Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Sulfide Synthesis through Copper-Catalyzed C-S Bonds Formation

under Biomolecule-Compatible Conditions

Yonghong Zhang,[†] Yiming Li,[†] Xiaomei Zhang and Xuefeng Jiang*,[†]

[†]Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China

xfjiang@chem.ecnu.edu.cn

Index

I. General Information	S2
II. Optimization of Reaction Conditions	S3
III. The Synthetic Procedure for Substrates	S4
IV. The Synthetic Procedure and Data for 2a-2y and 3a-3r	\$5-32
V. Gram Scale Experiments	
VI. Biomolecule-Compatibility Experiments	\$35
VII. Mechanistic Study	S36
VIII. Copies of the ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR	

I. General information

Unless otherwise noted, all reagents were obtained commercially and used without further purification.

NMR spectrum:

¹H and ¹³C NMR spectra were collected on 400 MHz NMR spectrometers (Bruker AVANCE) using CDCl₃ or DMSO-*d*₆. Chemical shifts are reported in parts per million (ppm). Chemical shifts for protons are reported in parts per million downfield and are referenced to residual protium in the NMR solvent (CHCl₃ = δ 7.26). Chemical shifts for carbon are reported in parts per million downfield and are referenced to the carbon resonances of the solvent (CDCl₃ = δ 77.0). Data are represented as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz), integration.

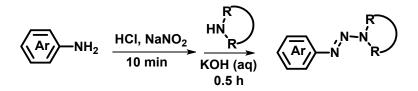
Mass spectroscopy:

Mass spectra were in general recorded on an AMD 402/3 or a HP 5989A mass selective detector.

Chromatography:

Column chromatography was performed with silica gel (200-300 mesh ASTM).

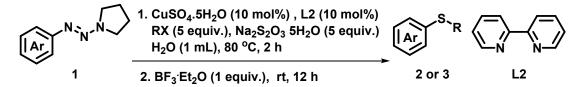
IR:

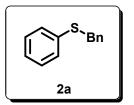

TENSOR (27) Series FT-IR Spectrometers.

II. Optimization of Reaction Conditions

MeO		catalyst (10 m Cl, Na₂ <mark>S</mark> ₂O₃ ^{·5} 3F₃ [·] Et₂O, rt, 1	H ₂ O, solvent	. ,	S.Bn
) Me	→ N= Me
	L1	L2	L3		L4
entry	catalyst	ligand	promoter	solvent	yield (%) ^b
1	Pd ₂ (dba) ₃	L1	BF3 Et2O	DMSO (2 mL)	33
2	FeCl ₃	L1	BF3 [·] Et2O	MeOH/H ₂ O	42
3	Cu(acac) ₂	L1	BF3 [·] Et2O	MeOH/H ₂ O	59
4	CuSO ₄ ·5H ₂ O	L1	BF3 [·] Et ₂ O	MeOH/H ₂ O	65
5	-	-	BF3 [·] Et ₂ O	MeOH/H ₂ O	20
6	CuSO₄ [.] 5H₂O	L1	-	MeOH/H ₂ O	NR
7	CuSO ₄ ·5H ₂ O	-	BF3 Et2O	MeOH/H ₂ O	46
8	CuSO₄ [.] 5H₂O	L2	BF3 Et2O	MeOH/H ₂ O	62
9	CuSO ₄ ·5H ₂ O	L3	BF3 Et2O	MeOH/H ₂ O	37
10	CuSO₄ [.] 5H₂O	L4	BF3 Et2O	MeOH/H ₂ O	23
11	CuSO ₄ ·5H ₂ O	L1	BF ₃ ·Et ₂ O	MeOH/H ₂ O	66 ^c
12	CuSO₄ [.] 5H₂O	L1	BF₃ [.] Et₂O	MeOH/H ₂ O	54 ^d
13	CuSO ₄ ·5H ₂ O	L1	BF3 [·] Et ₂ O	H ₂ O (2 mL)	55
14	CuSO₄ [.] 5H₂O	L1	BF3 Et2O	H ₂ O (2 mL)	55 ^e
15	CuSO₄ [·] 5H₂O	L1	BF ₃ ·Et ₂ O	H ₂ O (1 mL)	88
16	CuSO ₄ ·5H ₂ O	L1	BF3 Et2O	-	Trace
17	CuSO ₄ ·5H ₂ O	L1	HBF ₄	H ₂ O (1 mL)	82

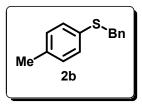
^aReaction conditions: catalyst (10 mol%), ligand (10 mol%), BnCl (1 mmol), Na₂S₂O₃·5H₂O (1 mmol), MeOH/H₂O = 1/1 (2 mL), 80 °C, 2 h, then 1d (0.2 mmol), BF3·Et₂O (0.2 mmol) was added, and stirred at room temperature. ^bIsolated yields. ^cMeOH/H₂O = 1/2 (2 mL). ^dMeOH/H₂O = 2/1 (2 mL). ^eTBAB (0.2 mmol) was added.


III. The Synthetic Procedure for Substrates

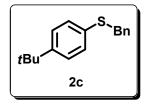

1-Aryltriazenes were prepared by a modification of the literature procedure.¹ A solution of arylamine (10 mmol) in concentrated HCl (2 mL) was cooled in an ice bath while a solution of NaNO₂ (10 mmol) in water (1 mL) was added dropwise. The resulting solution of the diazonium salt was stirred under ice bath for 10 min and then added all at once to a chilled solution of secondary amine (11 mmol) in 1 M KOH (10 mL). The reaction mixture was stirred for 30 min with cooling and the resulting precipitate isolated by filtration. The damp solid was recrystallized from EtOH and dried under reduced pressure or by column chromatography.

1. Margaret, L. G.; David, H. B.; Willard, M. W. J. Org. Chem. 1993, 58, 2104-2109.

IV. The Synthetic Procedure and Data for 2a-2y and 3a-3r.

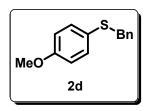

A mixture of CuSO₄·5H₂O (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), RX (1 mmol, 5 equiv.) and Na₂S₂O₃·5H₂O (248 mg, 1 mmol, 5 equiv.) in H₂O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After cooled to room temperature, **1** (0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, and $BF_3 \cdot Et_2O$ (0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature, some substrate need elevate temperature after added $BF_3 \cdot Et_2O$. When the reaction was complete, EtOAc (5 mL) was added, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 200:1 to ethyl acetate) to afford the desired product **2** or **3**.

A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), BnCl (126 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H₂O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After cooled to room temperature,

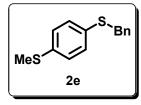

1a (35 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 μ L, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 200:1) to afford the desired product benzyl(phenyl)sulfane (**2a**): (38.8 mg, 97%), colorless oil. ¹H NMR (CDCl₃, 400 MHz): δ 7.13-7.24 (m, 9 H), 7.08-7.11 (m, 1 H), 4.03 (s, 2 H); ¹³C NMR (CDCl₃, 100 MHz): δ 137.4, 136.3, 129.8, 128.7, 128.4,

127.1, 126.3, 39.0; IR (neat): *v* = 1582, 1477, 1230, 1068, 1025, 827, 737, 690; MS: 200.

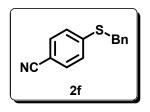
A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), BnCl (126 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After cooled to room temperature,


1b (37.8 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 μL, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 200:1) to afford the desired product benzyl(*p*-tolyl)sulfane (**2b**): (35.1 mg, 82%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ: 7.15-7.19 (m, 5 H), 7.14 (d, *J* = 8 Hz, 2 H), 6.98 (d, *J* = 8 Hz, 2 H), 3.98 (s, 2 H), 2.22 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ: 137.8, 136.6, 132.5, 130.7, 129.6, 128.9, 128.5, 127.1, 39.8, 21,1; IR (neat): *v* = 2970, 2914, 1489, 1451, 1395, 1237, 1066, 800, 711, 694; MS m/z: 214.

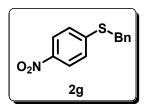
A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), BnCl (126 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After cooled to room temperature,


1c (46.2 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then $BF_3 \cdot Et_2O$ (25 µL, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under

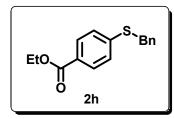
vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 200:1) to afford the desired product benzyl(4-tert-butylphenyl)sulfane (**2c**): (40.4 mg, 79%). colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.19-7.22 (m, 9 H), 4.03 (s, 2 H), 1.22 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ : 149.7, 137.7, 132.9, 129.9, 128.8, 128.5, 127.1, 39.4, 34.5, 31,3; IR (neat): v = 2960, 2902, 1600, 1493, 1453, 1396, 1363, 1268, 1119, 1069, 823, 764, 697; MS m/z: 256.


A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), **L2** (3.1 mg, 10 mol%), BnCl (126 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After cooled to room temperature,

1d (41.0 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, and BF₃·Et₂O (25 μL, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 100:1) to afford the desired product benzyl(4-methoxyphenyl)sulfane (**2d**): (40.5 mg, 88%), white solid. ¹H NMR (400 MHz, CDCl₃) *δ*: 7.13-7.16 (m, 5 H), 7.08-7.11 (m, 2 H), 6.69 (d, *J* = 8.4 Hz, 2 H), 3.89 (s, 2 H), 3.66 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) *δ*: 159.2, 138.2, 134.1, 128.9, 128.6, 128.4, 127.0, 126.1, 114.5, 55.3, 41.3; IR (neat): v = 2960, 2917, 2835, 1593, 1491, 1453, 1285, 1241, 1176, 1026, 811, 696; MS m/z: 230.

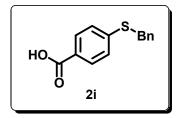

A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), BnCl (126 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After cooled to

room temperature, 1e (44.2 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 µL, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl 100:1) afford the acetate to desired product benzyl(4-(methylthio)phenyl)sulfane (2e): (29.0 mg, 59%), white solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.15-7.18 (m, 7 H), 7.04-7.13 (m, 2 H), 3.98 (s, 2 H), 2.37 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ: 137.6, 137.1, 132.5, 131.2, 128.8, 128.5, 127.2, 127.0, 39.7, 15.9; IR (neat): v = 2918, 2851, 1493, 1474, 1390, 1260, 1238, 1102, 1005, 804, 695; HRMS (FAB): Calcd for C₁₄H₁₅S₂: 246.0537, Found 246.0539.

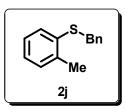

A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), BnCl (126 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After cooled to room temperature,

1f (40.0 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 μL, 0.2 mmol, 1 equiv.) was added. The mixture was allowed to 50 °C for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 50:1) to afford the desired product 4-(benzylthio)benzonitrile (**2f**): (25.2 mg, 56%), white solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.43 (d, *J* = 8.8 Hz, 2 H), 7.19-7.42 (m, 7 H), 4.13 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ: 144.5, 135.7, 132.2, 128.8, 128.7, 127.7, 127.3, 118.8, 108.6, 37.1; IR (neat): *v* = 2923, 2853, 2222, 1903, 1739, 1590, 1483, 1453, 1398, 1086, 818, 780, 718, 698; MS m/z: 225.

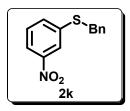
A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), BnCl (126 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After cooled to room temperature,


1g (44.0 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 μL, 0.2 mmol, 1 equiv.) was added. The mixture was allowed to 80 °C for 6 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 20:1) to afford the desired product benzyl(4-nitrophenyl)sulfane (**2g**): (33.8 mg, 69%), white solid. ¹H NMR (400 MHz, CDCl₃) δ: 8.01-8.03 (m, 2 H), 7.18-7.32 (m, 7 H), 4.17 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ: 147.2, 145.5, 135.5, 128.9, 128.7, 127.8, 1265.7, 123.9, 37.1; IR (neat): v = 2962, 1572, 1507, 1451, 1334, 1179, 837, 739, 717, 697; MS m/z: 245.

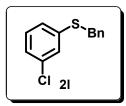
A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), BnCl (126 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After


cooled to room temperature, **1h** (49.4 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then $BF_3 \cdot Et_2O$ (25 µL, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 10:1) to afford the desired product ethyl 4-(benzylthio)benzoate (**2h**): (39.2 mg, 72%), yellow solid. ¹H NMR

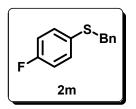
(400 MHz, CDCl₃) δ : 7.84 (d, J = 8.0 Hz, 2 H), 7.18-7.29 (m, 7 H), 4.27 (q, J = 7.2 Hz, 2 H), 4.12 (s, 2 H), 1.30 (t, J = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ : 166.3, 143.5, 136.4, 129.9, 128.8, 128.7, 127.5, 127.1, 66.9, 37.4, 14.3; IR (neat): v =2098, 1711, 1593, 1271, 1179, 1107, 1017, 758, 693; MS m/z: 272.


A mixture of CuSO₄·5H₂O (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), BnCl (126 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3$ ·5H₂O (248 mg, 1 mmol, 5 equiv.) in H₂O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After

cooled to room temperature, 1i (43.8 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 µL, 0.2 mmol, 1 equiv.) was added. The mixture was allowed to 80 °C for 6 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 1:1 to ethyl acetate) to afford the desired product 4-(benzylthio)benzoic acid (2i): (34.6 mg, 71%), white solid. ¹H NMR (400 MHz, CDCl₃) δ : 12.87 (br, 1 H), 7.83 (d, J = 8.4 Hz, 2 H), 7.41-7.43 (m, 4 H), 7.30-7.34 (m, 2 H), 7.26 (t, J = 7.2 Hz, 1 H), 4.35 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) *δ*: 167.4, 143.5, 137.0, 130.2, 129.3, 128.9, 127.9, 127.7, 126.9, 35.8; IR (neat): v = 3060, 3027, 2972, 2911, 1677, 1591, 1493, 1452, 1321, 1293, 1118, 919, 759, 694; MS m/z: 244.

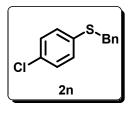

A mixture of CuSO₄·5H₂O (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), BnCl (126 mg, 1 mmol, 5 equiv.) and Na₂S₂O₃·5H₂O (248 mg, 1 mmol, 5 equiv.) in H₂O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After cooled to room temperature,

1j (37.8 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 µL, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 200:1) to afford the desired product benzyl(o-tolyl)sulfane (2j): (30.0 mg, 70%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.14-7.21 (m, 6 H), 7.01-7.06 (m, 3 H), 3.99 (s, 2 H), 2.24 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ : 137.9, 137.3, 135.8, 130.1, 129.0, 128.9, 128.5, 127.2, 126.4, 126.1, 38.3, 20.3; IR (neat): v = 2920, 1587, 1493, 1452, 1238, 743, 696; MS m/z: 214.

