Table of contents

1	Experimental Section	S3-S13
2	Figures S2-S3. Variation in UV-Vis absorption spectra of titrating	S14-S15
	ligands with Eu(OTf) ₃ and variation of molar extinction coefficients	
	at four different wavelengths upon titrating ligand with $Eu(OTf)_3$	
3	Figure S4. Variation in ¹ H NMR spectra of titrating L2 ^{SS} with	S16
	Eu(OTf) ₃	
4	Chart S1. Atomic number scheme of [Eu ₂ (L1 ^{SS}) ₃](CF ₃ SO ₃) ₆	S17
5	Table S1 Selected structural parameters for $[Eu_2(L1^{SS})_3](CF_3SO_3)_6$	S17-S18
6	Figure S5. Crystal structure of [Eu ₂ (L2 ^{RR}) ₃](CF ₃ SO ₃) ₆	S18
7	Figure S6. ¹ H NMR spectrum of [Eu ₂ (L1 ^{RR}) ₃](CF ₃ SO ₃) ₆	S19
8	Figure S7. Variable temperature ¹ H NMR spectrum of	S19
	[Eu ₂ (L1 ^{SS}) ₃](CF ₃ SO ₃) ₆	
9	Figure S8. ¹³ C NMR spectrum of [Eu ₂ (L1 ^{RR}) ₃](CF ₃ SO ₃) ₆	S20
10	Figure S9. ¹ H NMR spectrum of [La ₂ (L1 ^{SS}) ₃](CF ₃ SO ₃) ₆	S20
11	Figure S10. ¹ H NMR spectrum of [Eu ₂ (L2 ^{RR}) ₃](CF ₃ SO ₃) ₆	S21
12	Figure S11. ¹³ C NMR spectrum of [Eu ₂ (L2 ^{RR}) ₃](CF ₃ SO ₃) ₆	S21
13	Figure S12. ¹ H NMR spectrum of [Eu ₂ (L2 ^{RR}) ₃](CF ₃ SO ₃) ₆ at 295 K and	S22
	at 345 K	
14	Figure S13. ¹ H NMR spectrum of [La ₂ (L2 ^{SS}) ₃](CF ₃ SO ₃) ₆	S22
15	Figure S14. ¹ H NMR spectra of $[La_2(L2^{SS})_3](CF_3SO_3)_6$ (CD ₃ CN) at	S23
	variable temperature	
16	Figure S15. CD spectra of $[La_2(L1)_3](CF_3SO_3)_6$ and	S23
	$[La_2(L2)_3](CF_3SO_3)_6$	
17	Figure S16-18. Solid-state excitation spectrum, emission spectrum	S24-S25
	and excited state decay curve and its mono exponential fit of	
	$Eu_2(L1^{RR})_3](CF_3SO_3)_6$	
18	Figure S19-21. Solid-state excitation spectrum, emission spectrum	S26-S27
	and excited state decay curve and its mono exponential fit of	
	$Eu_2(L1^{SS})_3](CF_3SO_3)_6$	
19	Figure S22-24. Solid-state excitation spectrum, emission spectrum	S28-S29
	and excited state decay curve and its mono exponential fit of	
	$Eu_2(L2^{RR})_3](CF_3SO_3)_6$	
20	Figure S25-27. Solid-state excitation spectrum, emission spectrum	S30-S31
	and excited state decay curve and its mono exponential fit of	
	$Eu_2(L2^{SS})_3](CF_3SO_3)_6$	
21	Figure S28-30. Solution-state excitation spectrum, emission	S32-S33
	spectrum and excited state decay curve and its mono exponential	

	fit of $Eu_2(L1^{RR})_3](CF_3SO_3)_6$	
22	Figure S31-33. Solution-state excitation spectrum, emission	S34-S35
	spectrum and excited state decay curve and its mono exponential	
	fit of $Eu_2(L1^{SS})_3](CF_3SO_3)_6$	
23	Figure S34-36. Solution-state excitation spectrum, emission	S36-S37
	spectrum and excited state decay curve and its mono exponential	
	fit of $Eu_2(L2^{RR})_3](CF_3SO_3)_6$	
24	Figure S37-39. Solution-state excitation spectrum, emission	S38-S39
	spectrum and excited state decay curve and its mono exponential	
	fit of $Eu_2(L2^{SS})_3](CF_3SO_3)_6$	
25	Table S2. A summary of selected photophysical properties of	S39
	Eu ₂ (L) ₃](CF ₃ SO ₃) ₆	
26	Figure S40-42. Solid-state excitation spectrum, emission spectrum	S40-S41
	and excited state decay curve and its mono exponential fit of	
	$Gd_2(L1^{SS})_3](CF_3SO_3)_6$ at 77K	
27	Figure S43. Emission spectrum of Eu ₂ (L2 ^{RR}) ₃](CF ₃ SO ₃) ₆ at MeCN or	S42
	d-MeCN	
28	Figure S44 Excited state decay curve and its mono exponential fit	S42
	of [Eu ₂ (L2 ^{RR}) ₃](CF ₃ SO ₃) ₆	
29	Figure S45 Preliminary results of CPL for Eu ₂ (L1) ₃](CF ₃ SO ₃) ₆	S43
30	Table S3. Crystal data and structure refinement	S43-S44
	of[Eu ₂ (L1 ^{SS}) ₃](CF ₃ SO ₃) ₆ , [Eu ₂ (L2 ^{RR}) ₃](CF ₃ SO ₃) ₆ , and L2 ^{RR}	
31	References	S44
32	Figure S46. ¹ H NMR spectrum of 1 ^S in CD ₃ OD.	S45
33	Figure S47. ¹³ C NMR spectrum of 1 ^S in CD ₃ OD.	S45
34	Figure S48. ¹ H NMR spectrum of L1 ^{RR} in (CD ₃) ₂ SO.	S46
35	Figure S49. ¹³ C NMR spectrum of L1 ^{RR} in (CD ₃) ₂ SO.	S46
36	Figure S50. ¹³ C NMR spectrum of $[La_2(L1^{SS})_3](CF_3SO_3)_6$ in CD ₃ CN	S47
37	Figure S51. ¹ H NMR spectrum of 2 ^S in CD₃OD	S47
38	Figure S52. ¹³ C NMR spectrum of 2 ^S in CD ₃ OD	S48
39	Figure S53. ¹ H NMR spectrum of L2 ^{RR} in CDCl ₃	S48
40	Figure S54. ¹³ C NMR spectrum of L2 ^{RR} in CDCl ₃	S49
41	Figure S55. ¹³ C NMR spectrum of [La ₂ (L2 ^{RR}) ₃](CF ₃ SO ₃) ₆ in CD ₃ CN	S49
42	Figure S56. HPLC spectra of 1 ^S and 1 ^R	S50
43	Figure S56. HPLC spectra of 2 ^S and 2 ^R	S50

Experimental:

General:

Unless otherwise noted, all reagents were obtained commercially and without further purification before used. All moisture-sensitive compounds were manipulated using standard Schlenk line techniques. All moisture-sensitive reactions were conducted under a nitrogen atmosphere in glasswares that were oven-dried at 140 °C overnight prior to use. Anhydrous dimethylformamide (DMF) and diisopropylamine (DIPEA) were purchased from Acros. Other solvents were used as received. Merck silica gel 60 (70–230 mesh) was used for column chromatography. Handling of benzidine should be care since its potential linked to bladder and pancreatic cancer.

NMR spectra were recorded on a Bruker Ultrashield Advance Pro 400 MHz instrument and the chemical shifts were referenced internally to tetramethylsilane (TMS) or solvents in parts per million (ppm). UV-Visible absorption spectra were recorded with a HP UV-8453 spectrophotometer. Single-photon luminescence spectra were recorded using an Edinburgh Instrument FLSP920 spectrophotometer that was equipped with Xe900 continuous xenon lamp, μ F920 microsecond flashlamp and a single photon counting Photomultiplier Tube. The excitation and emission spectra recorded on the FLSP920 were corrected with the correction file from the F900 software. CD spectra were recorded as $\Delta \epsilon$ in M⁻¹cm⁻¹. HRMS were performed on a Agilent 6540 UHD Accurate-Mass Q-TOF LC/MS. Elemental analyses were performed on a Elementar Vario EL cube elemental analyzer. CPL were recorded on a Olis 17 UV/VIS/NIR/CD/CPL spectrophotometer On-Line Instrument Systems.

