ESI+) m/z calcd. for $C_{27}H_{25}N_3O_6$ [M+Na]⁺: 510.1636; found: 510.1639. **UPC**²: IC-3, CO₂/ACN gradient [99:1 (1 min); 99:1 to 60:40 (over 4 min), 60:40 (3 min)], 3.0 mL·min⁻¹, 40 °C, 120 bar; major diastereomer: $t_{major} = 5.4$ min; $t_{minor} = 5.0$ min (92% ee).

Following the general procedure, cycloadduct **4e** was obtained after FC on silica gel (gradient: pentane/EtOAc 20:1 to 10:1 to 4:1) in 71% yield and >11:1 dr as a pale yellow oil. $[\alpha]_D^{20}$ = +9.0 (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 9.57 (s, 1H), 7.05 (d, *J* = 8.0 Hz, 2H), 7.00 (d, *J* = 8.0 Hz, 2H), 5.50 (d, *J* = 3.4 Hz, 1H), 4.48 (dd, *J* = 11.7, 5.3 Hz, 1H), 3.40 – 3.28 (m, 2H), 2.67 (dd, *J* = 18.1, 7.1 Hz, 1H), 2.55 (dd, *J* = 18.1, 6.4 Hz, 1H), 2.39 (s, 3H), 2.36 – 2.18 (m, 5H), 1.74 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 199.6, 175.2, 155.3, 139.7, 136.4, 134.8, 129.4 (2C), 126.8 (2C), 122.7, 46.5, 41.6, 39.4, 38.6, 31.8,

23.1, 21.0, 11.6 (one of the signals in the aromatic/olefinic region denotes two overlapping carbons). **HRMS** (ESI+) m/z calcd. for $C_{20}H_{22}N_2O_4$ [M+Na]⁺: 377.1472; found: 377.1477. The enantioselectivity was determined after derivatization.

Following the derivatization procedure, enone **5e** was obtained after FC on silica gel (pentane/EtOAc 20:1 to 10:1) in 73% yield and >10:1 dr as a pale yellow oil. $[\alpha]_D^{20} = +109.6 (c \ 0.5, CHCl_3)$. ¹H NMR (400 MHz, CDCl_3) δ 7.92 – 7.87 (m, 2H), 7.59 – 7.51 (m, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.07 (d, *J* = 8.1 Hz, 2H), 7.02 (d, *J* = 8.1 Hz, 2H), 6.79 – 6.72 (m, 2H), 5.55 (d, *J* = 3.1 Hz, 1H), 4.42 (dd, *J* = 11.4, 5.6 Hz, 1H), 3.50 – 3.38 (m, 1H), 3.04 – 2.93 (m, 1H), 2.48 – 2.16 (m, 4H), 2.28 (s, 3H), 2.25 (s, 3H), 1.77 (s, 3H). ¹³C NMR (100 MHz, CDCl_3) δ 189.8, 175.7, 155.2, 145.7, 140.2, 137.6, 136.3, 134.5, 132.8, 129.4 (2C), 128.5 (2C), 128.5 (2C), 126.8 (2C), 126.6

122.9, 42.2, 39.3, 38.2 (2C), 36.0, 23.2, 21.0, 11.4 (one of the signals in the aromatic/olefinic region denotes two overlapping carbons). **HRMS** (ESI+) m/z calcd. for $C_{28}H_{28}N_2O_4$ [M+Na]⁺: 479.1941; found: 479.1950. **UPC**²: IC-3, CO₂/*i*-PrOH gradient [99:1 (1 min); 99:1 to 60:40 (over 4 min), 60:40 (3 min)], 3.0 mL·min⁻¹, 40 °C, 120 bar; major diastereomer: $t_{major} = 5.2 \text{ min}; t_{minor} = 4.2 \text{ min} (94\% \text{ ee}).$

Following the general procedure, cycloadduct **4f** was obtained after FC on silica gel (pentane/EtOAc 10:1 to 4:1) in 70% yield and 13:1 dr as a pale yellow oil. $[\alpha]_D^{20} = -6.6$ (*c* 0.9, CHCl₃). ¹**H NMR (400 MHz, CDCl₃)**: δ 9.57 (s, 1H), 7.08 (t, *J* = 7.5 Hz, 1H), 7.01 – 6.91 (m, 3H), 5.50 (d, *J* = 3.4 Hz, 1H), 4.50 (dd, *J* = 11.7, 5.2 Hz, 1H), 3.40 – 3.28 (m, 2H), 2.67 (dd, *J* = 18.1, 7.1 Hz, 1H), 2.56 (dd, *J* = 18.1, 6.3 Hz, 1H), 2.46 – 2.19 (m, 2H), 2.39 (s, 3H), 2.25 (s, 3H), 1.74 (s, 3H). ¹³**C NMR (100 MHz, CDCl₃)**: δ 199.6, 175.2, 155.2, 142.7, 138.2,

134.7, 128.6, 127.9, 127.7, 123.8, 122.7, 46.4, 41.4, 39.4, 38.9, 31.8, 23.1, 21.4, 11.6 (one of the signals in the aromatic/olefinic region denotes two overlapping carbons). **HRMS** (ESI+) m/z calcd. for C₂₀H₂₂N₂O₄ [M+Na]⁺: 377.1472; found: 377.1477. The enantioselectivity was determined after derivatization.

Following the derivatization procedure, enone **5f** was obtained after FC on silica gel (pentane/EtOAc 20:1 to 10:1) in 89% yield and >10:1 dr as a pale yellow oil. $[\alpha]_D^{20} = 80.7$ (*c* 0.8, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 7.2 Hz, 2H), 7.56 (t, *J* = 7.3 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.10 (t, *J* = 7.6 Hz, 1H), 7.01 (s, 1H), 6.99 - 6.92 (m, 2H), 6.81 - 6.72 (m, 2H), 5.55 (d, *J* = 3.1 Hz, 1H), 4.44 (dd, *J* = 11.4, 5.6 Hz, 1H), 3.50 - 3.38 (m, 1H), 3.06 - 2.93 (m, 1H), 2.47 - 2.17 (m, 10H), 1.77 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.7, 175.7, 155.2, 145.7, 143.2, 138.2, 137.6,

134.5, 132.8, 128.6, 128.5 (2C), 128.5 (2C), 127.9, 127.6, 126.5, 123.8, 122.9, 42.1, 39.2, 38.6, 38.2, 36.0, 23.2, 21.4, 11.4 (one of the signals in the aromatic/olefinic region denotes two overlapping carbons). **HRMS** (ESI+) m/z calcd. for $C_{28}H_{28}N_2O_4$ [M+Na]⁺: 479.1941; found: 479.1944. **UPC**²: IC-3, CO₂/*i*-PrOH gradient [99:1 (1 min); 99:1 to 60:40 (over 4 min), 60:40 (3 min)], 3.0 mL·min⁻¹, 40 °C, 120 bar; major diastereomer: $t_{major} = 5.0 \text{ min}$; $t_{minor} = 4.5 \text{ min}$ (92% ee).