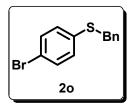

A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), BnCl (126 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After cooled to room temperature,

1k (44.0 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 µL, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 20:1) to afford the desired product benzyl(3-nitrophenyl)sulfane (**2k**): (33.3 mg, 68%), white solid. ¹H NMR (400 MHz, CDCl₃) δ : 8.05 (t, *J* = 1.6 Hz, 1 H), 7.91 (dd, *J*₁ = 1.6 Hz, *J*₂ = 8 Hz, 1 H), 7.47 (d, *J* = 7.6 Hz, 1 H), 7.32 (t, *J* = 8 Hz 1 H), 7.18-7.27 (m, 5 H), 4.13 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ : 148.4, 139.4, 136.0, 134.6, 129.5, 128.9, 128.8, 128.6, 127.7, 123.1, 120.8, 38.2; IR (neat): *v* = 1593, 1574, 1516, 1344, 724; HRMS (FAB): Calcd for C₁₃H₁₁NO₂S: 245.0511, Found : 245.0509.

A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), BnCl (126 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After cooled to room temperature,

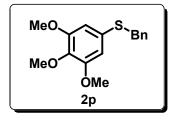

11 (41.8 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 µL, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 200:1) to afford the desired product benzyl(3-chlorophenyl)sulfane (21): (40.7 mg, 87%), white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.17-7.23 (m, 6 H), 7.07-7.08 (m, 3 H), 4.04 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ : 138.6, 136.8, 134.6, 129.8, 129.0, 128.8, 128.6, 127.4, 127.3, 126.3, 38.7; IR (neat): *v* = 1588, 1488, 1445, 1255, 943, 880, 784, 743; HRMS (FAB): Calcd for C₁₃H₁₁ClS: 234.0270, Found 234.0271.

A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), BnCl (126 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After cooled to room temperature,

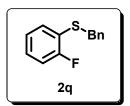

1m (38.6 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then $BF_3 \cdot Et_2O$ (25 µL, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum 12

ether/ethyl acetate 200:1) to afford the desired product benzyl(4-fluorophenyl)sulfane (**2m**): (35.3 mg, 81%), colorless oil. ¹H NMR (CDCl₃, 400 MHz): δ 7.11-7.19 (m, 7 H), 6.82-6.87 (m, 2 H), 3.94 (s, 2 H); ¹⁹F NMR (CDCl₃, 376 MHz): δ -114.7 (s, 1 F); ¹³C NMR (CDCl₃, 100 MHz): δ 162.1 (d, $J_{C-F} = 245$ Hz), 137.5, 133.4 (d, $J_{C-F} = 8$ Hz), 130.8 (d, $J_{C-F} = 3.3$ Hz), 128.9, 128.5, 127.2, 115.9 (d, $J_{C-F} = 21$ Hz), 40.5; IR (neat): v = 1592, 1487, 1397, 1227, 1158, 1091, 820, 694; MS: 218.

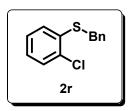
A mixture of CuSO₄·5H₂O (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), BnCl (126 mg, 1 mmol, 5 equiv.) and Na₂S₂O₃·5H₂O (248 mg, 1 mmol, 5 equiv.) in H₂O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After cooled to room temperature,


1n (41.8 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 μ L, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 200:1) to afford the desired product benzyl(4-chlorophenyl)sulfane (**2n**): (34.2 mg, 73%), white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.14-7.22 (m, 5 H), 7.12 (s, 4H), 3.99 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ : 137.1, 134.7, 132.5, 131.4, 129.4, 129.1, 129.0, 128.8, 127.3, 39.3; IR (neat): ν = 2902, 1452, 1393, 1229, 1068, 893, 810; MS m/z: 234.

A mixture of $CuSO_4$ ·5H₂O (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), BnCl (126 mg, 1 mmol, 5 equiv.) and Na₂S₂O₃·5H₂O (248 mg, 1 mmol, 5 equiv.) in H₂O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After cooled to room temperature,

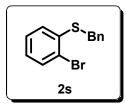

10 (50.8 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 μ L, 0.2 mmol, 1 equiv.) was added. The mixture was

stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 200:1) to afford the desired product benzyl(4-bromophenyl)sulfane: (**2o**) (42.4 mg, 76%), white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.27 (d, *J* = 8.4 Hz, 2 H), 7.12-7.21 (m, 5 H), 7.06 (d, *J* = 8.4 Hz, 2 H), 4.00 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ : 137.1, 135.5, 131.9, 131.5, 128.8, 128.6, 127.4, 120.3, 39.1; IR (neat): *v* = 2970, 1492, 1384, 1230, 1069, 1004, 807, 763, 695; MS m/z: 279.

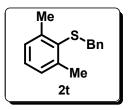

A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), BnCl (126 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After

cooled to room temperature, **1p** (53.0 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 μ L, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 50:1) to afford the desired product benzyl(3,4,5-trimethoxyphenyl)sulfane (**2p**): (56.8 mg, 98%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.18-7.22 (m, 5 H), 6.43 (s, 2 H), 3.98 (s, 2 H), 3.74 (s, 3 H), 3.68(s, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ : 153.1, 137.9, 137.4, 130.4, 130.0, 128.5, 127.2, 108.6, 60.9, 56.1, 40.4; IR (neat): v = 2935, 2831, 1577, 1496, 1451, 1306, 1330, 1123, 1004, 879, 796 698; HRMS (FAB): Calcd for C₁₆H₁₈O₃S: 290.0977, Found 290.0979.

A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), BnCl (126 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After cooled to room temperature,

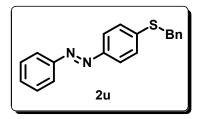

1q (38.6 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 μL, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 200:1) to afford the desired product benzyl(2-fluorophenyl)sulfane (**2q**): (28.3 mg, 65%) colorless oil. ¹H NMR (400 MHz, CDCl₃) *δ*: 7.26-7.30 (m, 3 H), 7.22-7.24 (m, 2 H), 7.15-7.19 (m, 2 H), 7.02-7.09 (m, 2 H), 4.07 (s, 2 H); ¹⁹F NMR (CDCl₃, 376 MHz): δ -109.1 (s, 1 F); ¹³C NMR (100 MHz, CDCl₃) *δ*: 161.6 (d, *J*_{C-F} = 244 Hz), 137.1, 132.9 (d, *J*_{C-F} = 1.8 Hz), 128.7, 128.6 (d, *J*_{C-F} = 38 Hz), 127.2, 124.6 (d, *J*_{C-F} = 4 Hz), 122.7 (d, *J*_{C-F} = 17 Hz), 115.6 (d, *J*_{C-F} = 22 Hz), 38.3 (d, *J*_{C-F} = 3 Hz); IR (neat): v = 2922, 1523, 1493,1471, 745; MS m/z: 218.

A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), BnCl (126 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After cooled to room temperature,

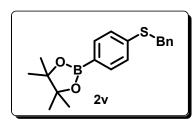

1r (41.8 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then $BF_3 \cdot Et_2O$ (25 µL, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 200:1) to afford the desired product benzyl(2-chlorophenyl)sulfane 15

(2r): (30.0 mg, 64%), white solid.¹H NMR (400 MHz, CDCl₃) δ : 7.18-7.30 (m, 7 H), 7.02-7.17 (m, 2 H), 4.07 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ : 136.3, 135.8 133.7, 129.7, 129.3, 128.9, 128.6 127.4, 127.1, 126.9, 37.5; IR (neat): v = 2924, 1523, 1493, 743; MS m/z: 234.

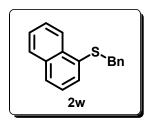
A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), BnCl (126 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After cooled to room temperature,


1s (50.6 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 μL, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 200:1) to afford the desired product benzyl(2-bromophenyl)sulfane (**2s**): (40.7 mg, 73%) white solid. ¹H NMR (400 MHz, CDCl₃) *δ*: 7.56-7.58 (m, 1 H), 7.38-7.40 (m, 2 H), 7.31-7.35 (m, 2 H), 7.27-7.30 (m, 1 H), 7.23-7.26 (m, 2 H), 7.02-7.07 (m, 1 H), 4.18 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) *δ*: 137.9, 136.1, 132.9, 129.0, 128.8, 127.7, 127.5, 126.9, 123.6, 37.9; IR (neat): *v* = 2923, 1575, 1493, 743; MS m/z: 279.

A mixture of $CuSO_4$ ·5H₂O (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), BnCl (126 mg, 1 mmol, 5 equiv.) and Na₂S₂O₃·5H₂O (248 mg, 1 mmol, 5 equiv.) in H₂O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After cooled to room temperature,

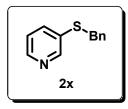

1t (40.6 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 μ L, 0.2 mmol, 1 equiv.) was added. The mixture was

allowed to 50 °C for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 200:1) to afford the desired product benzyl(2,6-dimethylphenyl)sulfane (**2t**): (22.3 mg, 49%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.14-7.19 (m, 3 H), 7.03-7.05 (m, 1 H), 6.99-7.01 (m, 4 H), 3.72 (s, 2 H), 2.32 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ : 143.6, 138.4, 132.8, 128.6, 128.5, 128.3, 128.0, 126.9, 39.8, 21.8; IR (neat): v = 3058, 3027, 2921, 1600, 1493, 1455, 1375, 1232, 767, 696; MS m/z: 228.

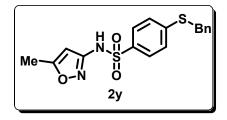

A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), BnCl (126 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H₂O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h.

After cooled to room temperature, **1u** (55.8 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 µL, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 200:1) to afford the desired product (*E*)-1-(4-(benzylthio)phenyl)-2-phenyldiazene (**2u**): (45.0 mg, 74%), red solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.80 (d, *J* = 7.2 Hz, 2 H), 7.73 (d, *J* = 8.4 Hz, 2 H), 7.35-7.42 (m, 3 H), 7.21-7.30 (m, 4 H), 7.12-7.19 (m, 3 H), 4.10 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ : 152.7, 150.6, 141.1, 136.7, 131.0, 129.2, 128.9, 128.7, 128.6, 128.5, 127.5, 123.4, 122.9, 38.0; IR (neat): *v* = 2970, 2904, 1582, 1496, 1400, 828, 766, 715, 685; HRMS (FAB): Calcd for C₁₉H₁₆N₂S: 304.1034, Found 304.1036.

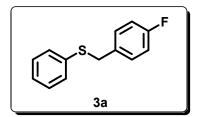
A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), BnCl (126 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After cooled to room temperature, **1v** (60.2


mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 µL, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 100:1) to afford the desired product 2-(4-(benzylthio)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**2v**): (42.4 mg, 65%), white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.68 (d, *J* = 8 Hz, 2 H), 7.32 (t, *J* = 7.2 Hz, 3 H), 7.28 (s, 3 H), 7.23 (s, 1 H), 4.17 (s, 2 H), 1.33 (s, 12 H); ¹³C NMR (100 MHz, CDCl₃) δ : 140.7, 137.0, 135.1, 128.8, 128.6, 127.4, 127.3, 83.8, 37.8, 24.9; IR (neat): *v* = 2976, 2930, 2903, 2251, 1596, 1361, 1130, 1050, 909, 733; MS m/z: 326.

A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), BnCl (126 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After cooled to room temperature, **1w** (45.0 mg, 0.2 mmol, 1 equiv.) was

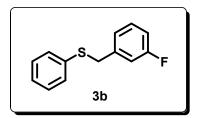

added to the solution, stirred for 15 min at room temperature, then $BF_3 \cdot Et_2O$ (25 µL, 0.2 mmol, 1 equiv.) was added. The mixture was allowed to 50 °C for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 200:1) to afford the desired

product benzyl(naphthalen-1-yl)sulfane (**2w**): (42.0 mg, 84%), white solid. ¹H NMR (400 MHz, CDCl₃) δ : 8.49 (d, *J* = 7.2 Hz, 1 H), 7.90 (d, *J* = 7.2 Hz, 1 H), 7.80 (d, *J* = 8.4 Hz, 1 H), 7.52-7.61 (m, 3 H), 7.40-7.42 (m, 1 H), 7.28-7.32 (m, 5 H), 4.21 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ : 137.4, 133.9, 133.4, 133.0, 128.6, 128.5, 127.7, 127.2, 126.5, 126.3, 125.6, 125.1, 39.4; IR (neat): *v* = 2974, 2902, 1493, 1458, 1378, 1231, 1054, 773, 729, 679; MS m/z: 250.

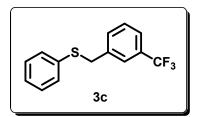


A mixture of $CuSO_4.5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), BnCl (126 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3.5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H₂O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After cooled to room temperature,

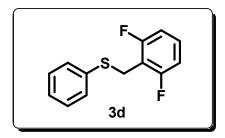
1x (35.2 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 µL, 0.2 mmol, 1 equiv.) was added. The mixture was allowed to 80 °C for 6 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 100:1) to afford the desired product 3-(benzylthio)pyridine (**2x**): (22.5 mg, 56%), white solid. ¹H NMR (400 MHz, CDCl₃) δ : 8.45 (d, *J* = 2 Hz, 1 H), 8.35 (dd, *J*_{*I*} = 1.2 Hz, *J*₂ = 4.8 Hz, 1 H), 7.47-7.50 (m, 1 H), 7.16-7.21 (m, 5 H), 7.08 (dd, *J*_{*I*} = 4.7 Hz, *J*₂ = 7.6 Hz, 1 H), 4.03 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ : 151.2, 147.6, 138.2, 136.8, 133.0, 128.8, 128.6, 127.5, 123.5, 39.2; IR (neat): *v* = 2972, 2883, 1379, 1088, 1046, 881; MS m/z: 201.


A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), BnCl (126 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After cooled to room temperature, 1y (67.0 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 µL, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at 80 °C for 6 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 2:1-1:2) to afford the desired product 4-(Benzylthio)-N-(5-methylisoxazol-3yl)benzenesulfonamide (2y): (46.8 mg, 65%), white solid. ¹H NMR (400 MHz, CDCl₃) δ : 11.39 (br, 1 H), 7.72 (d, J = 8.0 Hz, 2 H), 7.51 (d, J = 8.0 Hz, 2 H), 7.40-7.42 (m, 2 H), 7.30-7.34 (m, 2 H), 7.23-7.27 (m, 1 H), 6.13 (s, 1 H), 4.36 (s, 2 H), 2.29 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ: 170.3, 157.4, 144.3, 135.6, 127.3, 127.1, 126.6, 95.4, 35.1, 12.0; IR (neat): v = 3088, 2903, 2853, 1614, 1463, 1464, 1400, 1343, 1261, 1170, 1076, 1032, 930, 816, 799, 758, 719, 682; MS m/z: 360.