X-ray crystallography:

Measurements of crystal data were carried out on a Bruker Smart 1000 system equipped with an APEX II CCD device for $[Eu_2(L1^{SS})_3](CF_3SO_3)_6$, $[Eu_2(L2^{RR})_3](CF_3SO_3)_6$ and $L2^{RR}$ with graphite monochromated Mo-K α radiation at room temperature. Multi-scan absorption correction was applied by SADABS program,¹ and the SAINT program was utilized for integration of the diffraction profiles.² The structures were solved by direct method and was refined by a full matrix least-squares treatment on F^2 using the SHELXTL programme system.³ Structure $[Eu_2(L2^{RR})_3](CF_3SO_3)_6$ contains highly disordered side arms, and were removed from the refinement using the PLATON/SQUEEZE program.⁴ Although the side arms cannot be defined clearly, the helical structure was clearly observed. Crystal data, as well as details of data collection and refinement, are summarized in Table S2. Crystallographic data for the structural analysis has been deposited with Cambridge Crystallographic Data Centre, CCDC No. for [Eu₂(L1^{SS})₃](CF₃SO₃)₆ is 996693; No. for [Eu₂(L2^{RR})₃](CF₃SO₃)₆ is 991735; No. for L2^{RR} is 1003776.

Synthesis:

(*R*)-6-(1-phenylethylcarbamoyl)picolinic acid 1^{*R*} and (*S*)-6-(1-phenylethyl carbamoyl)picolinic acid 1^{*S*}

To a stirred solution of 2,6-pyridinedicarboxylic acid (5.00 g, 30.0 mmol, 2.5 equiv.) in anhydrous DMF (60 mL) at room temperature, HATU (4.56 g, 12.0 mmol, 1 equiv.) was added by five portions over 5 min under nitrogen. After allowing it to stir for 20 min, a (R)-1-phenylethylamine (1.83 mL, 14.4 mmol, 1.2 equiv.) was added dropwisely and the reaction mixture was allowed to stir for 20 min. DIPEA (5.50 mL, 31.6 mmol, 2.6 equiv.) was then added to the reaction mixture over 5 min and the resulting solution was stirred at room temperature for 14 h. The reaction mixture was then diluted with H_2O (100 mL), and extracted with DCM (5 × 30 mL), dried with MgSO₄, filtered, and concentrated in vacuo. The resulting residue was purified with flash column chromatography (with gradient from pure DCM to DCM/MeOH) to give a white solid. **1**^R: (2.40 g, 8.9 mmol, 74% yield), ¹H NMR (400 MHz, CD₃OD, 299 K, δ): 1.65 (dd, J = 16.0, 8 Hz, 3H), 5.26–5.32 (m, 1H), 7.25 (t, J = 8 Hz, 1H), 7.35 (t, J = 8 Hz, 2H), 7.46 (d, J = 4 Hz, 2H), 8.17 (t, J = 8 Hz, 1H), 8.33 (d, J = 8 Hz, 2H), 9.76 (d, J = 4 Hz, 1H). ¹³C NMR (100.6 MHz, CD₃OD, 300 K, δ): 23.08, 51.46, 127.66, 128.14, 129.00, 129.37, 130.38, 141.35, 145.88, 148.88, 152.25, 165.66, 168.47. HRMS (ESI) calcd. for $C_{15}H_{14}N_2O_3Na$ [M+Na]⁺: 293.0897, found 293.0895. The enantiomeric purity was determined with HPLC with AS-H column (Hexane/i-propanol: 80/20; flow rate: 1.0 ml/min) and compared with a racemic mixture according to the elution orders with retention times, $t_s = 7.68$ min and $t_R = 14.27$ min) to be 97% ee. 1^s was isolated, following the procedure for $\mathbf{1}^{R}$ with the use of (S)-1-phenylethylamine instead, in 68% yield (2.20 g, 8.16 mmol): ¹H NMR (400 MHz, CD₃OD, 298 K, δ): 1.65 (d, J = 8 Hz, 3H), 5.30 (q, J = 8 Hz, 1H), 7.25 (t, J = 8 Hz, 1H), 7.35 (t, J = 8 Hz, 2H), 7.46 (d, J = 4 Hz, 2H), 8.16 (t, J = 8 Hz, 1H), 8.33 (dd, J = 8, 4 Hz, 2H), 9.76 (d, J = 8 Hz, 1H). ¹³C NMR (100.6 MHz, CD₃OD, 300 K, δ): 23.07, 51.43, 127.64, 128.11, 128.98, 129.35, 130.35, 141.32, 145.85, 148.82, 152.20, 165.61, 168.43. HRMS (ESI) calcd. for C₁₅H₁₄N₂O₃Na [M+Na]⁺:

293.0897, found 293.0896. The enantiomeric purity was determined to be > 99% ee.

N,N'-(biphenyl-4,4'-diyl)bis[6-(R)-(1-phenylethylcarbamoyl)-pyridine-2-dicarboxami de] (L1^{RR}) and N,N'-(biphenyl-4,4'-diyl)bis[6-(S)-(1-phenylethylcarbamoyl)-pyridine-2-dicarboxamide] (L1^{SS})

To a stirred solution of 1^R (2.50 g, 9.26 mmol, 2.2 equiv.) in anhydrous DMF (40 mL) at room temperature, HATU (7.70 g, 20.3 mmol, 4.8 equiv.) was added under nitrogen. After allowing it to stir for 20 min, a benzidine (0.79 g, 4.27 mmol, 1.0 equiv.) was added and the reaction mixture was allowed to stir for 20 min in dark. DIPEA (9.24 mL, 53.03 mmol, 12.5 equiv.) was then added to the reaction mixture and the resulting solution was stirred at room temperature for 14 h. The reaction mixture was then diluted with H_2O (100 mL) and extracted with DCM (5 × 30 mL). After removing all of the organic volatile under reduced pressure, the residue was diluted with ethyl acetate (50 mL) and then washed with H₂O (5 × 30 mL) to remove the remained DMF. The organic layer was separated and then concentrated directly under reduced pressure. The residue was then diluted with MeCN (20 mL), and fine powder was progressively precipitated out. Then the solid was collected by filtration and the desired compound was isolated. (L1^{RR}): (2.53 g, 3.67 mmol, 86% yield), ¹H NMR (400 MHz, $(CD_3)_2SO$, 299 K, δ): 1.62 (d, J = 8 Hz, 6H), 5.25–5.31 (m, 2H), 7.23 (t, J = 8 Hz, 2H), 7.34 (t, J = 8 Hz, 4H), 7.45 (d, J = 8 Hz, 4H), 7.79 (d, J = 8 Hz, 4H), 7.93 (d, J = 8 Hz, 4H), 8.20–8.26 (m, 4H), 8.34 (d, J = 8 Hz, 2H), 9.60 (d, J = 8 Hz, 2H), 10.93 (s, 2H). ¹³C NMR (100.6 MHz, CD₃)₂SO, 300 K, δ): 22.67, 49.08, 122.54, 125.79, 126.05, 127.02, 127.51, 127.69, 129.23, 136.38, 138.02, 140.62, 145.00, 149.58, 150.02, 162.62, 163.53. HRMS (ESI) calcd. for C₄₂H₃₆N₆O₄Na [M+Na]⁺: 711.2690, found 711.2681. (L1^{ss}) was synthesized, following the procedure for (L1^{RR}) with the use of **1^s** instead, in 80% yield (2.35 g, 3.42 mmol): ¹H NMR (400 MHz, (CD₃)₂SO, 299 K, δ): 1.61 (d, J = 8 Hz, 6H), 5.24–5.28 (m, 2H), 7.19 (t, J = 8 Hz, 2H), 7.30 (t, J = 8 Hz, 4H), 7.42 (d, J = 8 Hz, 4H), 7.75 (d, J = 8 Hz, 4H), 7.90 (d, J = 8 Hz, 4H), 8.18-8.21 (m, 4H), 8.31 (d, J = 8 Hz, 2H), 9.58 (d, J = 8 Hz, 2H), 10.91 (s, 2H). ¹³C NMR (100.6 MHz, CD₃)₂SO, 300 K, δ): 22.74, 49.17, 122.62, 125.86, 126.12, 127.10, 127.58, 127.76, 129.30, 136.46, 138.10, 140.68, 145.08, 149.66, 150.10, 162.70, 163.62. HRMS (ESI) calcd. for C₄₂H₃₆N₆O₄Na [M+Na]⁺: 711.2690, found 711.2682.