Following the general procedure (reaction time: 4 d), cycloadduct **4g** was obtained after FC on silica gel (pentane/EtOAc 15:1 to 10:1) in 74% yield and 8.5:1 dr as a orange oil. $[\alpha]_D^{20} = -1.5$ (*c* 0.8, CH₂Cl₂). ¹H NMR (**400** MHz, CDCl₃): δ 9.68* (s, 1H*), 9.58 (s, 1H), 7.13 - 6.92⁺ (m, 4H, 4H*), 5.53 (d, J = 3.8 Hz, 1H), 5.40* (br, 1H*), 4.58 (dd, J = 12.1, 5.2 Hz, 1H), 4.12 (t, J = 11.0 Hz, 1H*), 3.78 - 3.60⁺ (m, 1H, 1H*), 3.46 - 3.34⁺ (m, 1H, 1H*), 2.66 (dd, J = 18.0, 7.0 Hz, 1H), 2.57 (dd, J = 18.1, 6.5 Hz, 1H), 2.47 - 2.09⁺ (m, 8H,10H*) 2H*). ¹³C NARP (100 MHz, CDCl): δ 200 2* 100 5 175 2* 175 2 155 0* 141 1⁺

1.80 – 1.70⁺ (m, 3H, 3H^{*}). ¹³**C NMR (100 MHz, CDCl₃)**: δ 200.3^{*}, 199.5, 175.3^{*}, 175.3, 155.3, 155.0^{*}, 141.1⁺ (1C, 1C^{*}), 135.6, 135.6^{*}, 135.4^{*}, 135.0, 131.0⁺ (1C, 1C^{*}), 130.6, 130.1^{*}, 127.9^{*}, 127.4^{*}, 126.6, 126.5, 124.8⁺ (1C, 1C^{*}), 122.7, 122.5^{*}, 48.0^{*}, 46.4, 41.1⁺ (1C, 1C^{*}), 39.1⁺ (1C, 1C^{*}), 36.0^{*}, 33.3, 32.2⁺ (1C, 1C^{*}), 23.1⁺ (1C, 1C^{*}), 19.4, 19.3^{*}, 11.6, 11.5^{*}. **HRMS** (ESI+) *m/z* calcd. for C₂₀H₂₂N₂O₄ [M+Na]⁺: 377.1472; found: 377.1475. The enantioselectivity was determined after derivatization.

Following the derivatization procedure, enone **5g** was obtained after FC on silica gel (pentane/EtOAc 10:1) in 85% yield and 6.4:1 dr (Determined by ¹H NMR spectroscopy of the isolated product) as a yellow oil. $[\alpha]_D^{20} = 116.9 (c \ 0.7, CH_2Cl_2)$. ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.83⁺ (m, 2H, 2H*), 7.56⁺ (t, J = 7.4 Hz, 1H, 1H*), 7.46⁺ (t, J = 7.5 Hz, 2H, 2H*), 7.11 – 6.95⁺ (m, 4H, 4H*), 6.87 – 6.78⁺ (m, 2H,2H*), 5.57 (d, J = 3.3 Hz, 1H), 5.46 (br, 1H*), 4.54 (dd, J = 12.0, 5.6 Hz, 1H), 4.12 – 4.03 (m, 1H*), 3.74 (ddd, J = 21.6, 13.5, 8.0 Hz, 1H, 1H*), 3.18 – 3.00⁺ (m,

1H, 1H*), $2.51 - 2.07^{+}$ (m, 10H,10H*), $1.81 - 1.72^{+}$ (m, 3H, 3H*). ¹³C NMR (100 MHz, CDCl₃) δ 189.7, 175.8, 155.3, 145.7, 141.6, 137.6, 135.8, 134.9, 132.8, 130.6, 128.5, 128.4, 126.6, 126.5, 126.4 (2C), 124.6, 122.8, 41.8, 39.0, 38.7, 36.0, 33.1, 23.2, 19.5, 11.4 (only major diastereomer is characterized). HRMS (ESI+) m/z calcd. for C₂₈H₂₈N₂O₄ [M+Na]⁺: 479.1941; found: 479.1947. HPLC: IB-5, hexane/*i*-PrOH 90:10, 1.0 mL·min⁻¹; major diastereomer: t_{major} = 8.0 min; t_{minor} = 12.4 min (96% ee).

Following the general procedure, cycloadduct **4h** was obtained after FC on silica gel (pentane/EtOAc 10:1 to 4:1) in 78% yield and 5.5:1 dr as a pale yellow oil. $[\alpha]_D^{20} = +9.6$ (*c* 1.5, CHCl₃). ¹**H NMR (400 MHz, CDCl₃)**: δ 9.66* (s, 1H*), 9.55 (s, 1H), 7.47 – 7.43⁺ (m, 1H, 1H*), 7.29 – 7.27 (m, 2H), 7.21 – 7.19* (m, 2H*), 5.51 (d, *J* = 3.5 Hz, 1H), 5.39* (s, 1H*), 4.43 (dd, *J* = 11.6, 5.3 Hz, 1H), 4.03 – 3.93* (m, 1H*), 3.40 – 3.29⁺ (m, 2H, 2H*), 2.61 (dd, *J* = 18.3, 7.1 Hz, 1H), 2.54 (dd, *J* = 18.3, 6.4 Hz, 1H), 2.45 (s, 3H), 2.42* (s, 3H*), 2.48 – 2.14⁺ (m, 2H, 4H*), 1.78 – 1.72⁺ (m, 3H, 3H*). ¹³C NMR (100 MHz, CDCl₃): δ

199.8*, 199.1, 174.0⁺ (1C, 1C*), 155.6, 155.2*, 146.8, 145.8*, 135.6⁺ (1C, 1C*), 134.6*, 134.0, 133.0*, 132.8, 129.0 (2C), 128.9* (2C*), 123.2 (2C), 123.1* (2C*), 122.9, 122.5*, 47.8*, 46.2, 41.0⁺ (1C, 1C*), 38.9, 38.7*, 38.6, 35.6*, 31.6⁺ (1C, 1C*), 23.0⁺ (1C, 1C*), 11.6, 11.5*. **HRMS** (ESI+) m/z calcd. for C₁₉H₁₈N₂O₄Br₂ [M+Na]⁺: 520.9506; found: 520.9501. The enantioselectivity was determined after derivatization.