A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), **L2** (3.1 mg, 10 mol%), 1-(chloromethyl)-4-fluorobenzene (144 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O (1 mL) in a Schlenk tube was


heated at 80 °C for 2 h. After cooled to room temperature, **1a** (35.0 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 μ L, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 200:1) to afford the desired product (4-fluorobenzyl)(phenyl)sulfane (**3a**): (31.0 mg, 71%), white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.13-7.22 (m, 7 H), 6.88 (t, *J* = 8.7 Hz, 2 H), 3.99 (s, 2 H); ¹⁹F NMR (CDCl₃, 376 MHz): δ -115.4 (s, 1 F); ¹³C

NMR (100 MHz, CDCl₃) δ 162.0 (d, $J_{C-F} = 244$ Hz), 135.9, 133.3 (d, $J_{C-F} = 3.2$ Hz), 130.4 (d, $J_{C-F} = 8$ Hz), 130.2, 128.9, 126.6, 115.3 (d, $J_{C-F} = 21$ Hz), 38.4; IR (neat): v= 3063, 2920, 2853 1688, 1597, 1500, 1478 ,1224, 1153, 1068, 1012, 834, 756, 730, 687; MS: 218.

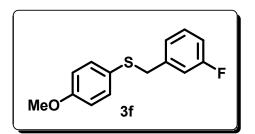

A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), **L2** (3.1 mg, 10 mol%), 1-(chloromethyl)-3-fluorobenzene (144 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O (1 mL) in a Schlenk tube was

heated at 80 °C for 2 h. After cooled to room temperature, 1a (35.0 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 µL, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 200:1) to afford the desired product (3-fluorobenzyl)(phenyl)sulfane (3b): (36.2 mg, 83%), white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.19-7.23 (m, 3 H), 7.16-7.18 (m, 2 H), 7.11-7.14 (m, 1 H), 6.91-6.97 (m, 2 H), 6.84-6.86 (m, 1 H), 4.00 (s, 2 H); ¹⁹F NMR (CDCl₃, 376 MHz): δ -113.2 (s, 1 F); ¹³C NMR (100 MHz, CDCl₃) δ 162.8 (d, $J_{C-F} = 244$ Hz), 140.2 (d, $J_{C-F} = 7.4$ Hz), 135.7, 130.2, 129.9 (d, $J_{C-F} = 8.3$ Hz), 129.0, 126.7, 124.4 (d, $J_{C-F} = 2.8$ Hz), 115.7 (d, $J_{C-F} = 22$ Hz), 114.1 (d, $J_{C-F} = 21$ Hz), 38.7 (d, $J_{C-F} = 1.7$ Hz); IR (neat): v = 3059, 2926, 1587, 1484, 1587, 1484, 1444, 1256, 1137, 1071, 943, 784 ,687; HRMS (FAB): Calcd for C₁₃H₁₁FS: 218.0565, Found 218.564.

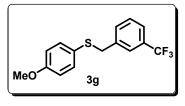
A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), 1-(chloromethyl)-3-


(trifluoromethyl)benzene (194 mg, 1 mmol, 5 equiv.) and Na₂S₂O₃·5H₂O (248 mg, 1 mmol, 5 equiv.) in H₂O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After cooled to room temperature, **1a** (35.0 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 µL, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 200:1) to afford the desired product phenyl(3-(trifluoromethyl)benzyl)sulfane (**3c**): (38.6 mg, 72%), white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.36-7.42 (m, 3 H), 7.31 (t, *J* = 1.8 Hz, 1 H), 7.14-7.22 (m, 5 H), 4.05 (s, 2 H); ¹⁹F NMR (CDCl₃, 376 MHz): δ -62.5 (s, 3 F); ¹³C NMR (100 MHz, CDCl₃) δ 138.7, 135.1, 132.2, 130.7, 129.0, 128.9, 127.0, 125.6 (q, *J_{C-F}* = 38 Hz), 125.4, 124.0 (q, *J_{C-F}* = 38 Hz), 122.6, 39.0; IR (neat): ν = 3026, 1585, 1479, 1449, 1329, 1163, 1120, 1071, 906, 802, 739, 697; MS: 268.

A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), 2-(chloromethyl)-1,3difluorobenzene (162 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O (1 mL) in a Schlenk tube was heated at 80 °C for 2

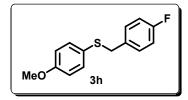

h. After cooled to room temperature, **1a** (35.0 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 μ L, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 200:1) to afford the desired product (2,6-difluorobenzyl)(phenyl)sulfane (**3d**): (39.6 mg, 84%), white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.30 (dd, J_1 = 0.5 Hz, J_2 = 8 Hz, 2 H), 7.15-7.20 (m, 3 H),

7.07-7.09 (m, 1 H), 6.74 (t, J = 8 Hz, 2 H), 4.04 (s, 2 H); ¹⁹F NMR (CDCl₃, 376 MHz): δ -114.6 (s, 2 F); ¹³C NMR (100 MHz, CDCl₃) δ 161.2 (dd, $J_{C-FI} = 248$ Hz, $J_{C-F2} = 7.7$ Hz), 135.0, 131.8, 128.9, 128.8, 128.8 (t, $J_{C-F} = 10.1$ Hz), 127.3, 114.4 (t, $J_{C-F} = 19$ Hz), 111.2 (dd, $J_{C-FI} = 37.8$ Hz, $J_{C-F2} = 6.2$ Hz), 26.8 (t, $J_{C-F} = 2.5$ Hz); IR (neat): v =3072, 2945, 1624, 1590, 1469, 1439, 1272, 1237, 1171, 995, 785, 737, 691; HRMS (FAB): Calcd for C₁₃H₁₀F₂S: 236.0471, Found 236.0474.

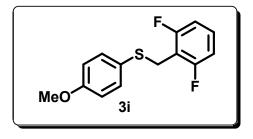


A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), 1-(chloromethyl)-4-fluorobenzene (144 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O (1 mL) in a Schlenk tube was

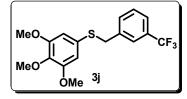
heated at 80 °C for 2 h. After cooled to room temperature, **1b** (37.8 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 µL, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 100:1) to afford the desired product (4-fluorobenzyl)(*p*-tolyl)sulfane (**3e**): (32.9 mg, 71%), white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.11-7.14 (m, 4 H), 6.99 (d, *J* = 8 Hz, 2 H), 6.85-6.90 (m, 2 H), 3.95 (s, 2 H), 2.24 (s, 3 H); ¹⁹F NMR (CDCl₃, 376 MHz): δ -115.6 (s, 1 F); ¹³C NMR (100 MHz, CDCl₃) δ 161.9 (d, *J*_{C-F} = 244 Hz), 136.9, 136.6 (d, *J*_{C-F} = 3 Hz), 131.9, 131.1, 130.4 (d, *J*_{C-F} = 8 Hz), 129.7, 115.3 (d, *J*_{C-F} = 21 Hz), 39.1, 21.1; IR (neat): ν = 2949, 2844, 1714, 1602, 1511, 1433, 1246, 1166, 1026, 829; MS m/z: 232.


A mixture of CuSO₄·5H₂O (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), 1-(chloromethyl)-3fluorobenzene (144 mg, 1 mmol, 5 equiv.) and Na₂S₂O₃·5H₂O (248 mg, 1 mmol, 5 equiv.) in H₂O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After cooled to room temperature, 1d (41.0 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 µL, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 100:1) to afford the desired product (3-fluorobenzyl)(4-methoxyphenyl)sulfane (3f): (44.6 mg, 90%), white solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.16-7.18 (m, 2 H), 6.81-6.87 (m, 4 H), 6.70-6.73 (m, 2 H), 3.87 (s, 2 H), 3.71 (s, 3 H); ¹⁹F NMR (CDCl₃, 376 MHz): δ -113.4 (s, 1 F); ¹³C NMR (100 MHz, CDCl₃) δ 162.7 (d, J_{C-F} = 244 Hz), 159.4, 140.8 (d, J_{C-F} = 7.3 Hz), 134.4, 129.7 (d, J_{C-F} = 8.2 Hz), 125.4, 124.5 (d, J_{C-F} = 2.8 Hz), 115.7 (d, J_{C-F} = 22 Hz), 114.5, 113.9 (d, $J_{C-F} = 21$ Hz), 55.3, 40.9 (d, $J_{C-F} = 1.7$ Hz); IR (neat): v = 2983, 2898, 1592, 1493, 1331, 1256, 1247, 1171, 1130, 1074, 910, 736; HRMS (FAB): Calcd for C₁₄H₁₃FOS: 248.0671, Found 248.0672.

A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), 1-(chloromethyl)-3-(trifluoromethyl)benzene (194 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O

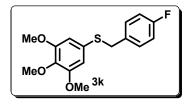

(1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After cooled to room temperature, **1d** (41.0 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then $BF_3 \cdot Et_2O$ (25 µL, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography

(petroleum ether/ethyl acetate 100:1) to afford the desired product (4methoxyphenyl)(3-(trifluoromethyl)benzyl)sulfane (**3g**): (47.1 mg, 79%) white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.46-7.47 (m, 1 H), 7.34-7.36 (m, 3 H), 7.20-7.22 (m, 2 H), 6.77-6.80 (m, 2 H), 3.98 (s, 2 H), 3.78 (s, 3 H); ¹⁹F NMR (CDCl₃, 376 MHz): δ -62.6 (s, 3 F); ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 139.3, 134.9, 132.2, 128.8, 125.7 (q, *J*_{C-F} = 3.8 Hz), 124.8, 123.8 (q, *J*_{C-F} = 3.7 Hz), 114.6, 55.3, 41.0; IR (neat): *v* = 2973, 2286, 1592, 1331, 1089, 1048, 881; HRMS (FAB): Calcd for C₁₅H₁₃F₃OS: 298.0639, Found 298.0637.


A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), 1-(chloromethyl)-4-fluorobenzene (144 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H₂O (1 mL) in a Schlenk tube was

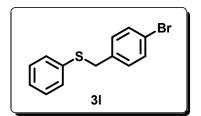
heated at 80 °C for 2 h. After cooled to room temperature, 1d (41.0 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 µL, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl 100:1)afford desired product (4-fluorobenzyl)(4acetate to the methoxyphenyl)sulfane (3h): (32.2 mg, 65%), white solid. ¹H NMR (400 MHz, CDCl₃) *δ*: 7.14-7.18 (m, 2 H), 7.03-7.06 (m, 2 H), 6.83-6.87 (m, 2 H), 6.70-6.72 (m, 2 H), 3.86 (s, 2 H), 3.70 (s, 3 H); ¹⁹F NMR (CDCl₃, 376 MHz): δ -115.7 (d, J = 4.5 Hz, 1 F); ¹³C NMR (100 MHz, CDCl₃) δ 161.9 (d, J_{C-F} = 244 Hz), 159.4, 134.4, 134.0 (d, $J_{C-F} = 3.2$ Hz), 130.4 (d, $J_{C-F} = 8.0$ Hz), 125.6, 115.2 (d, $J_{C-F} = 11.3$ Hz), 114.5, 55.3, 40.5; IR (neat): v = 2965, 2919, 1896, 1594, 1508, 1492, 1332, 1285, 1177, 1155, 1027, 812, 756; HRMS (FAB): Calcd for C₁₄H₁₃FOS: 248.0671, Found 248.0673.

A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), 2-(chloromethyl)-1,3difluorobenzene (162 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O (1 mL) in a Schlenk tube was heated at

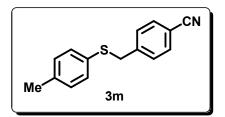

80 °C for 2 h. After cooled to room temperature, **1d** (41.0 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 μ L, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 100:1) to afford the desired product (2,6-difluorobenzyl)(4-methoxyphenyl)sulfane (**3i**): (38.8 mg, 73%), white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.21-7.23 (m, 2 H), 7.08-7.18 (m, 1 H), 6.69-6.74 (m, 4 H), 3.93 (s, 2 H), 3.71 (s, 3 H); ¹⁹F NMR (CDCl₃, 376 MHz): δ -114.9 (s, 2 F); ¹³C NMR (100 MHz, CDCl₃) δ 161.2 (dd, *J*_{C-F1} = 248 Hz, *J*_{C-F2} = 7.9 Hz), 159.8, 135.6, 131.9, 128.7, 128.6, 128.5, 124.9, 114.4, 111.1 (dd, *J*_{C-F1} = 16.5 Hz, *J*_{C-F2} = 6.3 Hz), 55.3, 28.3; IR (neat): ν = 2964, 2839, 2228, 1624, 1589, 1492, 1467, 1272, 1239, 1176, 1023, 996, 826, 784, 736; HRMS (FAB): Calcd for C₁₄H₁₂F₂OS: 266.0577, Found 266.0576.

A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), 1-(chloromethyl)-3-(trifluoromethyl)benzene (194 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O

(1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After cooled to room temperature, **1p** (53.0 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 μ L, 0.2 mmol, 1 equiv.) was added.

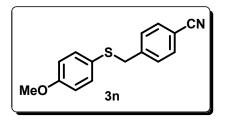

The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 50:1) to afford the desired product (3-(trifluoromethyl)benzyl)(3,4,5-trimethoxyphenyl)sulfane (**3j**): (52.2 mg, 73%), white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.47-7.49 (m, 1 H), 7.43 (s, 1 H), 7.38-7.40 (m, 2 H), 6.48 (s, 2 H), 4.05 (s, 2 H), 3.80 (s, 3 H), 3.73 (s, 6 H); ¹⁹F NMR (CDCl₃, 376 MHz): δ -62.6 (s, 3 F); ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 139.1, 137.8, 132.31, 132.30, 130.8, 130.5, 129.2, 129.0, 125.7 (q, *J*_{C-F} = 3.8 Hz), 129.9 (q, *J*_{C-F} = 3.8 Hz), 109.4, 60.9, 56.0, 40.2; IR (neat): v = 2985, 2941, 2905, 2254, 1736, 1580, 1498, 1374, 1237, 1125, 1045, 917, 731; HRMS (FAB): Calcd for C₁₇H₁₇F₃O₃S: 358.0850, Found 358.0847.