 ${N,N'-(biphenyl-4,4'-diyl)bis[6-(R)-(1-phenylethyl-carbamoyl)-pyridine-2-dicarboxa mide]}\cdot 2Eu \cdot 6(CF_3SO_3) [Eu_2(L1^{RR})_3](CF_3SO_3)_6 and 3{N,N'-(biphenyl-4,4'-diyl)bis[6-(S)-(1-phenylethylcarbamoyl)-pyridine-2-dicarboxamide]}\cdot 2Eu \cdot 6(CF_3SO_3) [Eu_2(L1^{SS})_3](CF_3SO_3)_6$

To a white suspension of (L1^{RR}) (0.103 g, 0.150 mmol, 1.5 equiv.) in a mixture of 13 mL of DCM/MeOH (12:1, v/v), a solution of Eu(CF₃SO₃)₃ (0.060 g, 0.100 mmol, 1 equiv.) in 5 mL of MeCN was added. The suspension was changed to yellow turbidity immediately. The reaction mixture was then refluxed for 16 h and the solid progressively dissolved to give a resulting homogeneous yellow solution. The solvent was removed under reduced pressure. The solid was then washed with THF to give the desired product. [Eu₂(L1^{RR})₃](CF₃SO₃)₆: (0.140 g, 0.043 mmol, 85% yield) ¹H NMR (400 MHz, CD₃CN, 298 K, δ): 1.54 (s, br., 3 × 6H, CH₃), 4.95 (s, br., 3 × 2H, N-H), 5.27 (s, br., 3 × 2H, (CH₃)CH), 6.36 (s, br., 3 × 4H), 6.71 (s, br., 3 × 4H, phenyl-H), 6.77 (s, br., 3 × 4H, phenyl-H), 6.83 (s, br., 3 × 6H), 6.95 (s, br., 3 × 2H, N-H), 7.09 (s, br. 3 × 2H), 7.87 (s, br. 3 × 4H, phenyl-H). ¹³C NMR (100.6 MHz, CD₃CN, 298 K, δ): 22.45 (CH₃), 52.30 (CH), 93.11, 93.62, 123.32, 126.44, 128.14, 128.35, 129.44, 136.95, 139.06, 143.68, 144.82, 145.70, 156.35, 161.81 (CO), 165.23 (CO). HRMS (ESI) calcd. for $C_{130}H_{108}N_{18}Eu_2O_{24}S_4F_{12}$ [M-2OTf]²⁺: 1481.2431 (¹⁵¹Eu based), found 1481.2432. Calculated for C132H108N18O30Eu2F18S6·2H2O: C, 48.03; H, 3.42; N, 7.64%; Found: C, 47.24; H, 3.37; N, 7.47 %; [Eu₂(L1^{SS})₃](CF₃SO₃)₆ was synthesized, following the procedure for [Eu₂(L1^{RR})₃](CF₃SO₃)₆ with the use of (L1^{SS}) instead, in 92% yield (0.150 g, 0.046 mmol): ¹H NMR (400 MHz, CD₃CN, 299 K, δ): 1.53 (s, br., 3 × 6H, CH₃), 4.92 (s, br., 3 × 2H, N-H), 5.25 (s, br., 3 × 2H, (CH₃)CH), 6.36 (s, br., 3 × 4H), 6.70 (s, br., 3 × 4H, phenyl-H), 6.74 (s, br., 3 × 4H, phenyl-H), 6.82 (s, br., 3 × 6H), 6.92 (s, br., 3 × 2H, N-*H*), 7.07 (s, br. 3 × 2H), 7.85 (s, br. 3 × 4H, phenyl-*H*). ¹³C NMR (100.6 MHz, CD₃CN, 300 K, δ): 22.46 (CH₃), 52.37 (CH), 93.34, 93.80, 123.35, 126.52, 128.19, 128.44, 129.51, 136.93, 139.12, 143.63, 144.90, 145.77, 156.35, 161.83 (CO), 165.23 (CO). HRMS (ESI) calcd. for C₁₃₀H₁₀₈N₁₈Eu₂O₂₄S₄F₁₂ [M-2OTf]²⁺: 1481.2431 (¹⁵¹Eu based), found 1481.2433. Calculated for C132H108N18O30Eu2F18S6·2H2O: C, 48.03; H, 3.42; N,

7.64%; Found: C, 47.49; H, 3.42; N, 7.54 %.

 $3\{N,N'-(biphenyl-4,4'-diyl)bis[6-(R)-(1-phenylethyl-carbamoyl)-pyridine-2-dicarboxa mide]\}-2La-6(CF_3SO_3) [La_2(L1^{RR})_3](CF_3SO_3)_6 and <math>3\{N,N'-(biphenyl-4,4'-diyl)bis[6-(S)-(1-phenylethylcarbamoyl)-pyridine-2-dicarboxamide]\}-2La-6(CF_3SO_3) [La_2(L1^{SS})_3](CF_3SO_3)_6$

To a white suspension of (L1^{RR}) (0.050 g, 0.073 mmol, 1.5 equiv.) in a mixture of 6 mL of DCM/MeOH (12:1, v/v), a solution of La(CF₃SO₃)₃ (0.028 g, 0.048 mmol, 1 equiv.) in 3 mL of MeCN was added. The suspension was changed to yellow turbidity immediately. The reaction mixture was then refluxed for 16 h and the solid progressively dissolved to give a resulting homogeneous yellow solution. The solvent was removed under reduced pressure. The solid was then washed with THF to give the desired product. [La₂(L1^{RR})₃](CF₃SO₃)₆: (0.071 g, 0.022 mmol, 93% yield) ¹H NMR (400 MHz, CD₃CN, 298 K, δ): 1.75 (d, J = 8 Hz, 3 × 6H, CH₃), 5.08–5.16 (m, 3 × 2H, $(CH_3)CH$, 6.64 (d, J = 8 Hz, 3 × 4H, phenyl-H), 7.11–7.17 (m, 3 × 4H, phenyl-H), 7.18–7.23 (overlapping of two type of peaks, m, $3 \times 4H$, phenyl-H and m, $3 \times 2H$), 7.71 (d, J = 8 Hz, 3 × 4H, phenyl-H), 8.50–8.55 (m, 3 × 4H), 8.56–8.60 (m, 3 × 2H), 9.09 (d, J = 8 Hz, 3 × 2H, N-H), 10.32 (s, 3 × 2H, N-H). ¹³C NMR (100.6 MHz, CD₃CN, 298 K, δ): 22.15 (CH₃), 53.71 (C(CH₃)H), 122.86 (CH), 127.38 (CH), 127.93 (CH), 128.63 (CH), 129.08 (CH), 130.05 (CH), 136.86, 139.19, 143.17, 144.54 (CH), 150.14, 150.79, 168.12 (CO), 168.95 (CO). HRMS (ESI) calcd. for C₁₂₉H₁₀₈N₁₈La₂O₂₁S₃F₉ [M-3OTf]³⁺: 929.8355, found 929.8354. Calculated for C132H108N18O30La2F18S6·5H2O·2CH3OH: C, 47.44; H, 3.74; N, 7.43%; Found: C, 46.14; H, 3.72; N, 7.32 %; [La₂(L1^{ss})₃](CF₃SO₃)₆ was synthesized, following the procedure for $[La_2(L1^{RR})_3](CF_3SO_3)_6$ with the use of (L1^{ss}) instead: (0.070 g, 0.022 mmol, 90% yield) ¹H NMR (400 MHz, CD₃CN, 298 K, δ): 1.75 (d, J = 8 Hz, 3 × 6H, CH₃), 5.09–5.16 (m, 3 × 2H, (CH₃)CH), 6.64 (d, J = 8 Hz, 3 × 4H, phenyl-H), 7.12–7.16 (m, 3 × 4H, phenyl-H), 7.18–7.23 (m, 3 × 4H, phenyl-H; m, 3 × 2H), 7.71 (d, J = 8 Hz, 3 × 4H, phenyl-H), 8.51 (t, J = 8 Hz, 3 × 2H), 8.56 (d, J = 8 Hz, 3 × 2H), 8.60 (d, J = 8 Hz, 3 × 2H), 9.09 (d, J = 8 Hz, 3 × 2H, N-H), 10.32 (s, 3 × 2H, N-H). ¹³C

NMR (100.6 MHz, CD₃CN, 299 K, δ): 22.16 (CH₃), 53.73 (C(CH₃)H), 122.88 (CH), 127.41 (CH), 127.96 (CH), 128.65 (CH), 129.11 (CH), 130.08 (CH), 136.87, 139.22, 143.18, 144.57 (CH), 150.16, 150.81, 168.15 (CO), 168.98 (CO). HRMS (ESI) calcd. for C₁₂₉H₁₀₈N₁₈La₂O₂₁S₃F₉ [M-3OTf]³⁺: 929.8355, found 929.8352... Calculated for C₁₃₂H₁₀₈N₁₈O₃₀La₂F₁₈S₆·4H₂O: C, 47.89; H, 3.53; N, 7.62%; Found: C, 47.45; H, 3.46; N, 7.53 %.