Following the derivatization procedure, enone **5h** was obtained after FC on silica gel (pentane/EtOAc 20:1 to 10:1) in 77% yield and 5.5:1 dr as a pale yellow oil. $[\alpha]_D^{20} = 57.2$ (*c* 0.9, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.86⁺ (m, 2H, 2H^{*}), 7.56⁺ (app. t, *J* = 7.4 Hz, 1H, 1H^{*}), 7.50 – 7.41⁺ (m, 3H, 3H^{*}), 7.28 (d, *J* = 1.5 Hz, 2H), 7.19^{*} (d, *J* = 1.6 Hz, 2H^{*}), 6.84 – 6.68⁺ (m, 2H, 2H^{*}), 5.56 (d, *J* = 3.1 Hz, 1H), 5.45^{*} (br, 1H^{*}), 4.36 (dd, *J* = 11.4, 5.6 Hz, 1H), 3.98 – 3.88^{*} (m, 1H^{*}), 3.49 – 3.37 (m, 1H), 3.37 – 3.25^{*} (m, 1H^{*}), 3.17 – 3.06^{*} (m, 1H^{*}), 3.07 – 2.96 (m, 1H), 2.47 – 2.11⁺ (m, 7H, 7H^{*}), 1.77⁺ (s, 3H, 3H^{*}). ¹³C NMR (100 MHz, CDCl₃) δ 189.6,

174.5, 155.6, 147.3, 145.0, 137.5, 134.6, 133.8, 132.9, 132.7, 129.0 (2C), 128.6 (2C), 128.4 (2C), 126.6, 123.2 (2C), 123.1, 41.7, 38.9, 38.3, 38.2, 35.8, 23.1, 11.4 (only major diastereomer is characterized). **HRMS** (ESI+) m/z calcd. for $C_{27}H_{24}N_2O_4Br_2$ [M+Na]⁺: 622.9975; found: 622.9984. **UPC**²: IC-3, CO₂/ACN gradient [99:1 (1 min); 99:1 to 60:40 (over 4 min), 60:40 (3 min)], 3.0 mL·min⁻¹, 40 °C, 120 bar; major diastereomer: $t_{major} = 5.5 min; t_{minor} = 5.0 min (93\% ee).$

Following the general procedure, cycloadduct **4i** was obtained after FC on silica gel (pentane/EtOAc 20:1 to 10:1 to 4:1) in 69% yield and 5.0:1 dr as a white solid. $[\alpha]_D^{20} = -10.0$ (*c* 0.8, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 9.66* (s, 1H*), 9.55 (s, 1H), 7.65 – 7.60* (m, 1H*), 7.46 – 7.35* (m, 1H*), 7.32 (d, J = 2.1 Hz, 1H), 7.18 – 7.05⁺ (m, 1H, 1H*), 7.05 – 6.97 (m, 1H), 5.52 (d, 1H), 5.39* (br, 1H*), 4.57 (dd, J = 12.1, 5.1 Hz, 1H), 4.09* (br, 2H*), 3.96 (td, J = 11.3, 5.7 Hz, 1H), 3.46 – 3.32⁺ (m, 1H, 1H*), 2.67 (dd, J = 18.3, 7.1 Hz, 1H), 2.57 (dd, J = 18.3, 6.3 Hz, 1H), 2.50 – 2.00⁺ (m, 5H, 7H*), 1.79 – 1.71⁺ (m, 3H, 1H*), 2.50 – 2.00⁺ (m, 5H, 7H*), 1.79 – 1.71⁺ (m, 3H, 1H*), 2.50 – 2.00⁺ (m, 5H, 7H*), 1.79 – 1.71⁺ (m, 3H, 1H*), 2.50 – 2.00⁺ (m, 5H, 7H*), 1.79 – 1.71⁺ (m, 3H, 1H*), 2.50 – 2.00⁺ (m, 5H, 7H*), 1.79 – 1.71⁺ (m, 3H, 1H*), 2.50 – 2.00⁺ (m, 5H, 7H*), 1.79 – 1.71⁺ (m, 3H, 1H*), 2.50 – 2.00⁺ (m, 5H, 7H*), 1.79 – 1.71⁺ (m, 3H, 1H*), 2.50 – 2.00⁺ (m, 5H, 7H*), 1.79 – 1.71⁺ (m, 3H, 1H*), 2.50 – 2.00⁺ (m, 5H, 7H*), 1.79 – 1.71⁺ (m, 3H, 1H*), 2.50 – 2.00⁺ (m, 5H, 7H*), 1.79 – 1.71⁺ (m, 3H, 1H*), 2.50 – 2.00⁺ (m, 5H, 7H*), 1.79 – 1.71⁺ (m, 3H, 1H*), 2.50 – 2.00⁺ (m, 5H, 7H*), 1.79 – 1.71⁺ (m, 3H, 1H*), 2.50 – 2.00⁺ (m, 5H, 7H*), 1.79 – 1.71⁺ (m, 3H, 1H*), 2.50 – 2.00⁺ (m, 5H, 7H*), 1.79 – 1.71⁺ (m, 2H*), 2.50 – 2.00⁺ (m, 5H, 7H*), 1.79 – 1.71⁺ (m, 2H*), 2.50 – 2.00⁺ (m, 5H, 7H*), 1.79 – 1.71⁺ (m, 2H*), 2.50 – 2.00⁺ (m, 5H, 7H*), 2.5

3H*). ¹³**C NMR (100 MHz, CDCl₃)**: 13C NMR (101 MHz, CDCl3) δ 200.0*, 199.2, 174.4*, 174.3, 155.4, 155.2*, 138.8⁺(1C, 1C*), 134.9*, 134.9*, 134.4, 134.3, 133.0, 132.9*, 131.0⁺(1C, 1C*), 130.1*, 129.7, 127.9*, 127.7, 127.6⁺(1C, 1C*), 122.9, 122.6*, 47.7*, 46.2, 43.0*, 40.3, 39.7*, 38.1, 36.0*, 34.2, 31.9⁺(1C, 1C*), 23.0, 22.9*, 11.6*, 11.5. **HRMS** (ESI+) *m/z* calcd. for C₁₉H₁₈Cl₂N₂O₄ [M+Na]⁺: 431.0536; found: 431.0541. The enantioselectivity was determined after derivatization.