A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), 1-(chloromethyl)-4-fluorobenzene (144 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O (1 mL) in a Schlenk tube was


heated at 80 °C for 2 h. After cooled to room temperature, 1p (53.0 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 μ L, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl afford acetate 50:1) to the desired product (4-fluorobenzyl)(3,4,5trimethoxyphenyl)sulfane (3k): (32.6 mg, 53%), white solid. ¹H NMR (400 MHz, CDCl₃) *δ*: 7.18-7.21 (m, 2 H), 6.94-6.98 (m, 2 H), 6.49 (s, 2 H), 4.01 (s, 2 H), 3.81 (s, 3 H), 3.76 (s, 6 H); ¹⁹F NMR (CDCl₃, 376 MHz): δ -115.3 (s, 1 F); ¹³C NMR (100 27

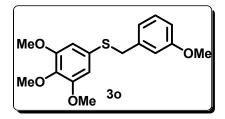
MHz, CDCl₃) δ 162.0 (d, J_{C-F} = 244 Hz), 153.2, 137.4, 133.6 (d, J_{C-F} = 3.2 Hz), 130.4 (d, J_{C-F} = 8.0 Hz), 130.0, 115.3 (d, J_{C-F} = 21.3 Hz), 108.7, 60.9, 56.1, 39.7; IR (neat): v = 2985, 2903, 1738, 1580, 1499, 1405, 1331, 1244, 1168, 1128, 1048, 912, 734; HRMS (FAB): Calcd for C₁₆H₁₇FO₃S: 308.0882, Found 308.0880.

A mixture of $CuSO_4$ ·5H₂O (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), 1-bromo-4-(chloromethyl)benzene (205 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3$ ·5H₂O (248 mg, 1 mmol, 5 equiv.) in H₂O (1 mL) in a Schlenk

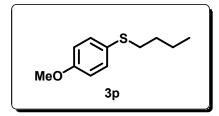

tube was heated at 80 °C for 2 h. After cooled to room temperature, **1a** (35.0 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 µL, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 200:1) to afford the desired product (4-bromobenzyl)(phenyl)sulfane (**3l**): (27.3 mg, 49%), white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.31 (d, *J* = 8.4 Hz, 2 H), 7.16-7.22 (m, 4 H), 7.11-7.13 (m, 1 H), 7.06 (d, *J* = 8.4 Hz, 2 H), 3.96 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 136.7, 135.6, 131.6, 130.5, 130.3, 128.9, 126.7, 121.0, 38.6; IR (neat): *v* = 3063, 2921, 1587, 1483, 827, 731, 687; MS: 279.

A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), 4-(chloromethyl)benzonitrile (151 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O (1 mL) in a

Schlenk tube was heated at 80 °C for 2 h. After cooled to room temperature, **1b** (37.8 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room

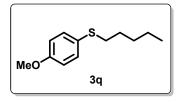

temperature, then BF₃·Et₂O (25 μ L, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum desired ether/ethyl acetate 100:1) to afford the product 4-(ptolylthiomethyl)benzonitrile (**3m**): (38.2 mg, 80%) white solid. ¹H NMR (400 MHz, $CDCl_3$) δ : 7.53 (d, J = 8.4 Hz, 2 H), 7.29 (d, J = 8.0 Hz, 2 H), 7.16 (d, J = 8.0 Hz, 2 H), 7.06 (d, J = 8.0 Hz, 2 H), 4.04 (s, 2 H), 2.31 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 137.6, 132.2, 131.7, 130.8 129.8, 129.5, 118.8, 110.8, 39.9, 21.1; IR (neat): v = 2970, 2937, 2227, 1724, 1602, 1488, 1175, 1017, 846, 811, 682; MS m/z: 239.

A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), 4-(chloromethyl)benzonitrile (151 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O (1 mL) in a

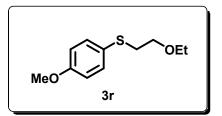

Schlenk tube was heated at 80 °C for 2 h. After cooled to room temperature, 1d (41.0 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 µL, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum afford ether/ethyl acetate 100:1) to the desired product 4-((4methoxyphenylthio)methyl)benzonitrile (**3n**): (33.7 mg, 66%), white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.52 (d, J = 8.4 Hz, 2 H), 6.18-6.20 (m, 4 H), 6.78 (d, J = 8.8Hz, 2 H), 3.95 (s, 2 H), 3.78 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 144.0, 134.9, 132.1, 129.6, 124.4, 118.9, 114.6, 110.7, 55.3, 41.2; IR (neat): v = 2958, 2921, 2225, 1735, 1605, 1503, 1413, 1249, 1177, 1076, 834, 734; HRMS (FAB): Calcd for 29

C₁₅H₁₃NOS: 255.0718, Found 255.0716.

A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), 1-(chloromethyl)-3methoxybenzene (156 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O


(1 mL) in a Schlenk tube was heated at 80 °C for 2 h. After cooled to room temperature, 1p (53.0 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 µL, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 40:1) to afford the desired product (3methoxybenzyl)(3,4,5-trimethoxyphenyl)sulfane (30): (48.0 mg, 75%), white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.20 (t, J = 8.4 Hz, 2 H), 6.77-6.86 (m, 2 H), 6.52 (s, 2 H), 4.03 (s, 2 H), 3.81 (s, 3 H), 3.76 (m, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ: 159.7, 153.1, 139.4, 137.2, 130.5, 129.5, 121.3, 114.3, 112.9, 108.4, 60.9, 56.1, 55.2, 40.3; IR (neat): v = 2970, 2939, 2252, 1769, 1581, 1496, 1231, 1128, 1047, 908, 730;HRMS (FAB): Calcd for C₁₇H₂₀O₄S: 320.1082, Found 320.1083.

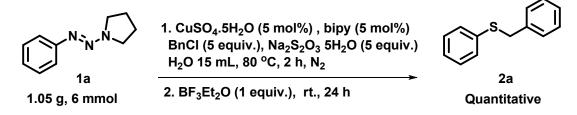
A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), 1-bromobutane (137 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O (1 mL) in a Schlenk tube


was heated at 80 °C for 2 h. After cooled to room temperature, **1d** (41.0 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then $BF_3 \cdot Et_2O$ (25 µL, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room

temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 100:1) to afford the desired product butyl(4-methoxyphenyl)sulfane (**3p**): (23.9 mg, 61%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.26 (d, *J* = 8.0 Hz, 2 H), δ :6.77 (d, *J* = 8.0 Hz, 2 H), 3.72 (s, 3 H), 2.74 (t, *J* = 8.0 Hz, 2 H), 1.46-1.53 (m, 2 H), 1.30-1.39 (m, 2 H), 0.82 (t, *J* = 8.0 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ : 158.7, 132.9, 127.0, 114.5, 55.3, 35.5, 31.5, 21.8, 13.6; IR (neat): *v* = 2957, 1593, 1493, 1286, 1245, 1034, 826, 730; MS m/z: 196.

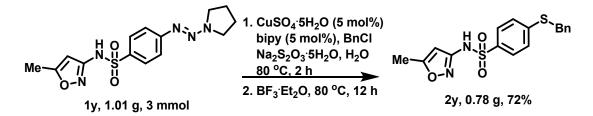
A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), 1-bromopentane (151 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O (1 mL) in a Schlenk tube was heated at 80 °C for 2 h.

After cooled to room temperature, **1d** (41.0 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 µL, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 100:1) to afford the desired product (4-methoxyphenyl)(pentyl)sulfane (**3q**): (20.2 mg, 45%), colorless oil, ¹H NMR (400 MHz, CDCl₃) δ : 7.26 (d, *J* = 8.0 Hz, 2 H), δ :6.76 (d, *J* = 8.0 Hz, 2 H), 3.72 (s, 3 H), 2.74 (t, *J* = 8.0 Hz, 2 H), 1.47-1.53 (m, 2 H), 1.18-1.32 (m, 4 H), 0.81 (t, *J* = 8.0 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ : 158.7, 132.9, 127.0, 114.5, 55.3, 35.8, 30.9, 29.0, 22.2, 13.9; IR (neat): v = 2927, 1593, 1493, 1462, 1284, 1243, 1033, 822; MS m/z: 210.



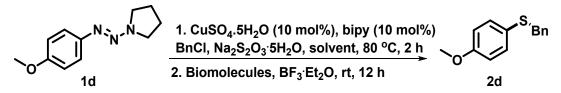
A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), L2 (3.1 mg, 10 mol%), 1-bromo-2-ethoxyethane (153 mg, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H_2O (1 mL) in a Schlenk tube

was heated at 80 °C for 2 h. After cooled to room temperature, **1d** (41.0 mg, 0.2 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃·Et₂O (25 µL, 0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature for 12 h. After the reaction was complete, EtOAc (5 mL) was added at room temperature, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 20:1) to afford the desired product (2-ethoxyethyl)(4-methoxyphenyl)sulfane (**3r**): (28.8 mg, 68%), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.29-7.31 (m, 2 H), 6.75-6.78 (m, 2 H), 3.72 (s, 3 H), 3.48 (t, *J* = 8.0 Hz, 2 H), 3.41 (q, *J* = 8.0 Hz, 2 H), 2.92 (t, *J* = 8.0 Hz, 2 H), 1.12 (t, *J* = 8.0 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ : 159.0, 133.4, 126.0, 114.6, 69.3, 66.3, 55.3, 35.2, 15.1; IR (neat): *v* = 2856, 1592, 1492, 1284, 1243, 1173, 1102, 1030, 825; MS m/z; 212.

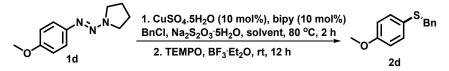

V. Gram scale Experiments

a) Gram scale for synthesis of benzyl(phenyl)sulfane

A mixture of CuSO₄.5H₂O (74 mg, 5 mol%), bipy (47 mg, 5 mol%), BnCl (30 mmol, 5 equiv.) and Na₂S₂O₃.5H₂O (7.44 g, 30 mmol, 5 equiv.) in H₂O (15 mL) was heated at 80 °C for 2 h under an atmosphere of N₂. After cooled to room temperature, **1a** (1.05 g, 6 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃.Et₂O (6 mmol, 1 equiv.) was added. The mixture was stirred at room temperature 24 h. After the reaction was complete, EtOAc (20 mL) was added, extracted the product with EtOAc (50 mL x 3). The combined organic extracts were washed with brine and dried over Na₂SO₄. After removal of the solvents under reduced pressure, the residue was purified by flash column chromatography (petroleum ether/ethyl acetate 20:1) afforded substrate **2a** as a colorless oil (quantitative yield).

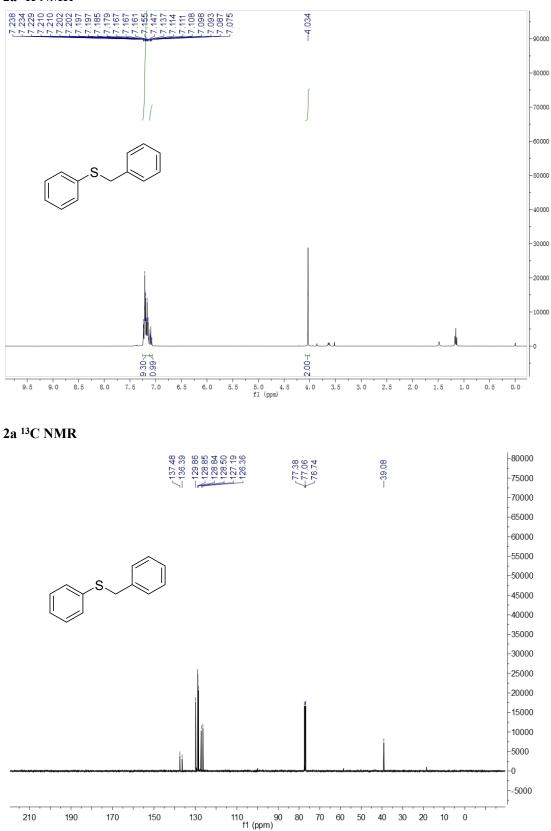

b) Gram scale for synthesis of 4-(benzylthio)-N-(5-methylisoxazol-3-yl) benzenesulfonamide

A mixture of $CuSO_4.5H_2O$ (37 mg, 5 mol%), bipy (23 mg, 5 mol%), BnCl (15 mmol, 5 equiv.) and $Na_2S_2O_3.5H_2O$ (3.70 g, 15 mmol, 5 equiv.) in H_2O (6 mL) was heated at 80 °C for 2 h. After cooled to room temperature, **1y** (1.01 g, 3 mmol, 1 equiv.) was added to the solution, stirred for 15 min at room temperature, then BF₃.Et₂O (3 mmol,


1 equiv.) was added. The mixture was stirred at room temperature, and stirred at 80 °C for 12 h. After the reaction was complete, EtOAc (20 mL) was added, extracted the product with EtOAc (30 mL x 3). The combined organic extracts were washed with brine and dried over Na₂SO₄. After removal of the solvents under reduced pressure, the residue was purified by flash column chromatography (petroleum ether/ethyl acetate 1:1-1:2) afforded substrate **2y** as a white solid (0.78 g, 72%).

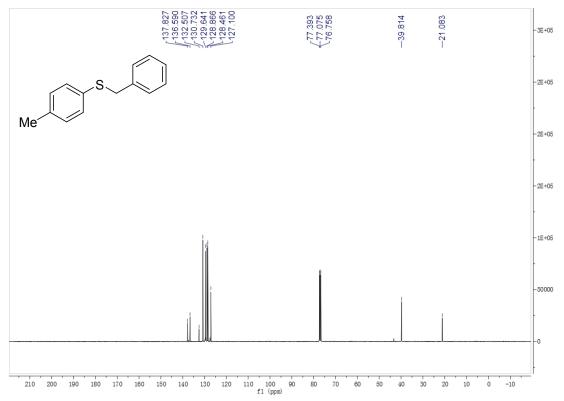
VI. Sulfuration in neutral aqueous conditions and in the presence of biomolecules

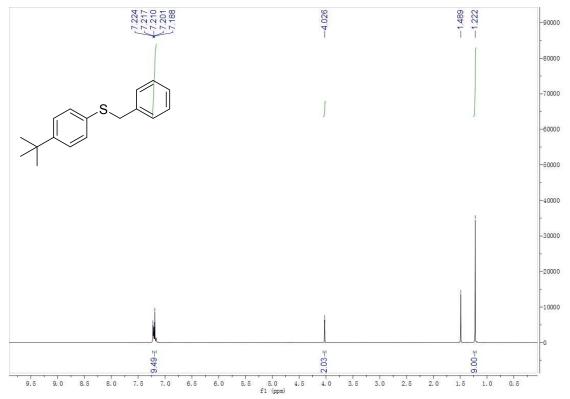
A mixture of CuSO₄·5H₂O (5.0 mg, 10 mol%), bipy (3.1 mg, 10 mol%), BnCl (0.126 g, 1 mmol, 5 equiv.) and Na₂S₂O₃·5H₂O (248 mg, 1 mmol, 5 equiv.) in H₂O (1 mL) or pH 7.4 10X PBS (1 mL) was heated at 80 °C for 2 h. After cooled to room temperature, **1d** (0.2 mmol, 1 equiv.) and bimolecules (0.2 mmol, 1 equiv.) were added to the mixture, stirred for 15 min at room temperature, then BF₃·Et₂O (0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature. When the reaction was complete, EtOAc (5 mL) was added, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 100:1) to afford the desired product **2 d**.