(*R*)-6-(2-phenylpropylcarbamoyl)picolinic acid 2^{*R*} or (*S*)-6-(2-phenylpropyl carbamoyl)picolinic acid 2^{*S*}

To a stirred solution of 2,6-pyridinedicarboxylic acid (9.89 g, 59.1 mmol, 4.0 equiv.) in anhydrous DMF (130 mL) at room temperature, HATU (5.64 g, 14.8 mmol, 1.0 equiv.) was added by portions over 10 min under nitrogen. After allowing it to stir for 20 min, a (R)- β -methylphenethylamine (2.11 mL, 14.83 mmol, 1.0 equiv.) was added dropwisely and the reaction mixture was allowed to stir for 20 min. DIPEA (5.68 mL, 32.6 mmol, 2.2 equiv.) was then added to the reaction mixture over 5 min and the resulting solution was stirred at room temperature for 18 h. The reaction mixture was then diluted with H_2O (200 mL), and extracted with DCM (5 × 50 mL), dried with MgSO₄, filtered, and concentrated in vacuo. The resulting residue was purified with flash column chromatography (DCM/EtOH 12:1, v/v) to give a white solid. **2^R**: (1.93 g, 6.8 mmol, 46% yield) ¹H NMR (400 MHz, CD₃OD, 299 K, δ): 1.35 (d, J = 8.0 Hz, 3H), 3.17 (gin, J = 8 Hz, 1H), 3.61 (d, J = 8 Hz, 2H), 7.18-7.22 (m, 1H), 7.28–7.32 (m, 4H), 8.15 (t, J = 8 Hz, 1H), 8.30 (d, J = 8 Hz, 2H), 9.42 (m, 1H). ¹³C NMR (100.6 MHz, CD₃OD, 300 K, δ): 20.46, 41.80, 48.58, 127.34, 128.37, 129.05, 129.15, 130.36, 141.30, 146.59, 148.81, 151.99, 166.50, 168.28. HRMS (ESI) calcd. for $C_{16}H_{16}N_2O_3Na$ [M+Na]⁺: 307.1053, found 307.1053. The enantiomeric purity was determined with HPLC with AS-H column (Hexane/i-propanol: 80/20; flow rate: 0.25 ml/min) and compared with a racemic mixture according to the elution orders with retention times, $t_s = 46.33$ min and $t_R = 49.46$ min) to be 88% ee. 2^s was isolated, following the procedure for 2^{R} with the use of (S)- β -methylphenethylamine instead, in 43% yield (1.81 g, 6.36 mmol): ¹H NMR (400 MHz, CD₃OD, 299 K, δ): 1.36 (d, J = 8.0 Hz, 3H), 3.17 (gin, J = 8 Hz, 1H), 3.62 (d, J = 8 Hz, 2H), 7.19–7.22 (m, 1H), 7.28–7.31 (m, 4H), 8.15 (t, J = 8 Hz, 1H), 8.31 (d, J = 4 Hz, 2H). ¹³C NMR (100.6 MHz, CD₃OD, 300

K, δ): 20.46, 41.81, 48.60, 127.34, 128.38, 129.06, 129.16, 130.37, 141.32, 146.60, 148.83, 152.00, 166.51, 168.29. HRMS (ESI) calcd. for $C_{16}H_{16}N_2O_3Na$ [M+Na]⁺: 307.1053, found 307.1052. The enantiomeric purity was determined to be 96% ee.

N,N'-(biphenyl-4,4'-diyl)bis[6-(R)-(2-phenylpropylcarbamoyl)-pyridine-2,6-dicarbox amide] (L2^{RR}) and N,N'-(biphenyl-4,4'-diyl)bis[6-(S)-(2-phenylpropyl carbamoyl)-pyridine-2,6-dicarboxamide] (L2^{SS})

To a stirred solution of 2^R (1.00 g, 3.52 mmol, 2.2 equiv.) in anhydrous DMF (16 mL) at room temperature, HATU (2.93 g, 7.69 mmol, 4.8 equiv.) was added under nitrogen. After allowing it to stir for 20 min, a benzidine (0.30 g, 1.61 mmol, 1.0 equiv.) was added and the reaction mixture was allowed to stir for 20 min in dark. DIPEA (3.51 mL, 20.16 mmol, 12.5 equiv.) was then added to the reaction mixture and the resulting solution was stirred at room temperature for 14 h. The reaction mixture was then diluted with H_2O (20 mL) and extracted with DCM (5 × 30 mL). After removing all of the organic volatile under reduced pressure, the residue was diluted with ethyl acetate (20 mL) and then washed with H₂O (5 × 30 mL) to remove the remained DMF. The organic layer was separated and concentrated directly under reduced pressure. The residue was then diluted with MeCN (20 mL), and fine powder was progressively precipitated out. Then the solid was collected by filtration and the desired compound was isolated. (L2^{RR}): (0.42 g, 0.588 mmol, 73% yield), ¹H NMR (400 MHz, CDCl₃, 299K, δ): 1.42 (d, J = 8 Hz, 6H), 3.11–3.17 (m, 2H), 3.48–3.54 (m, 2H), 4.00-4.06 (m, 2H), 7.26-7.31 (m, 2H), 7.34-7.42 (m, 8H), 7.60-7.69 (m, 10H), 8.09 (t, J = 8 Hz, 2H), 8.41 (d, J = 8 Hz, 2H), 8.44 (d, J = 8 Hz, 2H), 9.20 (s, 2H). ¹³C NMR (100.6 MHz, CDCl₃, 300 K, δ): 19.31, 39.97, 45.96, 120.70, 125.21, 125.45, 127.14, 127.31, 127.35, 128.95, 136.29, 136.89, 139.33, 143.91, 148.63, 148.88, 161.10, 163.09. HRMS (ESI) calcd. for C₄₄H₄₀N₆O₄Na [M+Na]⁺: 739.3003, found 739.2994. (L2^{ss}) was isolated, following the procedure for (L2^{RR}) with the use of 2^s instead, in 69% yield (0.40 g, 0.555 mmol): ¹H NMR (400 MHz, CDCl₃, 298K, δ): 1.42 (d, J = 8 Hz, 6H), 3.13-3.15 (m, 2H), 3.48-3.53 (m, 2H), 4.01-4.06 (m, 2H), 7.27-7.31 (m, 2H), 7.35-7.42 (m, 8H), 7.58-7.60 (m, 2H), 7.65-7.70 (m, 8H), 8.10 (t, J = 8 Hz, 2H), 8.41 (d, J = 8 Hz, 2H), 8.45 (d, J = 8 Hz, 2H), 9.19 (s, 2H). ¹³C NMR (100.6 MHz, CDCl₃, 298K, δ): 19.32, 39.99, 45.96, 120.71, 125.24, 125.48, 127.17, 127.35, 127.37, 128.97, 136.30, 136.94, 139.36, 143.92, 148.63, 148.88, 161.11, 163.02. HRMS (ESI) calcd. for $C_{44}H_{40}N_6O_4Na~[M+Na]^+$: 739.3003, found 739.2996.

Figure S1. X-ray crystallography of L2^{RR} showing transoid conformation of the pyridine-*N* and its neighbor carbonyl-*O*s.