Following the derivatization procedure, enone **5i** was obtained after FC on silica gel (pentane/EtOAc 10:1) in 74% yield and 6.9:1 dr as a pale yellow oil. $[\alpha]_D^{20}$ = 78.6 (*c* 0.6, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.83⁺ (m, 2H, 2H^{*}), 7.67 – 7.51⁺ (m, 1H, 1H^{*}), 7.50 – 7.38⁺ (m, 2H, 2H^{*}), 7.33 (d, J = 2.1 Hz, 1H), 7.25^{*} (d, J = 2.1 Hz, 1H^{*}), 7.19^{*} (d, J = 8.4 Hz, 1H^{*}), 7.09⁺ (dd, J = 8.4, 2.1 Hz, 1H, 1H^{*}), 6.99 (d, J = 8.4 Hz, 1H), 6.87 – 6.68⁺ (m, 2H, 2H^{*}), 5.57 (d, J = 3.2 Hz, 1H), 5.46^{*} (bs, 1H^{*}), 4.52 (dd, J = 11.9, 5.4 Hz, 1H), 4.04⁺ (app. td, J = 11.2, 5.7 Hz, 1H, 1H^{*}), 3.20 – 3.00⁺ (m, 1H, 1H^{*}), 2.47 – 1.99⁺ (m, 7H, 8H^{*}), 1.82 – 1.72⁺ (m, 3H, 3H^{*}).

¹³C NMR (100 MHz, CDCl₃) δ 189.6⁺(1C,1C^{*}), 174.8⁺(1C,1C^{*}), 155.4⁺(1C,1C^{*}), 145.2⁺(1C,1C^{*}), 139.4⁺(1C,1C^{*}), 137.5⁺(1C,1C^{*}), 134.8⁺(1C,1C^{*}), 134.5⁺(1C,1C^{*}), 134.3⁺(1C,1C^{*}), 132.9⁺(1C,1C^{*}), 132.9⁺(1C,1C^{*}), 129.8⁺(1C,1C^{*}), 128.6^{*}(2C^{*}), 128.5(2C), 128.4⁺(2C,2C^{*}), 127.7, 127.6^{*}, 126.6⁺(1C,1C^{*}), 123.0, 122.9^{*}, 41.0⁺(1C,1C^{*}), 38.7⁺(1C,1C^{*}), 38.0, 37.6^{*}, 35.8⁺(1C,1C^{*}), 34.0⁺(1C,1C^{*}), 23.1⁺(1C,1C^{*}), 11.6^{*}, 11.4. HRMS (ESI+) *m/z* calcd. for C₂₇H₂₄Cl₂N₂O₄ [M+Na]⁺: 533.1005; found: 533.1011. UPC²: IC-3, CO₂/*i*-PrOH gradient [99:1 (1 min); 99:1 to 60:40 (over 4 min), 60:40 (3 min)], 3.0 mL·min⁻¹, 40 °C, 120 bar; major diastereomer: t_{major} = 5.6 min; t_{minor} = 4.9 min (93% ee).

Following the general procedure (reaction time: 1 week), cycloadduct **4j** was obtained after FC on silica gel (gradient: pentane/EtOAc 10:1 to 4:1) in 83% yield and 1.9:1 dr as a dark yellow oil. $[\alpha]_D^{20} = +105.3$ ($c \ 0.7, \ CH_2Cl_2$). ¹H NMR (**400 MHz, CDCl_3**): δ 9.40* (s, 1H*), 9.34 (s, 1H), 7.38 – 7.27⁺, 7.24⁺ (m, 5H, 5H*), 7.12 – 6.99⁺ (m, 2H, 2H*), 6.15 – 6.11 (m, 1H), 6.10 – 6.05* (m, 1H*), 4.71 (dd, J = 12.5, 4.8 Hz, 1H), 4.42 – 4.28 (app. m, 1H*), 4.18 – 4.05 (m, 1H), 3.87* (br, 1H*), 3.52 – 3.31⁺ (m, 1H, 1H*), 3.08 (dd, J = 19.4, 9.4 Hz, 1H), 2.72 – 2.34⁺ (m, 6H, 7H*). ¹³C NMR (100 MHz, CDCl_3):

δ 199.3*, 198.7, 174.6*, 174.1, 155.4, 155.2*, 141.5, 140.7*, 140.5⁺(1C,1C*), 139.3, 139.3*, 131.9(2C), 131.8*(2C*), 128.8(2C), 128.8(2C), 128.7*(2C), 128.6*(2C), 127.9, 127.6*, 126.8*, 126.6, 126.3⁺(1C,1C*), 124.9⁺(1C,1C*), 121.1*, 120.8, 46.2*, 44.9, 42.0⁺(1C,1C*), 37.6, 37.1*, 35.9, 34.0*, 32.5⁺(1C,1C*), 11.6⁺(1C,1C*). **HRMS** (ESI+) *m/z* calcd. for C₂₄H₂₁BrN₂O₄ [M+Na]⁺: 503.0577, 505.0556; found: 503.0588, 505.0560. The enantioselectivity was determined after derivatization.