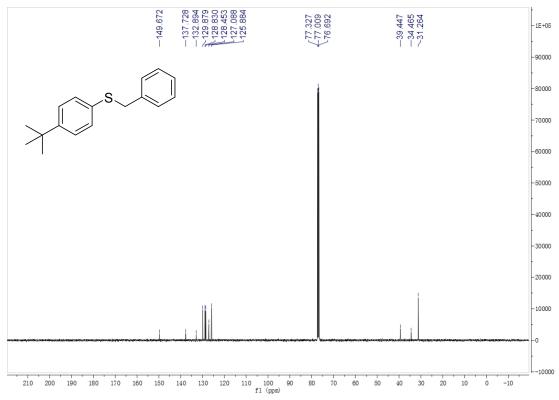

VII. Mechanism Study

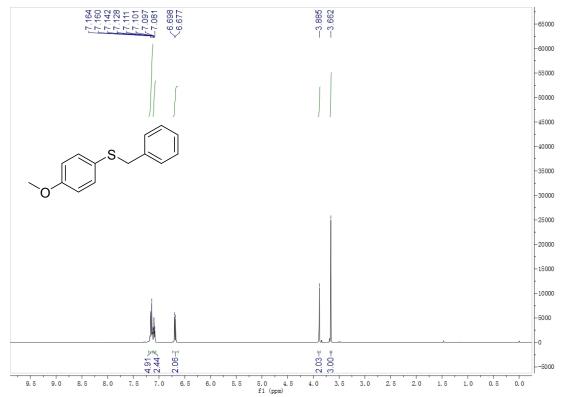
A mixture of $CuSO_4 \cdot 5H_2O$ (5.0 mg, 10 mol%), bipy (3.1 mg, 10 mol%), BnCl (0.126 g, 1 mmol, 5 equiv.) and $Na_2S_2O_3 \cdot 5H_2O$ (248 mg, 1 mmol, 5 equiv.) in H₂O (1 mL) was heated at 80 °C for 2 h. After cooled to room temperature, **1d** (0.2 mmol, 1 equiv.) and TEMPO (0.2 mmol, 2 equiv.) were added to the mixture, stirred for 15 min at room temperature, then BF₃·Et₂O (0.2 mmol, 1 equiv.) was added. The mixture was stirred at room temperature. When the reaction was complete, EtOAc (5 mL) was added, the combined mixture was dried over anhydrous MgSO₄, then filtrated through celite, washed with EtOAc (5 mL x 3), the mixture was evaporated under vacuum and purified by flash column chromatography (petroleum ether/ethyl acetate 100:1) to afford the desired product benzyl(4-methoxyphenyl)sulfane **2d** in 16% yield.

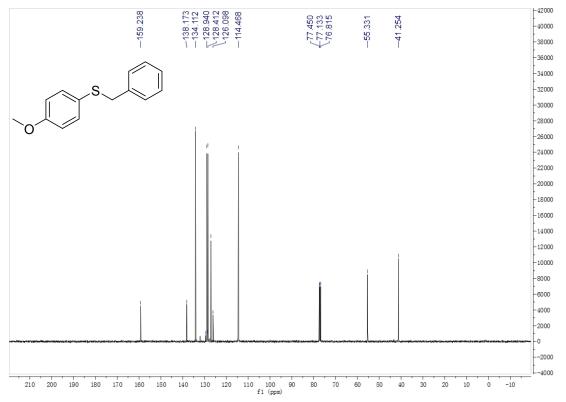
VIII. Copies of the ¹H NMR, ¹³C NMR, ¹⁹F NMR.