3{ N,N'-(biphenyl-4,4'-diyl)bis[6-(R)-(2-phenylpropylcarbamoyl)-pyridine-2,6-dicarb oxamide]}·2Eu·6(CF₃SO₃) [Eu₂(L2^{RR})₃](CF₃SO₃)₆ and 3{ N,N'-(biphenyl-4,4'-diyl)bis[6-(S)-(2-phenylpropylcarbamoyl)-pyridine-2,6-dicarboxamide]}·2Eu·6(CF₃SO₃) [Eu₂(L2^{SS})₃](CF₃SO₃)₆

To a white suspension of $(L2^{RR})$ (0.107 g, 0.150 mmol, 1.5 equiv.) in a mixture of 13 mL of DCM/MeOH (12:1, v/v), a solution of Eu(CF₃SO₃)₃ (0.060 g, 0.100 mmol, 1 equiv.) in 5 mL of MeCN was added. The solution was changed to yellow turbidity immediately. The solution was then refluxed and the solid progressively dissolved to give a resulting homogeneous yellow solution. After for 16 h, the solvent was removed under reduced pressure. The solid was then washed with DCM to give the desired product. [Eu₂(L2^{RR})₃](CF₃SO₃)₆: (0.154 g, 0.046 mmol, 91% yield), ¹H NMR (400 MHz, CD₃CN, 298 K, some of the peaks are shown two sets of peaks, **A** and **B**,

respectively in ~1.1:1 ratio, δ): 1.02 (s, br., 3 × 6H, **CH₃**, **A**), 1.33 (s, br., 3 × 6H, **CH₃**, **B**), 2.56 (s, br., 3 × 2H, (CH₃)CH, A), 2.96 (s, br., 3 × 2H, (CH₃)CH, B), 3.77 (overlapping of three type of peaks, br. 3 × 2H, CHH, A, 3 × 2H, CHH, A and 3 × 2H, CHH, B), 4.01 (s, br. 3 × 2H, CHH, B), 4.82 (s, br. 3 × 2H, NH, A), 4.96 (s, br. 3 × 2H, NH, B), 6.36 (s, br. 3 × 4H, A), 6.64 (m, br. 3 × 4H, B), 7.06–7.31 (m, br. 3 × 18H, A and 3 × 18H B), 8.36 (s, br. 3 × 4H, A), 8.44 (s, br. 3 × 4H, B). ¹³C NMR (100.6 MHz, CD₃CN, 298 K, some of the peaks are shown two sets of peaks, δ): 19.35 (CH₃), 19.63 (CH₃), 41.00 (CH), 41.29 (CH), 47.94 (CH₂), 47.96 (CH₂), 93.07, 93.09, 93.59, 93.89, 123.63, 127.71, 127.90, 128.00, 128.41, 128.48, 129.62, 129.70, 137.26, 137.30, 139.33, 139.38, 144.36, 144.41, 144.55, 145.42, 145.88, 156.35, 161.94 (CO), 162.38 (CO), 165.13 (CO), 165.26 (CO). HRMS (ESI) calcd. for $C_{136}H_{120}N_{18}Eu_2O_{24}S_4F_{12}$ [M-2OTf]²⁺: 1523.2900 (¹⁵¹Eu based), found 1523.2905. Calculated for C₁₃₈H₁₂₀N₁₈O₃₀Eu₂F₁₈S₆·2H₂O: C, 48.97; H, 3.69; N, 7.45%; Found: C, 48.47; H, 3.63; N, 7.36 %; [Eu₂(L2^{ss})₃](CF₃SO₃)₆ was synthesized, following the procedure for $[Eu_2(L2^{RR})_3](CF_3SO_3)_6$ with the use of $(L2^{SS})_3$ instead, in 92% yield (0.154 g, 0.046 mmol): ¹H NMR (400 MHz, CD₃CN, 297 K, some of the signals are shown in two sets of peaks, **A** and **B**, respectively in ~ 1.1:1 ratio, δ): 0.90 (s, br., 3 × 6H, CH₃, A), 1.32 (s, br., 3 × 6H, CH₃, B), 2.54 (s, br., 3 × 2H, CH, A), 2.96 (s, br., 3 × 2H, CH, B), 3.74 (s, br. 3 × 2H, CHH, A), 3.78 (s, br., 3 × 2H, CHH, A and 3 × 2H, CHH, B), 4.02 (s, br. 3 × 2H, CHH, B), 4.73 (s, br. 3 × 2H, NH, A), 4.87 (s, br. 3 × 2H, NH, B), 6.33 (s, br. 3 × 4H, A), 6.64 (m, br. 3 × 4H, B), 7.07–7.31 (m, br. 3 × 18H, A and m, br. 3 × 18H B), 8.37 (s, br. 3 × 4H, A), 8.45 (s, br. 3 × 4H, B). ¹³C NMR (100.6 MHz, CD₃CN, 298 K, some of the peaks are shown into two sets of peaks, δ): 19.35 (CH₃), 19.63 (CH₃), 41.00 (CH), 41.29 (CH), 47.93 (CH₂), 47.98 (CH₂), 93.13, 93.18, 93.71, 93.91, 123.63, 127.88, 127.91, 128.00, 128.41, 128.49, 129.62, 129.70, 137.23, 137.27, 139.34, 139.39, 144.36, 144.40, 144.60, 145.43, 145.90, 156.32, 161.91 (CO), 162.36 (CO), 165.13 (CO), 165.26 (CO). HRMS (ESI) calcd. for C₁₃₆H₁₂₀N₁₈Eu₂O₂₄S₄F₁₂ [M-2OTf]²⁺: 1523.2900 (¹⁵¹Eu based), found 1523.2889. Calculated for C₁₃₈H₁₂₀N₁₈O₃₀Eu₂F₁₈S₆·2H₂O: C, 48.97; H, 3.69; N, 7.45%; Found: C, 48.24; H, 3.60; N, 7.31 %.

3{ N,N'-(biphenyl-4,4'-diyl)bis[6-(R)-(2-phenylpropylcarbamoyl)-pyridine-2,6-dicarb oxamide]}·2La·6(CF₃SO₃) [La₂(L2^{RR})₃](CF₃SO₃)₆ and 3{ N,N'-(biphenyl-4,4'-diyl)bis[6-(S)-(2-phenylpropylcarbamoyl)-pyridine-2,6-dicarboxamide]}·2La·6(CF₃SO₃) [La₂(L2^{SS})₃](CF₃SO₃)₆

To a white suspension of (L2^{RR}) (0.040 g, 0.056 mmol, 1.5 equiv.) in a mixture of 6 mL of DCM/MeOH (8:1, v/v), a solution of La(CF₃SO₃)₃ (0.022 g, 0.037 mmol, 1 equiv.) in 8 mL of MeCN was added. The suspension was changed to yellow turbidity immediately. The reaction mixture was then refluxed for 16 h and the solid progressively dissolved to give a resulting homogeneous yellow solution. The solvent was removed under reduced pressure. The solid was then washed with DCM to give the desired product. [La₂(L2^{RR})₃](CF₃SO₃)₆: (0.055 g, 0.016 mmol, 89% yield) ¹H NMR (400 MHz, CD₃CN, 298 K, some of the signals are shown in two sets of peaks, A and B, respectively in ~1:1.1 ratio, δ): 1.02 (s, br., 3 × 6H, A), 1.18 (s, br., 3 × 6H, B), 2.77 (s, br., 3 × 2H, B), 2.93 (s, br., 3 × 2H, A), 3.40 (s, br., 3 × 6H), 3.57 (s, br., 3 × 2H), 6.72 (s, br. 3 × 8H, A), 7.05 (s, br., 3 × 8H, B), 7.18–7.30 (m, 3 × 12H), 7.82 (s, br. 3 × 8H), 8.40 (s, br., 3 × 4H, B), 8.59 (s, br., 3 × 4H, A), 8.75 (s, br., 3 × 4H, B), 8.87 (s, br., 3 × 4H, A), 10.47 (s, br., $3 \times 4H$). ¹³C NMR (100.6 MHz, CD₃CN, 298 K, some of the peaks cannot be shown clearly due to limited solubility, δ): 19.85, 19.90, 40.29, 40.51, 49.19, 49.31, 122.97, 123.00, 127.29, 127.35, 128.26, 128.33, 128.46, 128.78, 130.11, 137.01, 139.29, 144.82, 144.89, 150.43, 151.16, 151.30. HRMS (ESI) calcd. for $C_{135}H_{120}N_{18}La_2O_{21}S_3F_9$ [M-3OTf]³⁺: 957.8668, found 957.8670. Calculated for C₁₃₈H₁₂₀N₁₈O₃₀La₂F₁₈S₆·4H₂O: C, 48.83; H, 3.80; N, 7.43%; Found: C, 48.02; H, 3.73; N, 7.30 %; [La₂(L2^{ss})₃](CF₃SO₃)₆ was synthesized, following the procedure for [La₂(L2^{RR})₃](CF₃SO₃)₆ with the use of (L2^{SS}) instead, in 85% yield (0.052 g, 0.016 mmol): ¹H NMR (400 MHz, CD₃CN, 298 K, some of the signals are shown in two sets of peaks, **A** and **B**, respectively in ~1:1.1 ratio, δ): 1.02 (s, br., 3 × 6H, A), 1.16 (s, br., 3 × 6H, B), 2.77 (s, br., 3 × 2H, B), 2.93 (s, br., 3 × 2H, A), 3.39 (s, br., 3 × 6H), 3.57 (s, br., 3 × 2H), 6.72 (s, br. 3 × 8H, A), 7.04 (s, br., 3 × 8H, B), 7.17–7.39 (m, 3 × 12H), 7.82 (s, br. 3 × 8H), 8.40 (s, br., 3 × 4H, B), 8.58 (s, br., 3 × 4H, A), 8.75 (s, br., 3 × 4H, B), 8.89 (s, br., 3 × 4H, A), 10.47 (s, br., 3 × 4H). ¹³C NMR (100.6 MHz, CD₃CN, 298 K, some of the peaks cannot be shown clearly due to limited solubility, δ): 19.87, 40.24, 40.49, 49.14, 49.37, 122.91, 123.05, 127.32, 128.28, 128.49, 128.76, 130.14, 134.20, 137.02, 139.36, 144.86, 150.44, 151.33, 168.23, 168.41. HRMS (ESI) calcd. for C₁₃₅H₁₂₀N₁₈La₂O₂₁S₃F₉ [M-3OTf]³⁺: 957.8668, found 957.8662. Calculated for C₁₃₈H₁₂₀N₁₈O₃₀La₂F₁₈S₆·4H₂O: C, 48.83; H, 3.80; N, 7.43%; Found: C, 48.00; H, 3.78; N,

7.31 %.