Following the derivatization procedure (reaction time: 4 d), enone **5j** was obtained after FC on silica gel (gradient: pentane/EtOAc 9:1) in 77% yield and 1.9:1 dr as a yellow oil. $[\alpha]_D^{20}$ = +162.5 (*c* 0.6, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.87 - 7.80⁺ (m, 2H, 2H*), 7.60 - 7.27⁺ (m, 10H, 10H*), 7.12 - 6.96⁺ (m, 2H, 2H*), 6.76 - 6.44⁺ (m, 2H, 2H*), 6.13 - 6.06⁺ (m, 1H, 1H*), 4.61 (dd, J = 12.6, 5.2 Hz, 1H), 4.27* (app. t, J = 10.9 Hz, 1H*), 3.85 - 3.67⁺ (m, 1H, 1H*), 3.55 (td, J = 11.6, 5.8 Hz, 1H), 3.44 - 3.30* (m, 1H*), 2.74 - 2.16⁺ (m, 7H, 7H*). ¹³C NMR (100 MHz, CDCl₃) δ 189.3⁺(1C,1C*), 175.0*, 174.6, 155.5*, 155.4, 145.1, 144.0*,

142.2, 140.7*, 140.5*, 140.2, 139.6, 139.5*, 137.4*, 137.3, 132.9*, 132.8, 131.9(2C), 131.8*(2C*), 128.8(4C), 128.7*(2C*), 128.6*(2C*), 128.5*(2C*), 128.5(2C), 128.4*(2C*), 128.3(2C), 127.8*, 127.7, 127.4, 127.3*, 126.6*(2C*), 126.5(2C), 125.6⁺(1C,1C*), 125.1⁺(1C,1C*), 121.1*, 120.6, 42.7⁺(1C,1C*), 41.0⁺(1C,1C*), 36.9⁺(1C,1C*), 35.9, 35.4*, 34.2, 33.9*, 11.5*, 11.2.**HRMS** (ESI+) m/z calcd. for C₃₂H₂₇BrN₂O₄ [M+Na]⁺: 605.1046, 607.1026; found: 605.1050, 607.1040. **UPC**²: IC-3, CO₂/ACN 85:15, 3.0 mL·min⁻¹, 40 °C, 120 bar; major diastereomer: t_{major} = 5.1 min; t_{minor} = 4.6 min (95% ee).

Following the general procedure, at an elevated temperature of 50 °C, cycloadduct **4k** was obtained after FC on silica gel (gradient: pentane/EtOAc 9:1 to 5:1) in 74% yield and 8.1:1 dr as a yellow solid. $[\alpha]_D^{20} = -1.3$ (*c* 0.7, CH₂Cl₂). ¹H NMR (400 MHz, **CDCl₃**): δ 9.72* (s, 1H*), 9.60 (s, 1H), 7.47 – 7.28⁺ (m, 7H, 7H*), 7.13 (d, J = 8.4 Hz, 2H), 7.05* (d, J = 8.4 Hz, 2H*), 6.16 (d, J = 4.8 Hz, 1H), 6.04* (br, 1H*), 4.61 (dd, J = 11.6, 5.4 Hz, 1H), 4.22 – 4.12* (m, 1H*), 3.63 – 3.45⁺ (m, 2H, 2H*), 2.92 – 2.55⁺ (m, 4H, 4H*), 2.42⁺ (d, 3H, 3H*). ¹³C NMR (100 MHz, CDCl₃): δ 199.6*, 198.9, 174.4*,

174.3, 155.5, 155.2*, 141.5, 140.7*, 140.0, 137.4*, 136.9, 135.5*, 132.0(2C), 131.9*(2C*), 131.1⁺(1C, 1C*), 128.8(2C), 128.7*(2C*), 128.5⁺(2C, 2C*), 127.8⁺(1C, 1C*), 125.3⁺(2C, 2C*), 125.2, 124.8*, 121.2*, 120.9, 47.8*, 46.1, 43.9*, 41.2, 38.8⁺(1C, 1C*), 36.5, 36.23*, 32.0⁺(1C, 1C*), 11.6⁺(1C, 1C*). **HRMS** (ESI+) *m/z* calcd. for $C_{24}H_{21}BrN_2O_4$ [M+Na]⁺: 503.0577, 505.0556; found: 503.0582, 505.0571. The enantioselectivity was determined after derivatization.

Following the derivatization procedure, enone **5k** was obtained after FC on silica gel (gradient: pentane/EtOAc 9:1) in 85% yield and 11.0:1 dr as a yellow oil. $[\alpha]_D^{20}$ = +62.2 (*c* 0.6, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.82⁺ (m, 2H, 2H*), 7.62 – 7.52⁺ (m, 1H, 1H*), 7.51 – 7.28⁺ (m, 9H, 9H*), 7.14 (d, J = 8.4 Hz, 2H), 7.04* (d, J = 8.4 Hz, 1H*), 6.93 – 6.72⁺ (m, 2H, 2H*), 6.21 (d, J = 4.4 Hz, 1H), 6.11* (bs, 1H*), 4.54 (dd, J = 11.4, 5.7 Hz, 1H), 4.19 – 4.05* (m, 1H*), 3.68 – 3.43⁺ (m, 1H, 1H*), 3.40 – 3.19⁺ (m, 1H, 1H*), 2.94 – 2.78⁺ (m, 1H, 1H*), 2.71 – 2.28⁺ (m, 6H, 6H*). ¹³C NMR (100 MHz, CDCl₃) δ 189.51, 174.72, 155.45, 144.82,

141.99, 140.21, 137.45, 136.79, 132.93, 131.98(2C), 128.83, 128.59(2C), 128.52(4C), 128.46(2C), 127.76, 126.86, 125.44, 125.34(2C), 120.84, 77.32, 77.20, 77.00, 76.68, 41.89, 38.57, 38.45, 36.40, 35.87, 11.41 (only major diastereomer is characterized). **HRMS** (ESI+) m/z calcd. for $C_{32}H_{27}BrN_2O_4$ [M+H]⁺: 583.1227, 585.1206; found: 583.1228, 585.1217. **UPC**²: IC-3, CO₂/ACN gradient [99:1 (1 min); 99:1 to 60:40 (over 4 min), 60:40 (3 min)], 3.0 mL·min⁻¹, 40 °C, 120 bar; major diastereomer: $t_{major} = 6.2 min; t_{minor} = 5.8 min (89\% ee).$