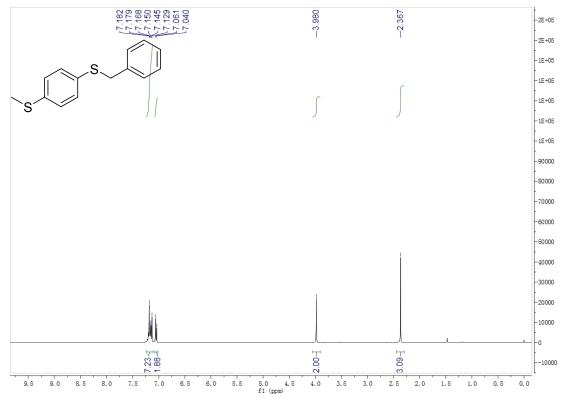


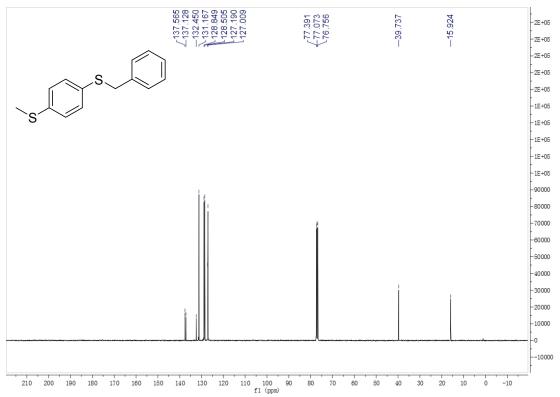

2b¹H NMR

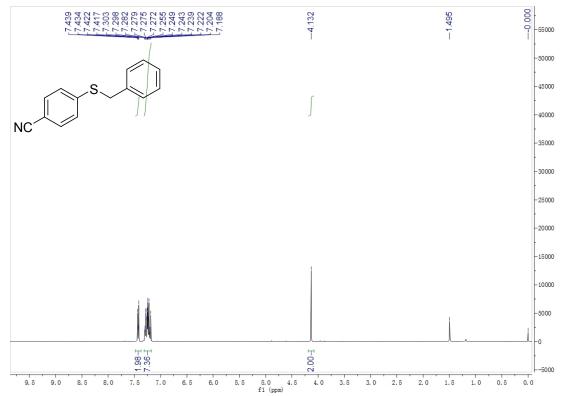

2b¹³C NMR

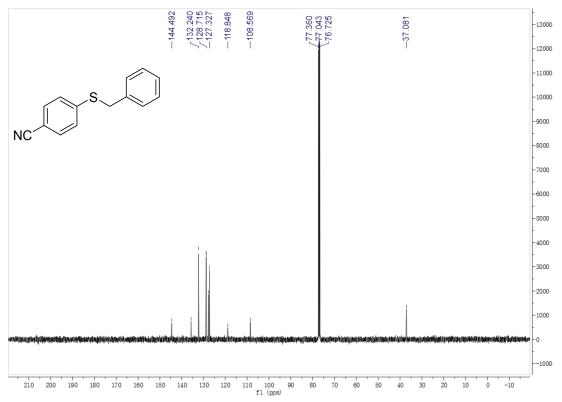

2c¹H NMR

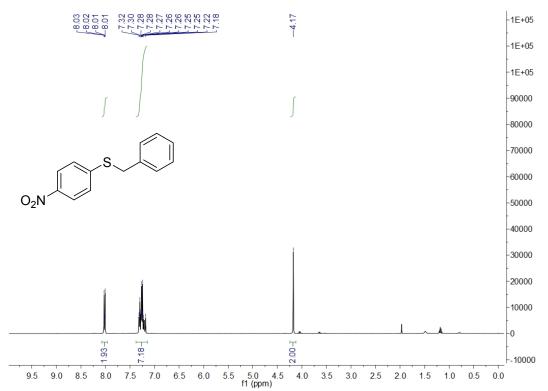


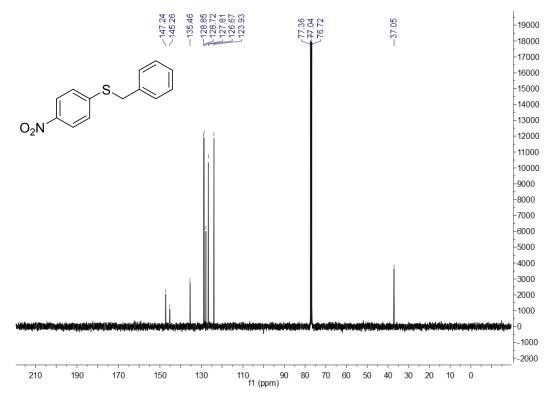

2d ¹H NMR

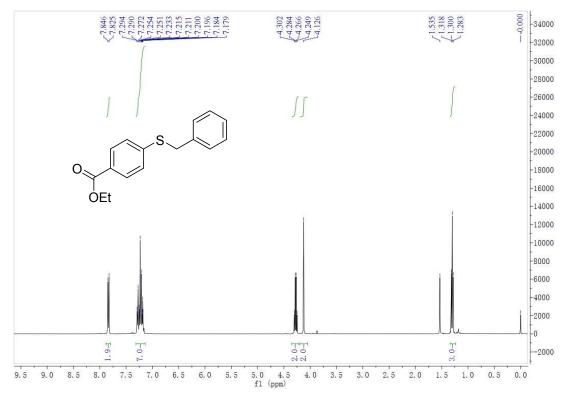

2d ¹³C NMR

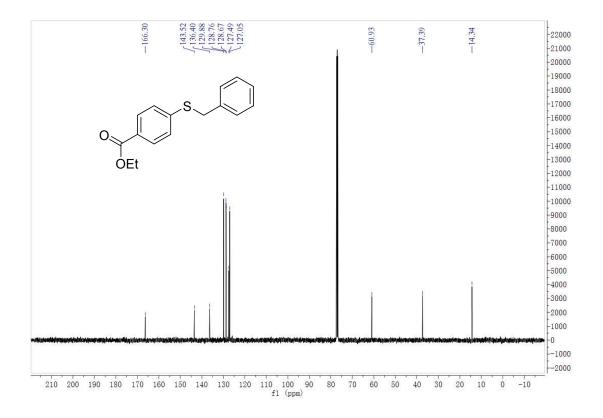

2e¹H NMR

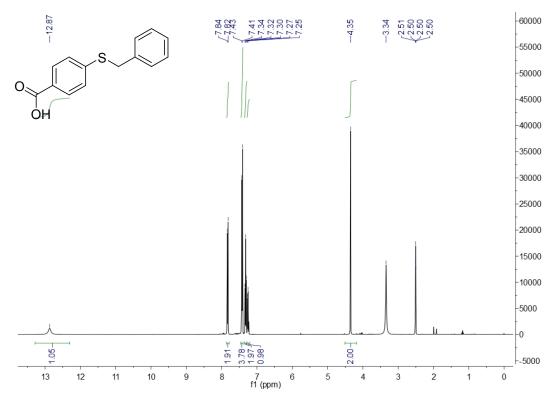


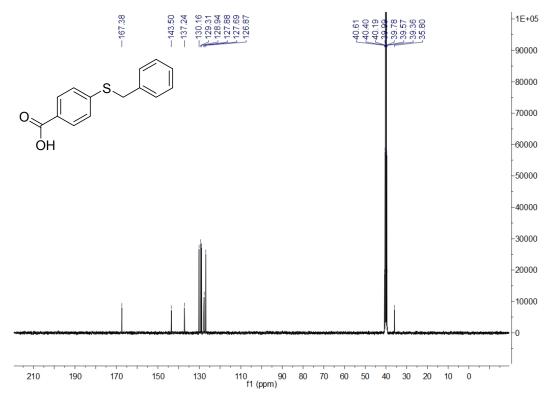

2f¹H NMR

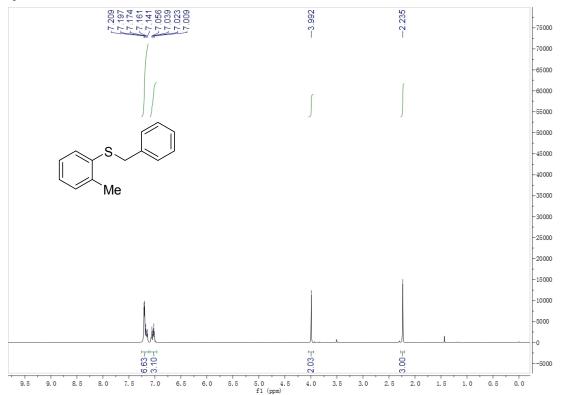

2f¹³C NMR

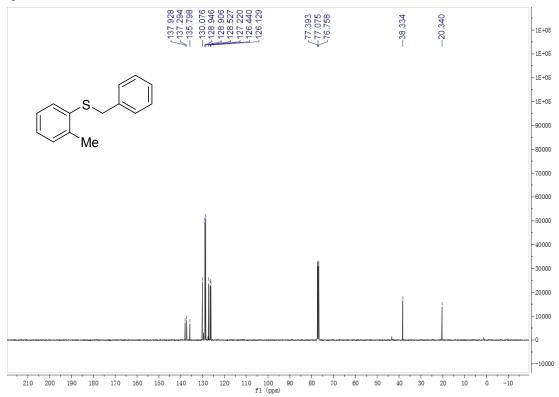

$2g^{1}H NMR$

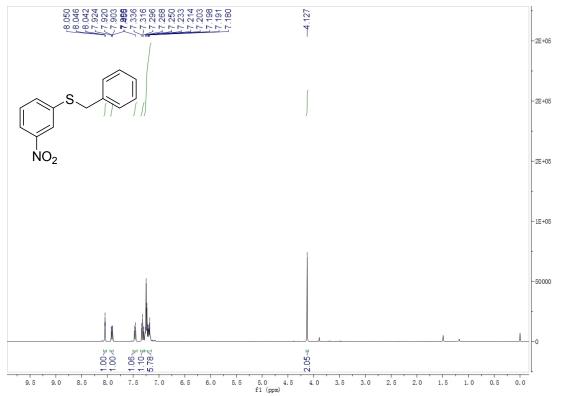


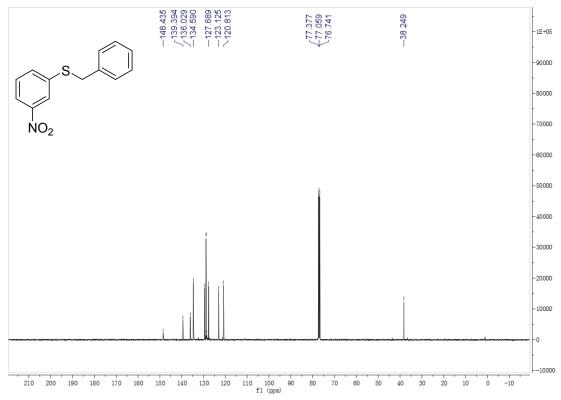

2h¹H NMR

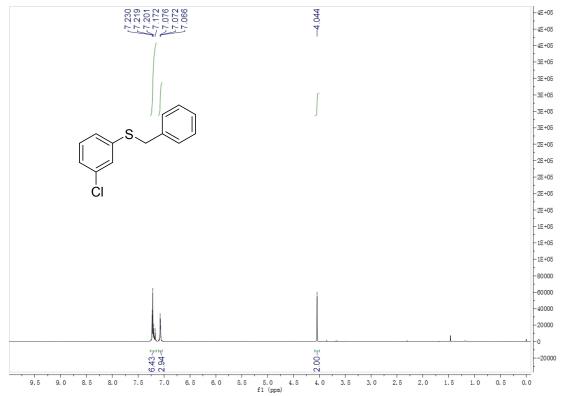


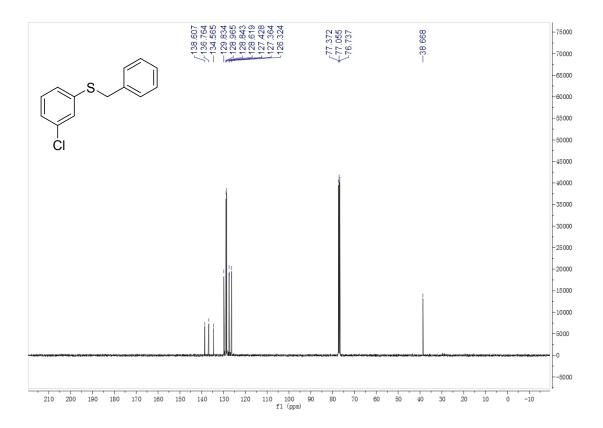

2i¹H NMR

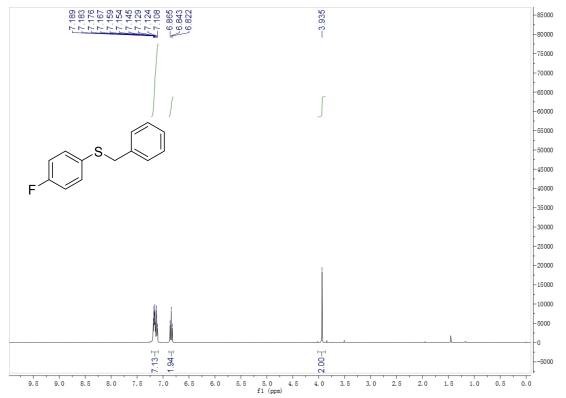


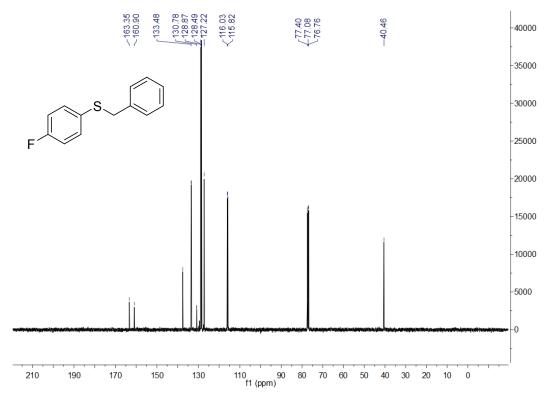

2j¹³H NMR

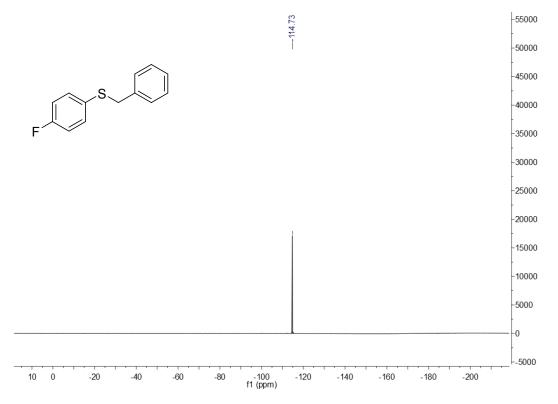

2j ¹³C NMR


2k¹H NMR

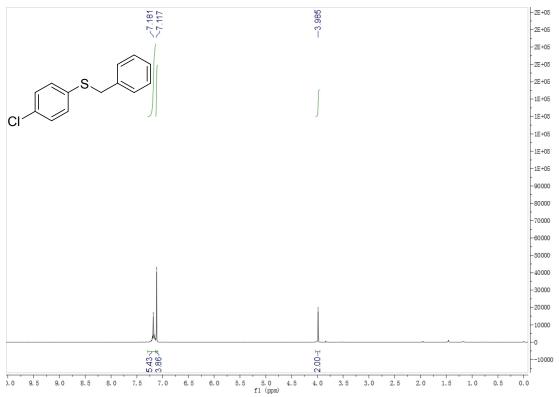


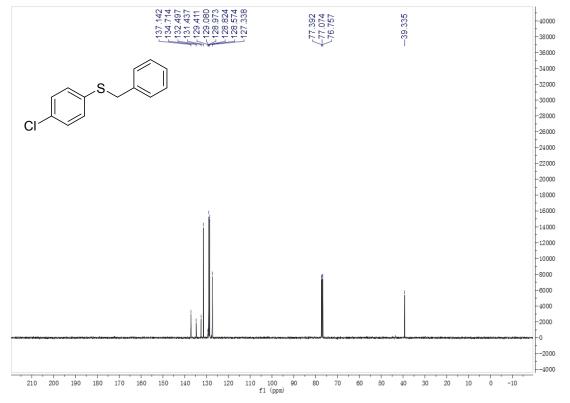

2l¹H NMR

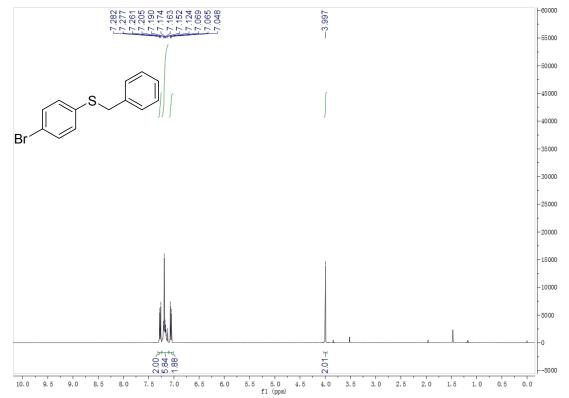

2l¹³C NMR

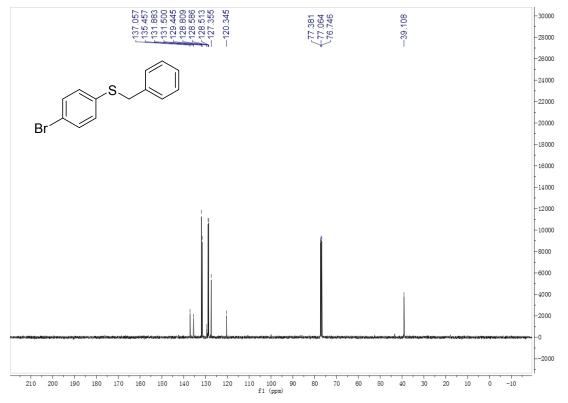


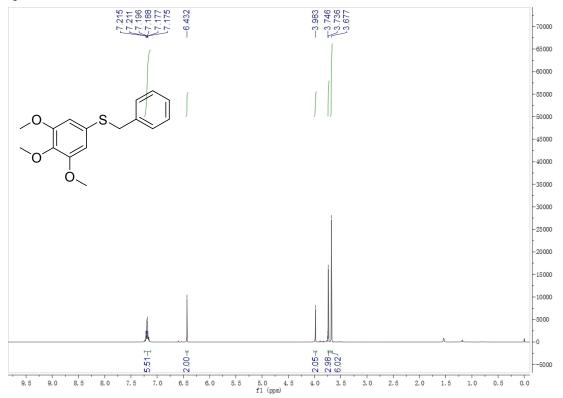
2m¹H NMR



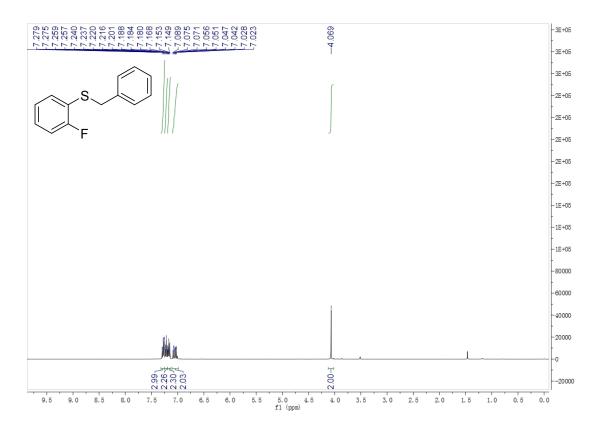


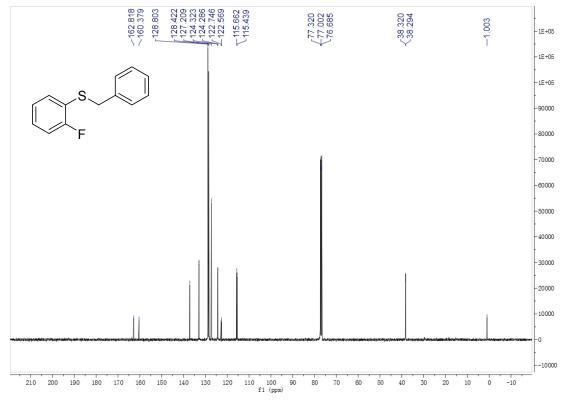