3{ N,N'-(biphenyl-4,4'-diyl)bis[6- (S)-(2-phenylpropylcarbamoyl)-pyridine-2,6-dicarboxamide]}·2Gd·6(CF₃SO₃) [Gd₂(L2^{SS})₃](CF₃SO₃)₆

To a white suspension of (L2^{SS}) (0.050 g, 0.056 mmol, 1.5 equiv.) in a mixture of 6 mL of DCM/MeOH (12:1, v/v), a solution of Gd(CF₃SO₃)₃ (0.028 g, 0.047 mmol, 1 equiv.) in 8 mL of MeCN was added. The suspension was changed to yellow turbidity immediately. The reaction mixture was then refluxed for 16 h and the solid progressively dissolved to give a resulting homogeneous yellow solution. The solvent was removed under reduced pressure. The solid was then washed with DCM to give the desired product. [Gd₂(L2^{SS})₃](CF₃SO₃)₆: (0.071 g, 0.021 mmol, 90% yield) HRMS (ESI) calcd. for C₁₃₅H₁₂₀N₁₈Gd₂O₂₁S₃F₉ [M-3OTf]³⁺: 970.5464, found 970.5457.

Figure S2. (Upper) Variation in UV-Vis absorption spectra of titrating $L1^{RR}$ (1.72 × 10⁻⁴ M, in 73:3:24, v/v/v, of CHCl₃/MeOH/MeCN) with Eu(OTf)₃ (0.038M in MeCN) at 298 K (Eu:L1^{RR} = 0.0–2.0). (Lower) Variation of molar extinction coefficients at four different wavelengths upon titrating L1^{RR} with Eu(OTf)₃.

Figure S3. (Upper) Variation in UV-Vis absorption spectra of titrating $L2^{RR}$ (1.65 × 10⁻⁴ M, in 73:3:24, v/v/v, of CHCl₃/MeOH/MeCN) with Eu(OTf)₃ (0.038M in MeCN) at 298 K (Eu: $L2^{RR}$ = 0.0–2.0). (Lower) Variation of molar extinction coefficients at four different wavelengths upon titrating $L2^{RR}$ with Eu(OTf)₃.

Figure S4. Variation in ¹H NMR (400 MHz, 295 K) spectra of titrating $L2^{SS}$ (4.64 × 10⁻³ M in 47:6:47, v/v/v, of CDCl₃/CD₃OD/CD₃CN) with Eu(OTf)₃ (0.271 M in CD₃OD) at 296K. (Peaks that are marked as a, b, c, d are from the residual solvents.)

Chart S1. Selected atomic numbering scheme of $[Eu_2(L1^{ss})_3](CF_3SO_3)_6$ in strand 1(top), 2 (middle), and 3 (bottom) for X-ray crystallography. The corresponding hydrogen atoms, H(number)A, with the same number of the attached carbons are not shown.

			Distances(Å)	
	Distance(Å)	Strand 1	Strand 2	Strand 3
Eu(1)–N		N(2), 2.566(5)	N(8), 2.537(5)	N(14), 2.595(5)
Eu(1)–O		O(2), 2.438(5)	O(5), 2.404(5)	O(9), 2.380(5)
Eu(1)–O		O(1), 2.438(5)	O(6), 2.407(5)	O(10), 2.424(4)
Eu(2)–N		N(5), 2.557(6)	N(11), 2.532(5)	N(17), 2.553(5)
Eu(2)–O		O(3), 2.435(4)	O(7), 2.434(4)	O(11), 2.441(5)
Eu(2)–O		O(4), 2.427(5)	O(8), 2.409(5)	O(12), 2.429(5)
Eu(1)-Eu(2)	15.055(1)			
		Bite angles		
	angles(°)			angles(°)
O(1)-Eu(1)-N(2)	62.96(17)	O(4)-	-Eu(2)—N(5)	63.87(17)
O(5)-Eu(1)-N(8)	63.87(18)	O(8)-	Eu(2)–N(11)	62.82(16)
O(9)-Eu(1)-N(14)	63.70(16)	O(12)-	-Eu(2)–N(17)	62.82(18)
N(2)-Eu(1)-O(2)	62.92(16)	N(5)-	-Eu(2)–O(3)	67.17(18)
N(8)-Eu(1)-O(6)	62.77(17)	N(11)	–Eu(2)–O(7)	63.47(16)
N(14)-Eu(1)-O(10)	62.81(16)	N(17)-	-Eu(2)–O(11)	64.06(17)
O(1)-Eu(1)-O(5)	77.70(16)	O(4)-	-Eu(2)–O(8)	76.17(17)
O(5)-Eu(1)-O(9)	75.94(16)	O(8)-	Eu(2)–O(12)	73.51(16)
O(9)-Eu(1)-O(1)	75.64(16)	O(12)	–Eu(2)–O(4)	74.20(16)
N(2)-Eu(1)-N(8)	119.46(17)	N(5)-	Eu(2)–N(11)	122.53(18)
N(8)-Eu(1)-N(14)	121.88(17)	N(11)-	-Eu(2)–N(17)	117.94(17)
N(14)–Eu(1)–N(2)	117.61(15)	N(17)	–Eu(2)–N(5)	119.00(18)
O(2)-Eu(1)-O(6)	76.01(16)	O(3)-	-Eu(2)–O(7)	76.01(14)
O(6)-Eu(1)-O(10)	77.39(15)	O(7)-	Eu(2)–O(11)	73.34(15)

Table S1. Selected structural parameters for [Eu₂(L1^{SS})₃](CF₃SO₃)₆

O(10)-Eu(1)-O(2)	76.41(16)		O(11)-Eu(2)-O(3)		73.63(15)		
Torsional angles							
Strand 1	angles(°)	Strand 2	angles(°)	Strand 3		angles(°)	
N(2)-C(6)-C(7)-O(12)	-22.97(103)	N(8)-C(32)-C(33)-O(6)	-19.52(107)	N(14)-C(58)-C(5	9)–O(10)	-18.38(100)	
C(6)-C(7)-N(3)-C(8)	-175.63(70)	C(32)-C(33)-N(9)-C(34)	-171.78(72)	C(58)–C(59)–N(1	5)–C(60)	-164.52(72)	
C(7)-N(3)-C(8)-C(9)	-13.31(135)	C(33)-N(9)-C(34)-C(35)	160.48(77)	C(59)–N(15)–C(6	0)–C(61)	166.37(76)	
C(11)-C(13)-C(14)-C(15)	150.24(75)	C(37)-C(39)-C(40)-C(41)	-44.15(102)	C(63)–C(65)–C(6	6)–C(67)	-35.42(103)	
C(17)-C(19)-N(4)-C(20)	-5.56(126)	C(43)-C(45)-N(10)-C(46)	7.90(115)	C(69)–C(71)–N(1	.6)–C(72)	-8.10(104)	
C(19)-N(4)-C(20)-C(21)	-167.72(71)	C(45)-N(10)-C(46)-C(47)	-176.32(69)	C(71)-N(16)-C(7	2)–C(73)	-167.21(59)	
O(3)-C(20)-C(21)-N(5)	-8.27(99)	O(7)-C(46)-C(47)-N(11)	-21.38(103)	O(11)–C(72)–C(7	3)–N(17)	-17.69(92)	
C–H···C Distance(Å) of (H···C)		Distance(Å)	of (C···C)	Angles(°)	of (C–H–C)		
C38–H38A…C10	8–H38A···C10 2.987(8)		3.800	(11)	146.8	31(51)	
C64–H64A···C35 2.874(8)		3.728(11)		153.2	19(48)		
C11–H11A…C61	C11–H11A…C61 2.908(8)		3.702(12)		144.2	23(56)	
C67–H67A…C18	2.897(5)		3.788(9)		160.9	92(48)	
C15–H15A…C44	3.154(6)		3.997(10)		151.7	76(44)	
C41–H41A…C70	2.989(9)		3.851(12)		154.9	92(50)	

Figure S5. Crystal structure (highlighted only the atoms involving coordination polyhedral; dashed lines indicate CH/ π distances < 3.20 Å) and space filling representation of $[Eu_2(L2^{RR})_3]^{6+}$ showing of helical structure. Disordering of chiral amide side arms occur.