Following the general procedure (reaction time: 4 d), at an elevated temperature of 50 °C, cycloadduct **4I** was obtained after FC on silica gel (gradient: pentane/EtOAc 9:1 to 5:1) in 75% yield and 5.7:1 dr as a orange solid. $[\alpha]_D^{20} = -5.9$ (*c* 0.6, CH₂Cl₂). ¹H NMR **(400 MHz, CDCl₃)**: δ 9.69* (s, 1H*), 9.51 (s, 1H), 7.37 – 7.27⁺ (m, 2H, 2H*), 7.03 (d, J = 8.4 Hz, 2H), 6.96* (d, J = 8.4 Hz, 1H*), 5.71* (s, 1H*), 5.57 (s, 1H), 4.52 (dd, J = 12.4, 4.8 Hz, 1H), 4.25* (app. t, J = 11.1 Hz, 1H*), 3.35 – 3.18⁺ (m, 2H, 2H*), 3.03 (dd, J = 19.2, 9.1 Hz, 1H), 2.65 – 2.04⁺ (m, 7H, 8H*), 1.75⁺ (s, 3H, 3H*). ¹³C NMR (100 MHz, CDCl₃): δ

199.9*, 199.0, 174.8*, 174.3, 155.3, 155.2*, 141.8, 140.9*, 134.3, 133.1*, 131.8(2C), 131.7*(2C*), 128.8(2C), 128.6*(2C*), 123.7⁺(1C, 1C*), 122.4⁺(1C, 1C*), 121.0*, 120.6, 44.8*, 44.3, 41.8⁺(1C, 1C*), 39.0*, 37.7, 35.2⁺(1C, 1C*), 35.1, 33.8*, 21.8, 21.5*, 11.6⁺(1C, 1C*). **HRMS** (ESI+) m/z calcd. for C₁₉H₁₉BrN₂O₄ [M+H]⁺: 419.0601, 421.0580; found: 419.0606, 421.0586. The enantioselectivity was determined after derivatization.

Following the derivatization procedure (reaction time: 3 d), enone **5I** was obtained after FC on silica gel (gradient: pentane/EtOAc 20:1 to 10:1) in 82% yield (major disomer) and 6.8:1 dr as a white solid. $[\alpha]_D^{20} = +99.5$ (*c* 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.87 (m, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.5 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H), 7.03 (d, J = 8.4 Hz, 2H), 6.73 (d, J = 15.4 Hz, 1H), 6.67 – 6.57 (m, 1H), 5.61 (s, 1H), 4.42 (dd, J = 12.5, 5.2 Hz, 1H), 3.43 (td, J = 11.4, 6.0 Hz, 1H), 2.88 (bs, 1H), 2.63 – 2.36 (m, 3H), 2.26 – 2.10 (m, 4H), 1.86 (s, 3H). (only major diastereomer is characterized) ¹³C NMR (100 MHz, CDCl₃) δ

189.3, 174.8, 155.3, 145.4, 142.5, 137.4, 134.2, 132.9, 131.8(2C), 131.3, 128.8(2C), 128.6(2C), 128.4(2C), 125.7, 122.4, 120.5, 77.3, 77.0, 76.7, 43.3, 42.5, 37.1, 35.3, 33.4, 22.2, 11.3. (only major diastereomer is characterized) **HRMS** (ESI+) m/z calcd. for $C_{27}H_{25}BrN_2O_4$ [M+H]⁺: 521.1070, 523.1050; found: 521.1076, 523.1056. **UPC**²: IA-3, CO₂/*i*-PrOH gradient [99:1 (1 min); 99:1 to 60:40 (over 4 min), 60:40 (3 min)], 3.0 mL·min⁻¹, 40 °C, 120 bar; major diastereomer: $t_{major} = 4.4$ min; $t_{minor} = 4.3$ min (93% ee).

Following the general procedure, at an elevated temperature of 60 °C, cycloadduct **4m** was obtained after FC on silica gel (gradient: pentane/EtOAc 9:1 to 5:1) in 80% yield and 4.1:1 dr as a orange solid. $[\alpha]_D^{20} = -1.3$ (*c* 0.75, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 9.67* (s, 1H*), 9.58 (s, 1H), 7.40 – 7.28⁺ (m, 2H, 2H*), 7.03 (d, J = 8.4 Hz, 2H), 6.90* (d, J = 8.3 Hz, 1H*), 5.55 (d, J = 5.6 Hz, 1H), 5.30* (bs, 1H*), 4.51 (dd, J = 12.7, 5.0 Hz, 1H), 4.15* (bs, 1H*), 3.72* (bs, 1H*), 3.34 – 3.23 (m, 1H), 2.91 (dd, J = 12.6, 9.8 Hz, 1H), 2.71 (dd, J = 18.2, 7.1 Hz, 1H), 2.58 (dd, J = 18.2, 6.3 Hz, 1H), 2.51 – 1.92⁺ (m, 6H,

9H*), $1.89 - 0.87^{+}$ (m, 6H, 6H*). ¹³C NMR (100 MHz, CDCl₃): δ 200.1*, 199.4, 175.3*, 174.6, 155.4⁺(1C,1C*), 144.0*, 141.0, 140.0, 138.6*, 131.7(2C), 131.5*(2C*), 130.9*, 129.7, 129.6⁺(1C,1C*), 121.1(2C), 120.8*, 120.7, 118.86*(2C*), 47.85*, 46.42, 45.57(2C), 43.84*(2C*), 41.66⁺(1C,1C*), 36.35*, 34.93, 32.58, 31.83, 30.01*, 29.2*, 27.1⁺(1C,1C*), 26.5*, 25.8, 11.6*, 11.5. HRMS (ESI+) *m/z* calcd. for C₂₂H₂₃BrN₂O₄ [M+H]⁺: 459.0914, 461.0893; found: 459.0915, 461.0897. The enantioselectivity was determined after derivatization.