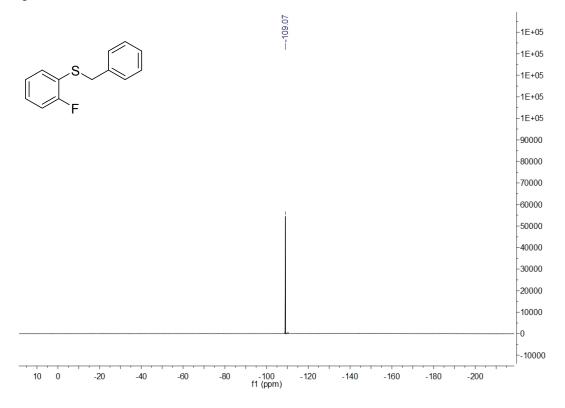

2n ¹³C NMR

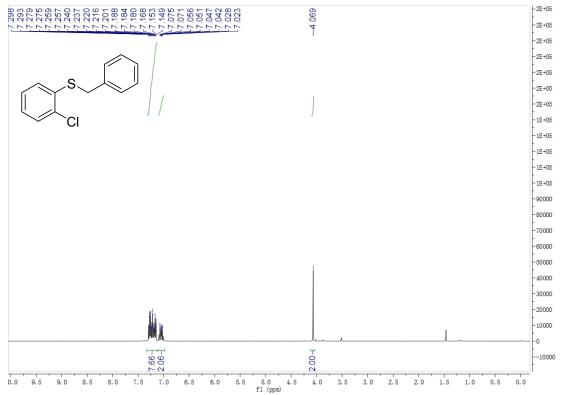

20¹H NMR

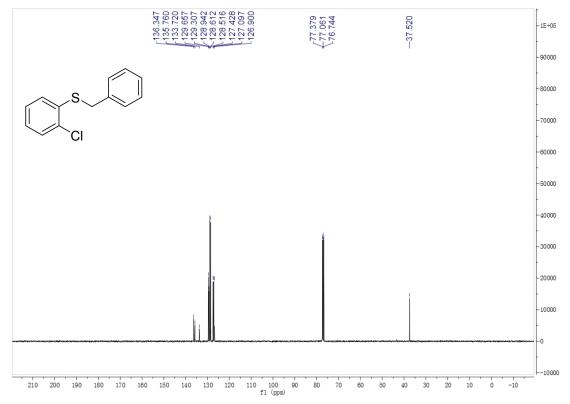
20 13C NMR

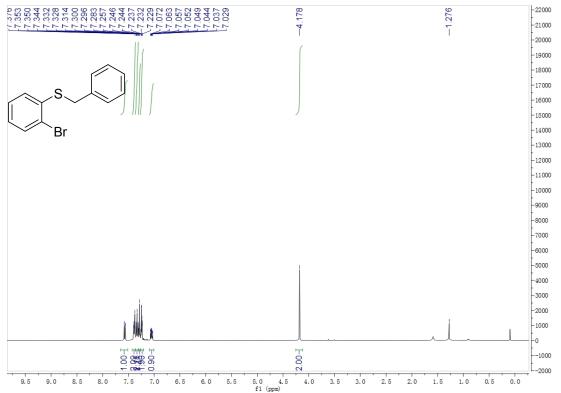


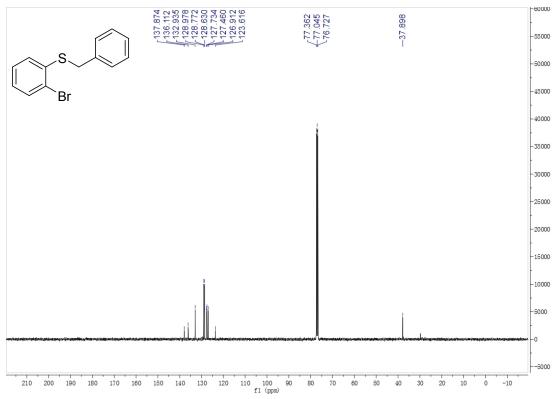


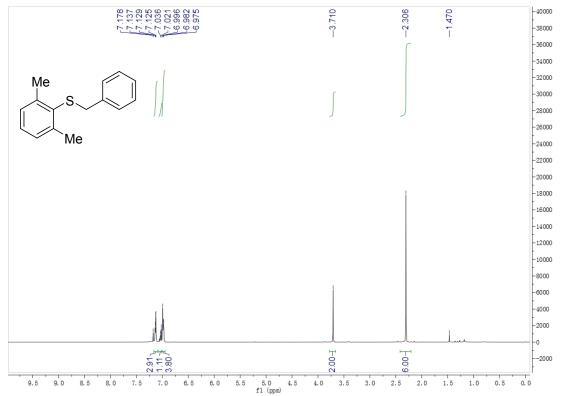

2q¹H NMR

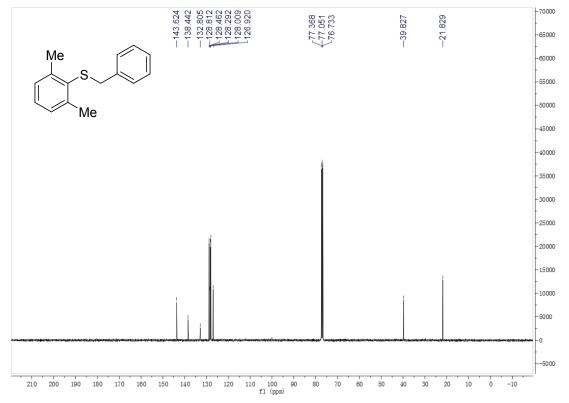


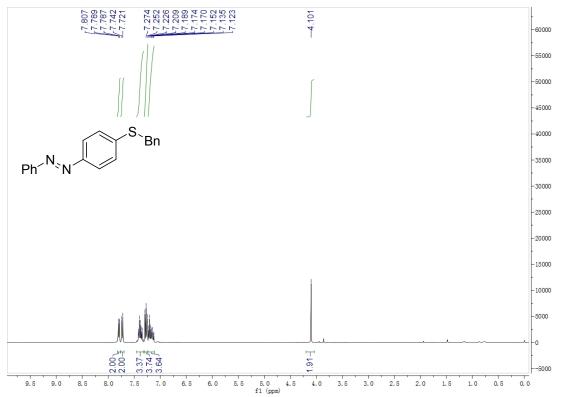

2q¹⁹F NMR

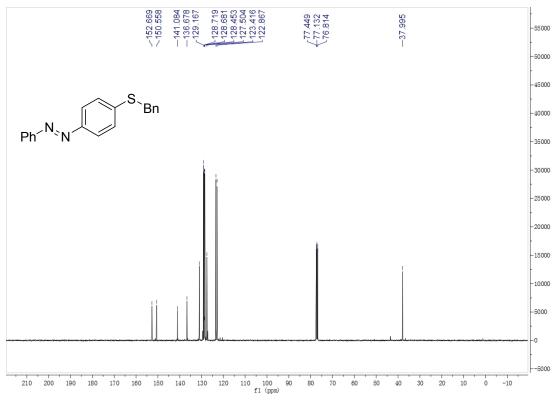

2r¹H NMR

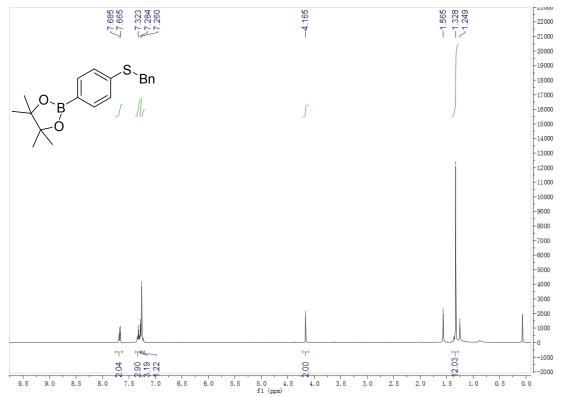

2r¹³C NMR

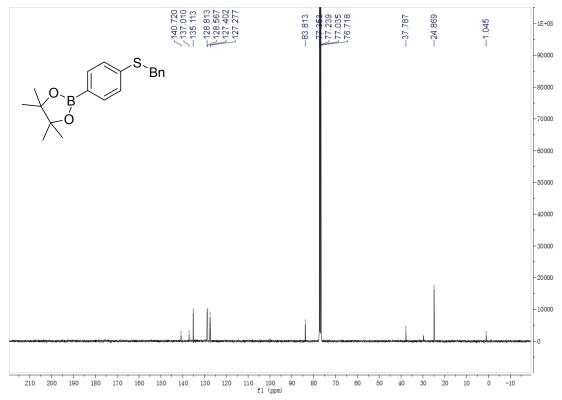


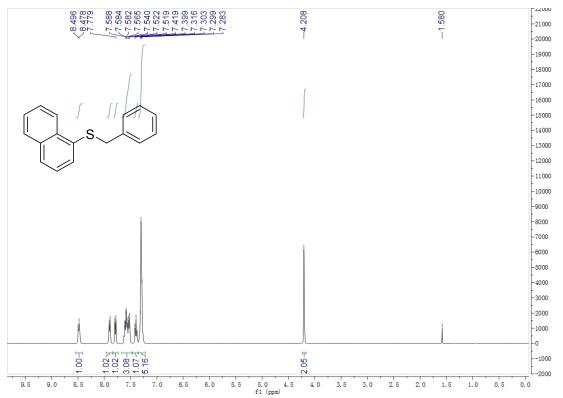


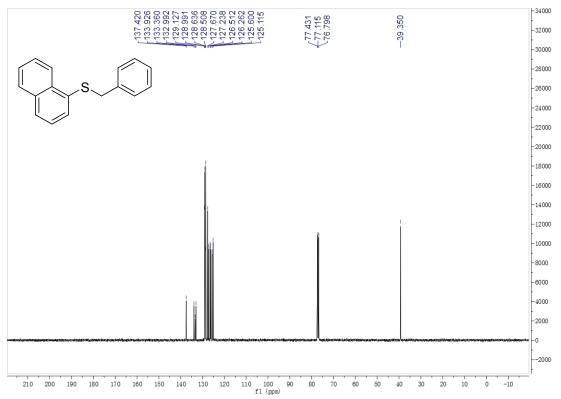

2t¹H NMR

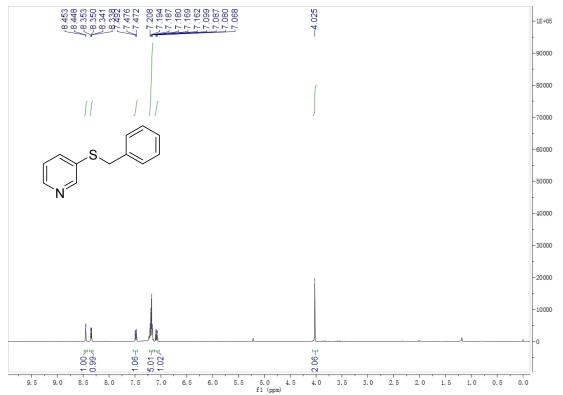

2t¹³C NMR

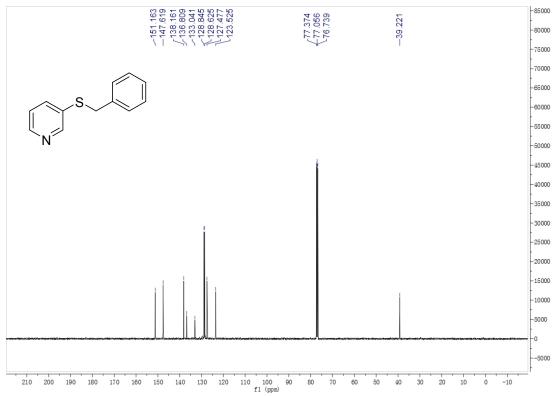

2u¹H NMR

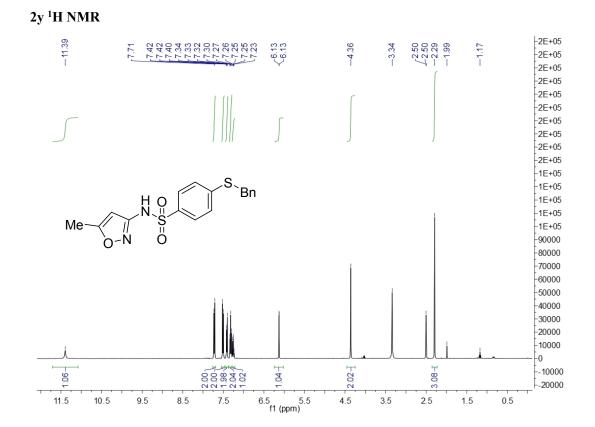



2v¹H NMR

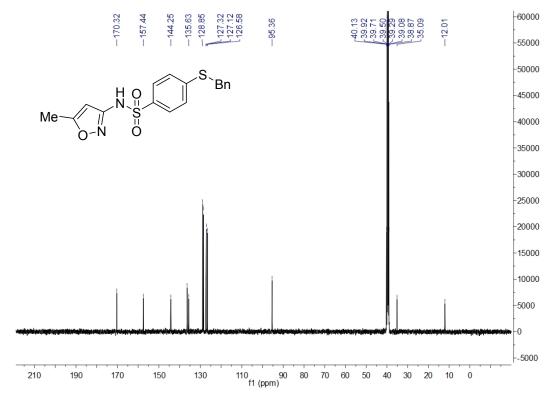


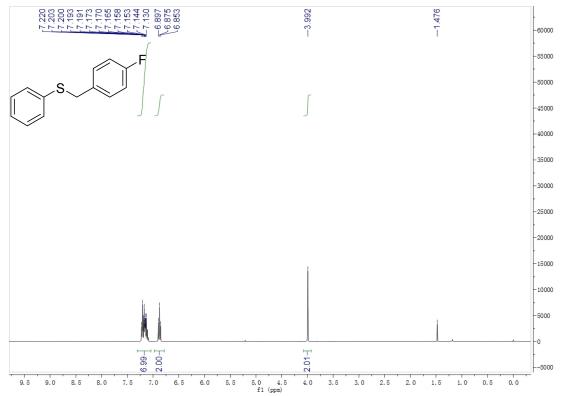

2w¹HNMR

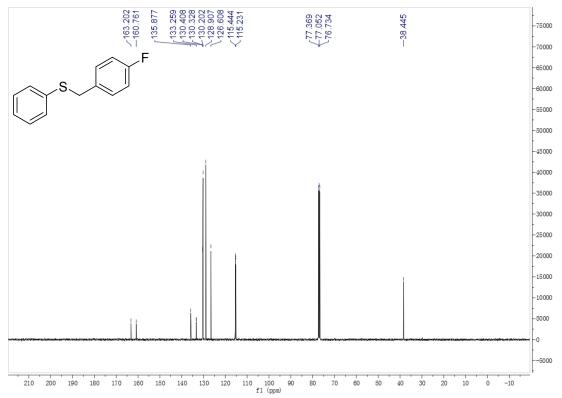

2w¹³C NMR

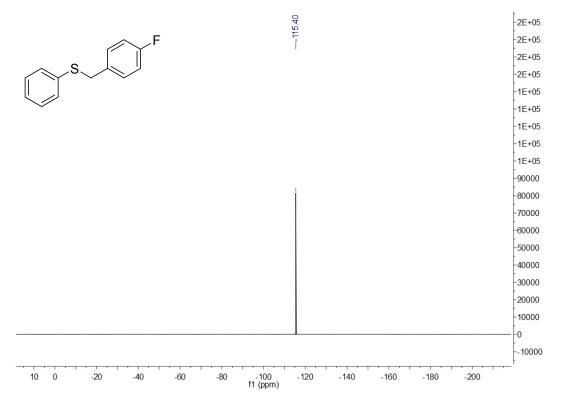


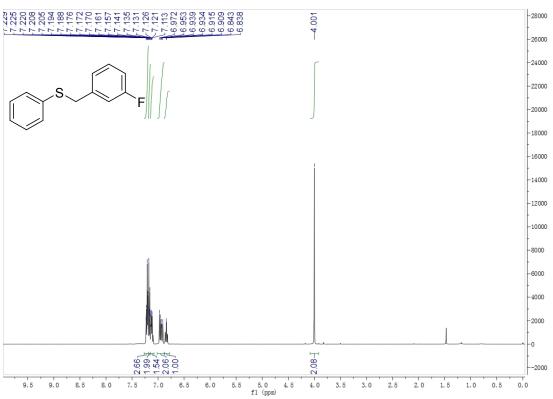
2x ¹H NMR

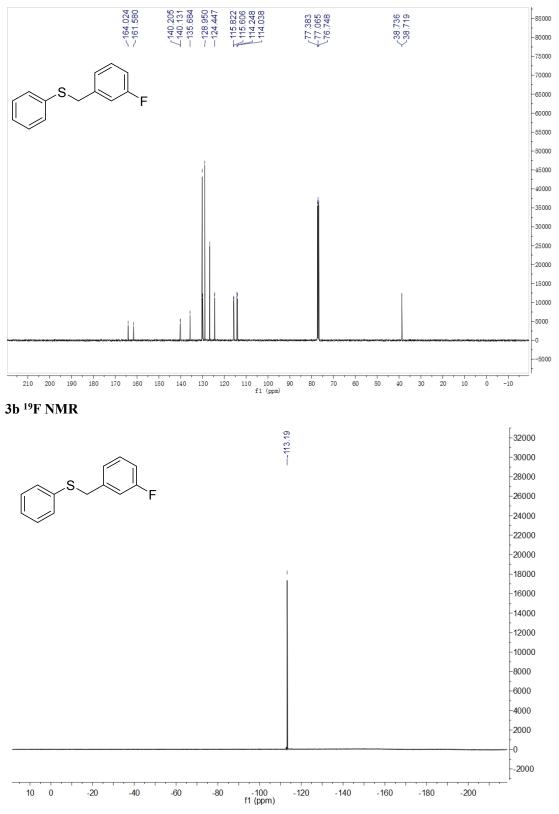


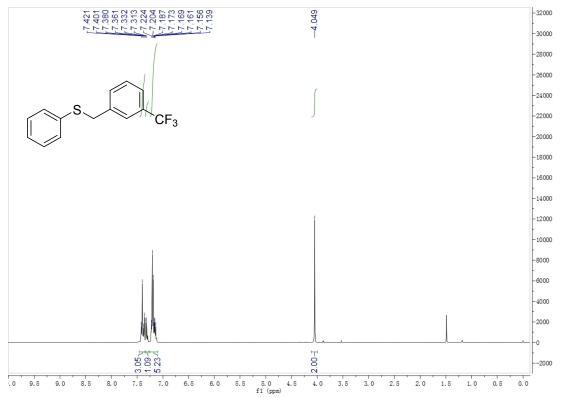


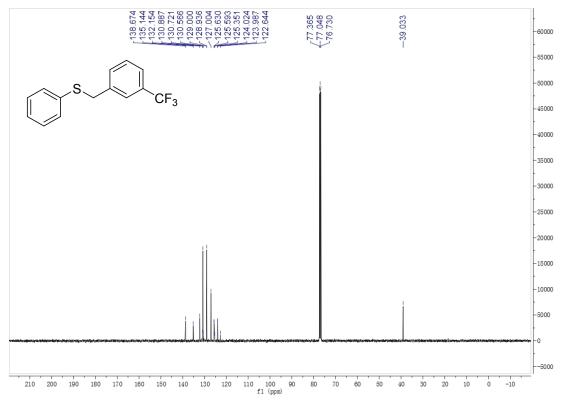


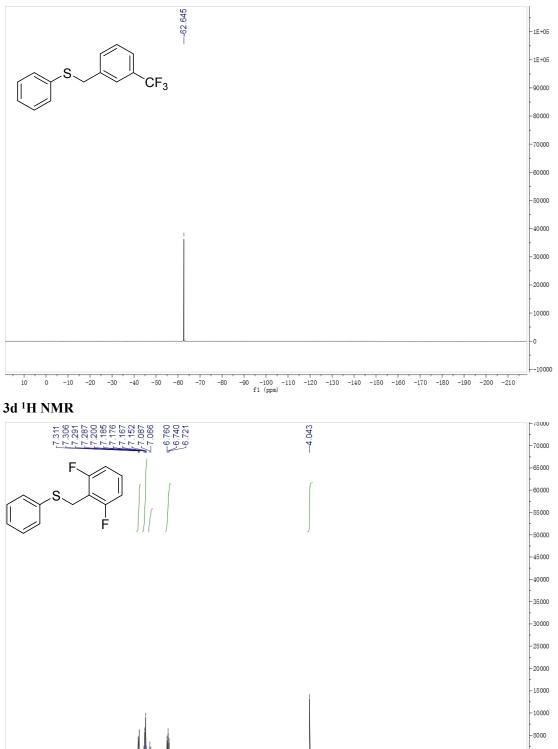









3b¹³C NMR


3c¹H NMR

3c¹³C NMR

F00-7-

3.5 3.0 2.5

5.0 4.5 f1 (ppm)