Figure S6. ¹H NMR (400 MHz, 298 K) spectrum of $[Eu_2(L1^{RR})_3](CF_3SO_3)_6$ (CD₃CN). The insets show the expansion of the corresponding region as indicated.

Figure S7. Variable temperature ¹H NMR (400 MHz) spectrum of [Eu₂(L1^{SS})₃](CF₃SO₃)₆ (CD₃CN).

Figure S8. ¹³C NMR (100.6 MHz, 296 K) spectrum of $[Eu_2(L1^{RR})_3](CF_3SO_3)_6$ (CD₃CN). The insets show the expansion of the corresponding region as indicated.

Figure S9. ¹H NMR (400 MHz, 298 K) spectrum of $[La_2(L1^{SS})_3](CF_3SO_3)_6$ (CD₃CN). The insets show the expansion of the corresponding region as indicated.

Figure S10. ¹H NMR (400 MHz, 298 K) spectrum of $[Eu_2(L2^{RR})_3](CF_3SO_3)_6$ (CD₃CN). The insets show the expansion of the corresponding region as indicated. Set 1 and set 2 are preliminary assigned that based on their integration.

Figure S11. ¹³C NMR (100.6 MHz, 298 K) spectrum of $[Eu_2(L2^{RR})_3](CF_3SO_3)_6$ (CD₃CN). The insets show the expansion of the corresponding region as indicated. Set 1 and set 2 are preliminary assigned that based on their integration.

Figure S12. ¹H NMR (400 MHz) spectrum of [**Eu**₂(**L2**^{**RR**})₃](**CF**₃**SO**₃)₆ (CD₃CN). a) At 295 K. b) At 345 K, c) Overlaying of the two spectra from 295 K and 345 K.

Figure S13. ¹H NMR (400 MHz, 298 K) spectrum of $[La_2(L2^{SS})_3](CF_3SO_3)_6$ (CD₃CN). The insets show the expansion of the corresponding region as indicated. Set 1 and set 2 are preliminary assigned that based on their integration.

Figure S14. ¹H NMR (400 MHz) spectra of $[La_2(L2^{SS})_3](CF_3SO_3)_6$ (CD₃CN) at variable temperature. Another set of peak observed at 253 K and 238 K are due to insolubility of the complex.

Figure S15. CD spectra of $[La_2(L1)_3](CF_3SO_3)_6$ (3.58 × 10⁻⁵ M) and $[La_2(L2)_3](CF_3SO_3)_6$ (4.23 x 10⁻⁵ M) in MeCN. Attenuation of 96% (376 nm), 98% (329 nm), 81% (284 nm), 69% (246 nm) and 83% (216 nm) of CD signals are observed.

Figure S16. Excitation spectrum of $[Eu_2(L1^{RR})_3](CF_3SO_3)_6$ (powder, lem = 616 nm, slits = 5-1, filter 455nm).

Figure S17. Emission spectrum of $[Eu_2(L1^{RR})_3](CF_3SO_3)_6$ (powder, lex = 369 nm, slits = 5-1, filter 455nm).

Figure S18. Excited state decay curve and its mono exponential fit of $Eu_2(L1^{RR})_3](CF_3SO_3)_6$ (powder, lex = 369 nm, slits = 15-3, filter 455nm).

Figure S19. Excitation spectrum of $[Eu_2(L1^{SS})_3](CF_3SO_3)_6$ (powder, lem = 616 nm, slits = 5-1, filter 455nm).

Figure S20. Emission spectrum of $[Eu_2(L1^{SS})_3](CF_3SO_3)_6$ (powder, lex = 369 nm, slits = 5-1, filter 455nm).

Figure S21. Excited state decay curve and its mono exponential fit of $[Eu_2(L1^{SS})_3](CF_3SO_3)_6$ (powder, lex = 369 nm, slits = 15-3, filter 455nm).

Figure S22. Excitation spectrum of $[Eu_2(L2^{RR})_3](CF_3SO_3)_6$ (powder, lem = 616 nm, slits = 5-1, filter 455nm).

Figure S23. Emission spectrum of $[Eu_2(L2^{RR})_3](CF_3SO_3)_6$ (powder, lex = 372 nm, slits = 5-1, filter 455nm).

Figure S24. Excited state decay curve and its mono exponential fit of $[Eu_2(L2^{RR})_3](CF_3SO_3)_6$ (powder, lex = 372 nm, slits = 15-3, filter 455nm).

Figure S25. Excitation spectrum of $[Eu_2(L2^{SS})_3](CF_3SO_3)_6$ (powder, lem = 616 nm, slits = 5-1, filter 455nm).

Figure S26. Emission spectrum of $[Eu_2(L2^{SS})_3](CF_3SO_3)_6$ (powder, lex = 373 nm, slits = 5-1, filter 455nm).

Figure S27. Excited state decay curve and its mono exponential fit of $[Eu_2(L2^{SS})_3](CF_3SO_3)_6$ (powder, lex = 373 nm, slits = 15-3, filter 455nm).

Figure S28. Excitation spectrum of $[Eu_2(L1^{RR})_3](CF_3SO_3)_6$ (3.23 × 10⁻⁵ M in MeCN, lem = 616 nm, slits = 5-1, filter 455nm).

Figure S29. Emission spectrum of $[Eu_2(L1^{RR})_3](CF_3SO_3)_6$ (3.23 × 10⁻⁵ M in MeCN, lex = 363 nm, slits = 5-1, filter 455nm).

Figure S30. Excited state decay curve and its mono exponential fit of $[Eu_2(L1^{RR})_3](CF_3SO_3)_6$ (3.23 × 10⁻⁵ M in MeCN, lex = 363 nm, slits = 15-3, filter 455nm).

Figure S31. Excitation spectrum of $[Eu_2(L1^{SS})_3](CF_3SO_3)_6$ (3.23 × 10⁻⁵ M in MeCN, lem = 616 nm, slits = 5-1, filter 455nm).

Figure S32. Emission spectrum of $[Eu_2(L1^{SS})_3](CF_3SO_3)_6$ (3.23 × 10⁻⁵ M in MeCN, lex = 358 nm, slits = 5-1, filter 455nm).

Figure S33. Excited state decay curve and its mono exponential fit of $[Eu_2(L1^{ss})_3](CF_3SO_3)_6 (3.23 \times 10^{-5} \text{ M in MeCN}, \text{lex} = 358 \text{ nm}, \text{slits} = 15-3, \text{ filter } 455 \text{ nm}).$

Figure S34. Excitation spectrum of $[Eu_2(L2^{RR})_3](CF_3SO_3)_6$ (3.47 × 10⁻⁵ M in MeCN, lem = 616 nm, slits = 5-1, filter 455nm).

Figure S35. Emission spectrum of $[Eu_2(L2^{RR})_3](CF_3SO_3)_6$ (3.47 × 10⁻⁵ M in MeCN, lex = 351 nm, slits = 5-1, filter 455nm).

Figure S36. Excited state decay curve and its mono exponential fit of $[Eu_2(L2^{RR})_3](CF_3SO_3)_6$ (3.47 × 10⁻⁵ M in MeCN, lex = 351 nm, slits = 15-3, filter 455nm).

Figure S37. Excitation spectrum of $[Eu_2(L2^{SS})_3](CF_3SO_3)_6$ (3.15 × 10⁻⁵ M in MeCN, lem = 616 nm, slits = 5-1, filter 455nm).

Figure S38. Emission spectrum of $[Eu_2(L2^{SS})_3](CF_3SO_3)_6$ (3.15 × 10⁻⁵ M in MeCN, lex = 351 nm, slits = 5-1, filter 455nm).