Following the derivatization procedure, enone **5m** was obtained after FC on silica gel (gradient: pentane/EtOAc 10:1) in 84% yield and 7.5:1 dr (determined by ¹H NMR spectroscopy of the isolated product) as a pale yellow solid. $[\alpha]_D^{20}$ = +97.4 (*c* 0.7, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.89⁺ (m, 2H, 2H⁺), 7.59 – 7.53⁺ (m, 1H, 1H⁺), 7.50 – 7.43⁺ (m, 2H, 2H⁺), 7.35 – 7.27⁺ (m, 2H, 2H⁺), 7.05 (d, J = 8.4 Hz, 2H), 6.91⁺ (d, J = 8.3 Hz, 1H⁺), 6.87 – 6.74⁺ (m, 2H, 2H⁺), 5.59 (d, J = 5.5 Hz, 1H), 5.37⁺ (bs, 1H⁺), 4.46 (dd, J = 12.7, 5.3 Hz, 1H), 4.13⁺ (bs, 1H⁺), 3.80 – 3.60⁺ (m, 2H⁺), 3.10 – 2.90 (m, 2H), 2.48 – 1.96⁺ (m, 8H, 8H⁺), 1.88 –

0.77⁺ (m, 6H, 6H^{*}). ¹³C NMR (100 MHz, CDCl₃) δ 189.9^{*}, 189.7, 175.1⁺(1C,1C^{*}), 155.3⁺(1C,1C^{*}), 145.6, 144.0^{*}, 141.5⁺(1C,1C^{*}), 140.9⁺(1C,1C^{*}), 137.6⁺(1C,1C^{*}), 132.8⁺(2C,2C^{*}), 131.6(2C), 131.5^{*}(2C^{*}), 131.4, 131.1^{*}, 129.6^{*}, 128.6(2C), 128.5^{*}(2C^{*}), 128.5(2C), 128.3^{*}(2C^{*}), 127.8^{*}(2C^{*}), 126.6(2C), 121.2⁺(1C,1C^{*}), 120.7^{*}, 120.6, 45.7^{*}, 45.5, 45.1, 44.0^{*}, 42.5⁺(1C,1C^{*}), 38.5, 37.6^{*}, 36.4^{*}, 35.8, 35.1⁺(1C,1C^{*}), 32.6⁺(1C,1C^{*}), 27.2, 26.6^{*}, 25.9⁺(1C,1C^{*}), 11.6^{*}, 11.4. HRMS (ESI+) *m/z* calcd. for C₃₀H₂₉BrN₂O₄ [M+H]⁺: 561.1383, 563.1363; found: 561.1384, 563.1369. HPLC: IA-5, hexane/*i*-PrOH 90:10, 1.0 mL·min⁻¹; major diastereomer: t_{major} = 26.2 min; t_{minor} = 32.2 min (86% ee).

Following the general procedure, cycloadduct **4n** was obtained after FC on silica gel (pentane/EtOAc 30:1) in 82% yield and >20:1 dr as a pale yellow oil. $[\alpha]_D^{20} = -34.2$ (c 1.2, CHCl3). ¹H NMR (400 MHz, CDCl₃) δ 9.52 (s, 1H), 7.22 – 7.05 (m, 5H), 4.54 (dd, J = 12.6, 4.7 Hz, 1H), 3.44 – 3.31 (m, 1H), 3.28 – 3.16 (m, 1H), 3.07 (dd, J = 19.0, 9.2 Hz, 1H), 2.52 (dd, J = 19.1, 2.0 Hz, 1H), 2.42 – 2.21 (m, 5H), 1.70 (s, 3H), 1.67 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.6, 174.9, 155.2, 142.8, 128.7 (2C), 127.5, 127.0 (2C), 126.8),

126.3, 44.7, 42.1, 41.7, 39.0, 36.7, 18.9, 17.8, 11.5 (one of the signals in the aromatic/olefinic region denotes two overlapping carbons). **HRMS** (ESI+) m/z calcd. for $C_{20}H_{22}N_2O_4$ [M+H]⁺: 355.1652; found: 355.1651. The enantioselectivity was determined after derivatization.

Following the derivatization procedure, enone **5n** was obtained after FC on silica gel (pentane/EtOAc 20:1) in 55% yield and >20:1 dr as a pale yellow oil. $[\alpha]_D^{20}$ = +90.8 (c 0.3, CHCl3). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.1 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.5 Hz, 2H), 7.22 – 7.08 (m, 5H), 6.71 (d, J = 15.3 Hz, 1H), 6.65 – 6.56 (m, 1H), 4.45 (dd, J = 12.7, 5.2 Hz, 1H), 3.56 – 3.46 (m, 1H), 2.92 – 2.84 (m, 1H), 2.61 – 2.16 (m, 4H), 2.12 (s, 3H), 1.80 (s, 3H), 1.69 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.5, 175.4, 155.2, 146.1, 143.5, 137.5, 132.8, 128.7 (2C), 128.5

(2C), 128.4 (2C), 127.4, 126.9 (2C), 126.7, 126.5, 125.4, 45.1, 42.6, 41.9, 38.3, 33.8, 19.0, 18.2, 11.2 one of the signals in the aromatic/olefinic region denotes two overlapping carbons). **HRMS** (ESI+) m/z calcd. for C28H28N2O4 [M+H]+: 457.2122; found: 457.2115. **UPC**²: IA-3, CO₂/MeOH gradient [99:1 (1 min); 99:1 to 60:40 (over 4 min), 60:40 (3 min)], 3.0 mL·min⁻¹, 40 °C, 120 bar; major diastereomer: $t_{major} = 4.1 \text{ min}$; $t_{minor} = 3.5 \text{ min}$ (92% ee).

Procedure for the transformations

To a solution of cycloadduct **4n** (1.5 mmol, 1 eq.) in MeOH (13 mL) was added NaBH₄ (2.25 mmol, 1.5 eq.) at 0 °C. After stirring for 5 min the reaction was allowed to reach rt and stirred for further 10 min. The reaction was quenched with a saturated solution of NH₄Cl, extracted three times with CH_2Cl_2 and the combined organic phases were dried over Na₂SO₄. Excess solvents were removed *in vacuo*, and the crude mixture was purified by FC on silica gel (pentane/EtOAc 5:1) to afford the product **6** in 62% yield, >20:1 dr as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.02 (m, 5H), 4.46 (dd, J = 12.5, 4.7 Hz, 1H), 3.54 – 3.44 (m, 1H), 3.34 – 3.26 (m, 1H), 3.24 – 3.16 (m, 1H), 2.62 – 2.54 (m, 1H), 2.44 – 2.32 (m, 4H), 2.21 (dd, J = 17.1, 11.9 Hz, 1H), 2.00 – 1.86 (m, 1H), 1.79 – 1.62 (m, 7H) (signal for the OH was not detected). ¹³C NMR (100 MHz, CDCl₃) δ 176.1, 155.2, 143.6, 128.7 (2C), 128.1, 127.0 (2C), 126.7, 126.0, 61.8, 43.2, 41.8, 40.8, 38.9, 34.1, 18.9, 18.3, 11.7

(one of the signals in the aromatic/olefinic region denotes two overlapping carbons). $[\alpha]_D^{20} = -6.5$ (*c* 0.12, CHCl₃). **HRMS** (ESI+) *m/z* calcd. for C₂₀H₂₄N₂O₄ [M+Na]⁺: 379.1628; found: 379.1629. **UPC²**: IB-3, CO₂/*i*-PrOH gradient [99:1 (1 min); 99:1 to 60:40 (over 4 min), 60:40 (3 min)], 3.0 mL·min⁻¹, 40 °C, 120 bar; major diastereomer: t_{major} = 3.1 min; t_{minor} = 3.2 min (93% ee).