Figure S39. Excited state decay curve and its mono exponential fit of $[Eu_2(L2^{SS})_3](CF_3SO_3)_6 (3.15 \times 10^{-5} \text{ M in MeCN, lex} = 351 \text{ nm, slits} = 15-3, filter 455 \text{ nm}).$

Table S2. A summary of selected photophysical properties, UV-Vis absorption and luminescence data, of $[Eu_2(L)_3](CF_3SO_3)_6$ in acetonitrile solution^a

	$\lambda_{\scriptscriptstyle \mathrm{abs}}^{ \mathrm{max}}$	$arepsilon^{max}$	$\lambda_{ ext{em}}^{ ext{max}}$	τ
	(nm)	(L·mol ⁻¹ ·cm ⁻¹)	(nm)	(ms)
[Eu ₂ (L1 ^{RR}) ₃](CF ₃ SO ₃) ₆	340	102300	616	0.22
[Eu ₂ (L1 ^{SS}) ₃](CF ₃ SO ₃) ₆	340	107000	616	0.22
[Eu ₂ (L2 ^{RR}) ₃](CF ₃ SO ₃) ₆	340	99000	616	0.22
[Eu ₂ (L2 ^{SS}) ₃](CF ₃ SO ₃) ₆	340	98000	616	0.22
$[La_2(L1^{SS})_3](CF_3SO_3)_6$	338	103000	449 ^b	0.014 ^b

^aUsing a 1mm cuvette and filter 455 nm. ^bMeasurement performed at 77 K in 1:4 of MeOH/EtOH and using a 10 mm cuvette.

Figure S40. Excitation spectrum of $[Gd_2(L1^{SS})_3](CF_3SO_3)_6$ (2.88 × 10⁻⁶ M in 1:4, v/v of MeOH/EtOH at 77K, lem = 450 nm, slits = 5-1).

Figure S41. Emission spectrum of $[Gd_2(L1^{SS})_3](CF_3SO_3)_6$ (2.88 × 10⁻⁶ M in 1:4 of MeOH/EtOH at 77K, lex = 340 nm, slits = 5-1).

Figure S42. Excited state decay curve and its mono exponential fit of $[Gd_2(L1^{SS})_3](CF_3SO_3)_6$ (2.88 × 10⁻⁶ M in 1:4 of MeOH/EtOH at 77K, lex = 340 nm, slits = 15-3).

Figure S43. Emission spectrum of $[Eu_2(L2^{RR})_3](CF_3SO_3)_6$ (3.15 × 10⁻⁵ M in MeCN or d-MeCN, lex = 351 nm, slits = 5-1, filter 455nm).

Figure S44. Excited state decay curve and its mono exponential fit of $[Eu_2(L2^{RR})_3](CF_3SO_3)_6$ (3.15 × 10⁻⁵ M in d-MeCN, lex = 351 nm, slits = 15-3, filter 455nm).

Figure S45. Preliminary results of CPL for $[Eu_2(L1)_3](CF_3SO_3)_6 (2.30 \times 10^{-3} \text{ M}, 10 \text{ mm} \text{ cuvette, MeCN}).^5$

Table	S3.	Crystal	data	and	structure	refinement	of	[Eu ₂ (L1 ^{SS}) ₃](CF ₃ SO ₃) _{6,}
[Eu ₂ (L2	2 ^{RR}) ₃](CF ₃ SO ₃) ₆	, and L2	2 ^{RR}				

	[Eu ₂ (L1 ^{SS}) ₃](CF ₃ SO ₃) _{6,}	[Eu ₂ (L2 ^{RR}) ₃](CF ₃ SO ₃) ₆	L2 ^{RR}
Empirical formula	C ₁₂₆ H ₁₀₈ Eu ₂ N ₁₈ O ₁₂	$C_{132}H_{120}Eu_2N_{18}O_{12}$	C ₄₄ H ₄₀ N ₆ O ₄
Formula weight	2370.22	2454.38	716.82
Temperature	296(2) K	296(2) K	296(2) K
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system, space group	Orthorhombic, P 2 ₁ 2 ₁ 2	Triclinic, P-1	Monoclinic, P 2 ₁
Unit cell dimensions	a = 26.0606(10), b = 28.4219(9), c = 23.3299(9), $\alpha = \beta = \gamma = 90$	a = 16.6790(5), b = 20.3099(6), c = 24.4218(8), α = 87.025(2), β = 70.961(2), γ = 89.269(2)	a = 10.3285(6), b = 17.8133(12), c = 10.5822(7), α = 90, β = 100.506(4) α = 90
Volume	17280.3(11) Å ³	7809.7(4) Å ³	1914.3(2) Å ³
Z, Calculated density	4, 0.911 mg/m ³	2, 1.044 mg/m ³	2, 1.244 mg/m ³
Absorption coefficient	0.765 mm ⁻¹	0.849 mm ⁻¹	0.081 mm ⁻¹
F(000)	4848	2520	756
Crystal size	0.20 x 0.46 x 0.48 mm	0.04 x 0.16 x 0.24 mm	0.04 x 0.36 x 0.56 mm

θ range for data collection	2.60 to 25.35 deg	2.58 to 26.37 deg	2.78 to 24.71 deg
Limiting indices	-31 ≤ h ≤ 24, -34 ≤ k ≤ 34, -28 ≤ l ≤ 28	-20 ≤ h ≤ 20, -25 ≤ k ≤ 25, -30 ≤ l ≤30	-12 ≤ h ≤ 12, -20 ≤ k ≤ 20, -12 ≤ l ≤ 12
Reflections collected / unique	144075/31600	196288/31901	23536 / 6477
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data/restraints/ parameters	31600 / 0 / 1261	31901 / 6 / 1161	6477 / 2 / 487
Goodness-of-fit on F ²	1.010	0.952	1.021
Final R indices [I>2σ(I)]	$R_1 = 0.0607,$ $wR_2 = 0.0986$	$R_1 = 0.0743,$ $wR_2 = 0.1956$	$R_1 = 0.0583,$ $wR_2 = 0.1407$
R indices (all data)	$R_1 = 0.1062,$ $wR_2 = 0.1073$	$R_1 = 0.1465,$ $wR_2 = 0.2181$	$R_1 = 0.1163,$ $wR_2 = 0.1712$
Flack parameter	0.018(8)	N/A	0(2)
Extinction coefficient	N/A	N/A	0.0054(14)
Largest diff. peak and hole	0.749 and -0.355 Å ⁻³	1.034 and -0.622 Å ⁻³	0.253 and -0.193 $Å^{-3}$

Note: All data were collected at ambient temperature. $[Eu_2(L1^{SS})_3](CF_3SO_3)_{6}$, and $[Eu_2(L2^{RR})_3](CF_3SO_3)_6$ were refined using PLATON/SQUEEZE, as such parameters such as empirical formula, formula weight, calculated density, etc. only reflect the refined structure as is.

References:

- 1. Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- 2. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- 3. (and 10) Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- 4. Spek A. L. (2009) *Acta Cryst.* D**65**, 148-155.
- 5. CPL experiments were helped by Mr Chi-Fai Chan and Dr. Ka-Leung Wong in department of chemistry, hong kong baptist university, HK SAR.

Figure S46. ¹H NMR spectrum of $\mathbf{1}^{s}$ in CD₃OD. The insets show the expansion of the corresponding region as indicated.

Figure S47. ¹³C NMR spectrum of $\mathbf{1}^{s}$ in CD₃OD. The insets show the expansion of the corresponding region as indicated.

Figure S48. ¹H NMR spectrum of $L1^{RR}$ in $(CD_3)_2SO$. The insets show the expansion of the corresponding region as indicated.

Figure S49. ¹³C NMR spectrum of $L1^{RR}$ in $(CD_3)_2SO$. The insets show the expansion of the corresponding region as indicated.

Figure S50. ¹³C NMR spectrum of $[La_2(L1^{SS})_3](CF_3SO_3)_6$ in CD₃CN. The insets show the expansion of the corresponding region as indicated. The chemical shift with an asteroid is not very clear. It was shown to correlate a chemical shift at 2.10 ppm (singlet) in the corresponding ¹H NMR spectrum in HSQC experiment.

Figure S51. ¹H NMR spectrum of 2^{s} in CD₃OD. The insets show the expansion of the corresponding region as indicated.

Figure S52. ¹³C NMR spectrum of 2^{s} in CD₃OD. The insets show the expansion of the corresponding region as indicated.

Figure S53. ¹H NMR spectrum of L2^{RR} in CDCl₃. The insets show the expansion of the corresponding region as indicated.

Figure S54. ¹³C NMR spectrum of $L2^{RR}$ in CDCl₃. The insets show the expansion of the corresponding region as indicated.

Figure S55. ¹³C NMR spectrum of $[La_2(L2^{RR})_3](CF_3SO_3)_6$ in CD₃CN. The insets show the expansion of the corresponding region as indicated.

Figure S56. HPLC spectra of $\mathbf{1}^{S}$ and $\mathbf{1}^{R}$.

Figure S57. HPLC spectra of 2^s and 2^R.