A solution of cycloadduct **6** (0.1 mmol, 1 eq.) in THF (0.07 mL) was treated with a aq. solution of NaOH (1N, 0.5 mmol, 5 eq.). The solution was refluxed at 100 °C for 2 d and then allowed to reach rt. Excess solvents (both THF and H₂O) were removed *in vacuo*, and added another 1mL H₂O. The aq. solution was cooled to 0 °C and was added conc. HCl dropwise until pH ~ 2-3, then extracted three times with Et₂O, dried over Na₂SO₄.

Excess solvents were removed *in vacuo*. The crude mixture was redissolved in 1mL CH₂Cl₂, stirred at 40 $^{\circ}$ C with MS (4 Å) for overnight. Excess solvents were removed *in vacuo* and the crude mixture was purified by FC on silica gel (pentane/EtOAc 5:1) to afford the product **8** in 62% yield and >20:1 dr as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.26 (m, 2H), 7.24 – 7.16 (m, 3H), 4.28 – 4.15 (m, 2H), 3.75 – 3.69 (m, 1H), 2.81 (t, J = 5.2 Hz, 1H), 2.57 (d, J = 18.2 Hz, 1H), 2.37 – 2.30 (m, 1H), 2.19 (d, J = 17.4 Hz, 1H), 2.00 – 1.94 (m, 2H), 1.76 (s, 3H), 1.66 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 143.5, 129.2, 128.4 (2C), 127.4 (2C), 126.4, 125.3, 66.7, 47.0, 38.0, 33.4, 33.2, 26.6, 19.6, 15.7. [α]²⁰_D = -76.9 (c 0.065, CHCl₃). HRMS (ESI+) m/z calcd. for C₁₇H₂₀O₂ [M+Na]⁺:

279.1356; found: 279.1359. **UPC²**: IA-3, CO₂/MeOH gradient [99:1 (1 min); 99:1 to 60:40 (over 4 min), 60:40 (3 min)], 3.0 mL·min⁻¹, 40 °C, 120 bar; major diastereomer: $t_{major} = 3.1$ min; $t_{minor} = 3.0$ min (93% ee).

A solution of cycloadduct **6** (0.1 mmol, 1 eq.) in THF (0.07 mL) was treated with a aq. solution of NaOH (1N, 0.5 mmol, 5 eq.). The solution was refluxed at 100 °C for 2 d and then allowed to reach rt. Excess solvents (both THF and H₂O) were removed *in vacuo*, and added another 1ml H₂O. The aq. solution was cooled to 0 °C and was added conc. HCl dropwise until pH ~ 2-3, then extracted three times with Et₂O, dried over Na₂SO₄.

Excess solvents were removed *in vacuo* (Note: at rt). Dissolved the crude in 10 mL CH₂Cl₂ and 1 mL MeOH, then 0.5ml TMS-diazomethane (2.0M in hexane) was added. The reaction was stirred under the rt for 20 min, several drops of conc. acetic acid was added to quench the excess TMS-diazomethane. Excess solvents

were removed *in vacuo* and the crude mixture was purified by FC on silica gel (pentane/EtOAc 10:1 to 2:1) to afford the product **9** in 80% yield and >20:1 dr as a pale yellow oil.

¹H NMR (400 MHz, CDCl3) δ 7.30 – 7.24 (m, 2H), 7.21 – 7.14 (m, 3H), 3.59 – 3.53 (m, 2H), 3.44 (s, 3H), 3.20 – 3.06 (m, 2H), 2.49 – 2.41 (m, 1H), 2.27 (dd, J = 18.0, 5.2 Hz, 1H), 2.11 – 1.95 (m, 2H), 1.78 – 1.57 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 143.5, 129.2, 128.4(2C), 127.4(2C), 126.4, 125.3, 66.7, 50.8, 47.0, 38.1, 33.5, 33.3, 26.6, 19.5, 15.6. $[\alpha]_D^{20}$ = +50.4 (c 0.75, CH₂Cl₂). HRMS (ESI+) m/z calcd. for C18H24O3 [M+Na]+: 311.1618; found: 311.1619. UPC²: IC-3, CO₂/i-PrOH gradient [99:1 (1 min); 99:1 to 60:40 (over 4 min),

60:40 (3 min)], 3.0 mL·min⁻¹, 40 °C, 120 bar; major diastereomer: $t_{major} = 4.2$ min; $t_{minor} = 3.9$ min (93% ee).

4. X-RAY STRUCTURE

A solution of cycloadduct **6** (0.06 mmol, 1 eq.) in CH_2Cl_2 (2 mL) was added 2-bromobenzoyl chloride (0.09 mmol, 1.5 eq.) and *N*,*N*-4-dimethylaminopyridine (0.09 mmol, 1.5 eq.). After stirring at rt for overnight, the crude mixture was purified by FC on silica gel (pentane/EtOAc 20:1) to afford the product **10** in 74% yield as a white solid.

Crystal data for [**10**]: $C_{27}H_{27}BrN_2O_5$, M = 539.41, monoclinic, space group P 2₁ (no. 6), a = 5.8905(7) Å, b = 23.7962(3) Å, c = 9.09712(12) Å, $\theta = 102.961(13)^\circ$, Flack parameter = 0.001, V = 1242.67(3) Å³, T = 100 K, Z = 2, $d_c = 1.442$ g cm⁻³, μ (Mo K α , $\lambda = 0.71073$ Å) = 1.695 mm⁻¹, 40829 reflections collected, 8771 unique [$R_{int} = 0.0275$], which were used in all calculations. Refinement on F², final R(F) = 0.0518, R_w(F2) = 0.1355. CCDC number 1026165.