1.94 2.96 0.95 1.96 1.96

7.0

9.5 9.0 8.5 8.0 7.5

6.5

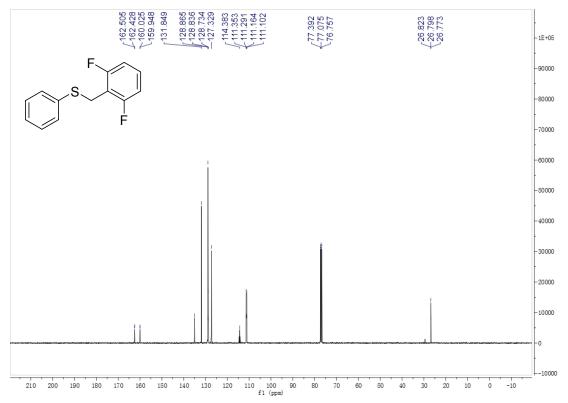
6.0 5.5

67

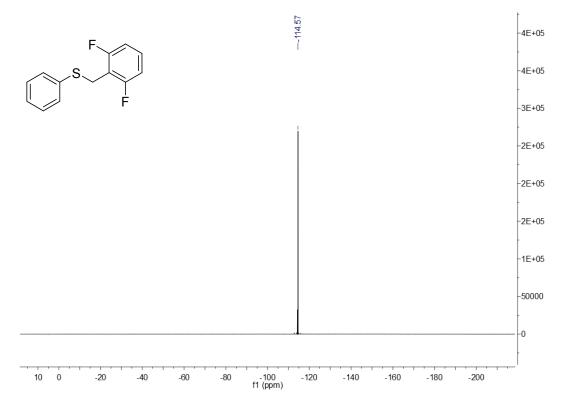
-0

0.0

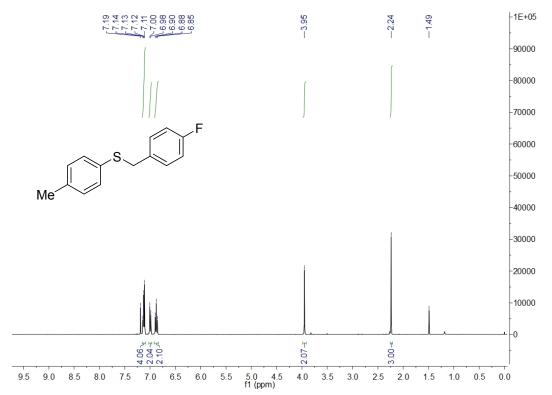
0.5

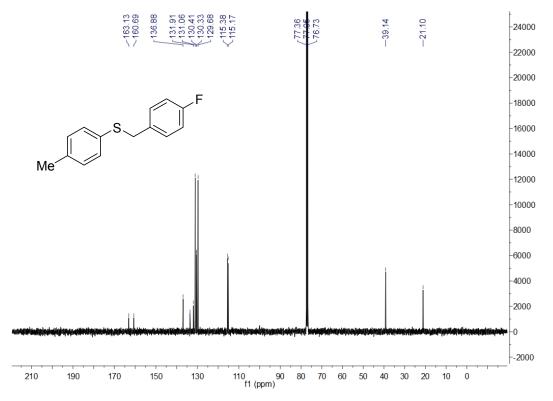

1.0

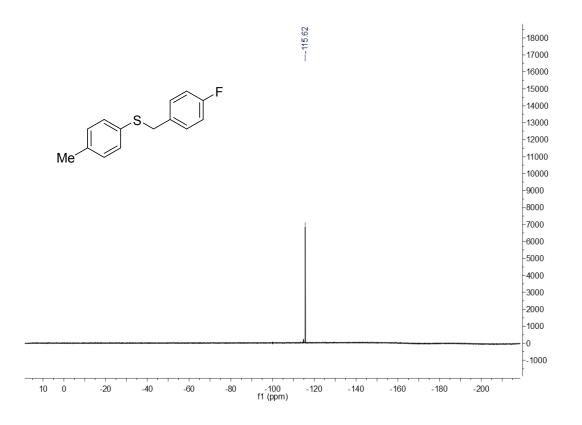
1. 5

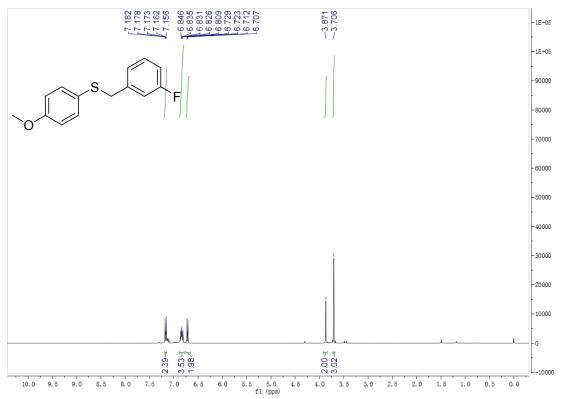

2.0

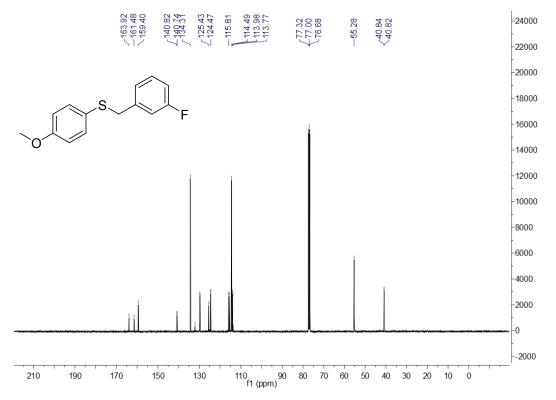
--5000


3d ¹³C NMR

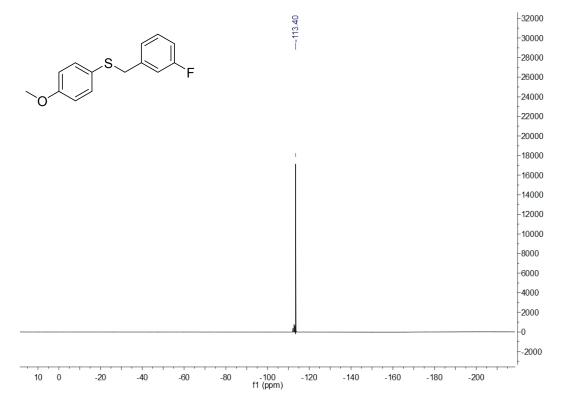

3d ¹⁹F NMR


3e¹H NMR

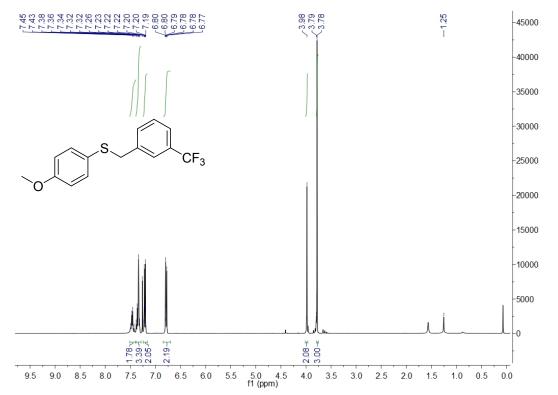

3e¹³C NMR

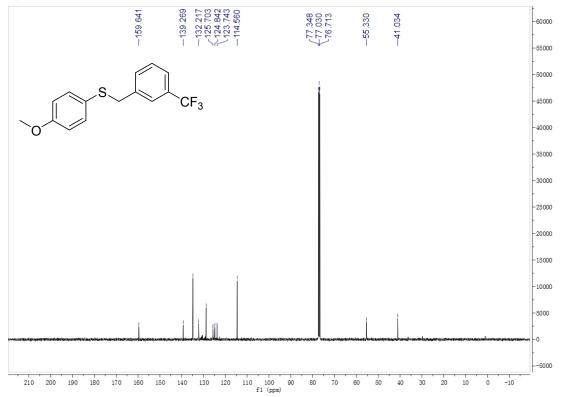


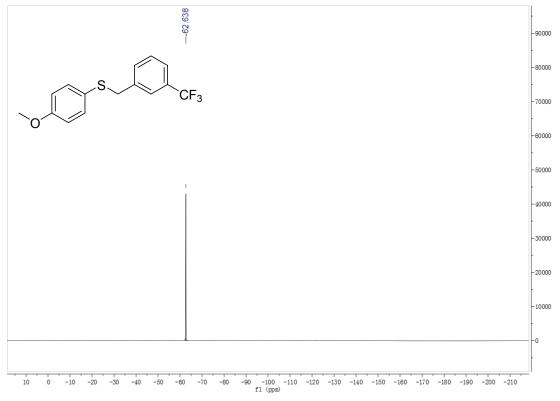
3e¹⁹F NMR

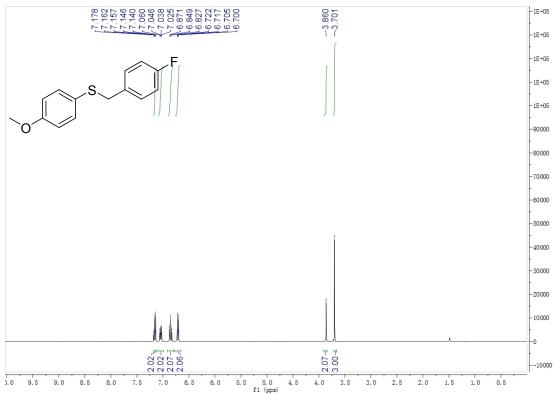


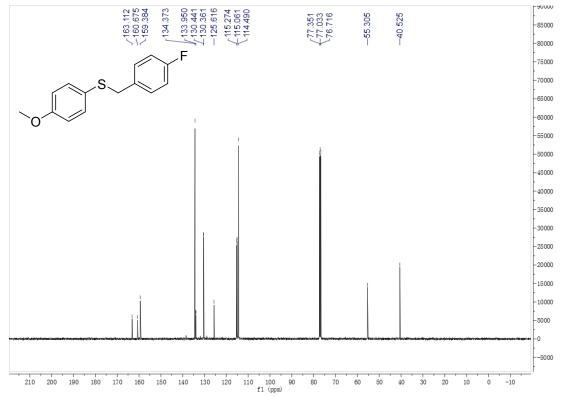
3f¹H NMR

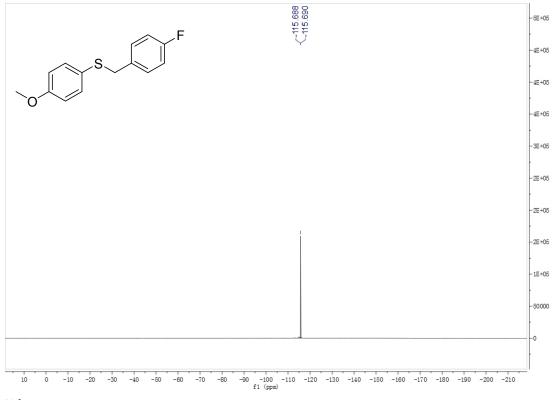


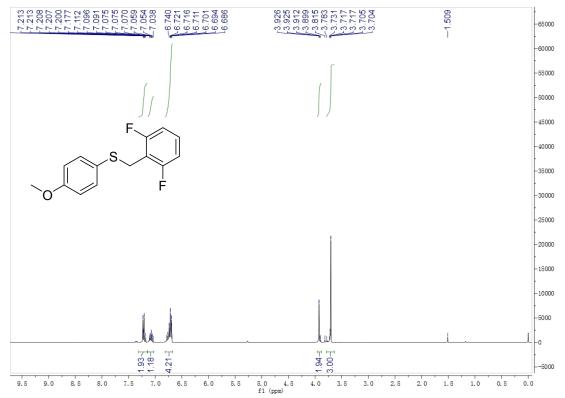

3f¹⁹F NMR

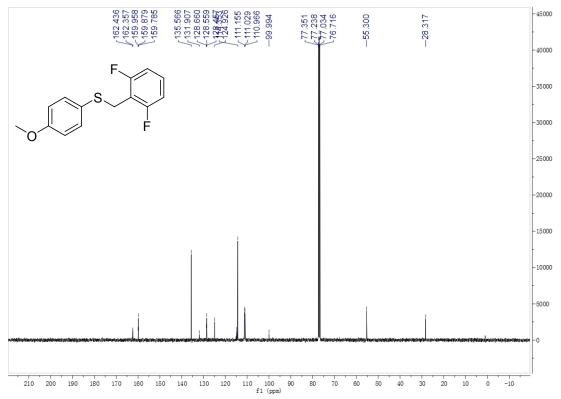

3g ¹H NMR

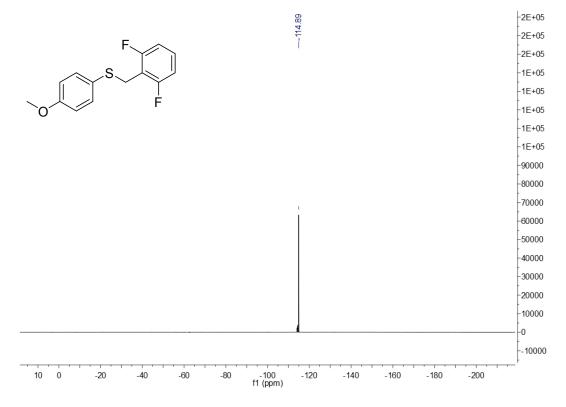

3g¹³C NMR

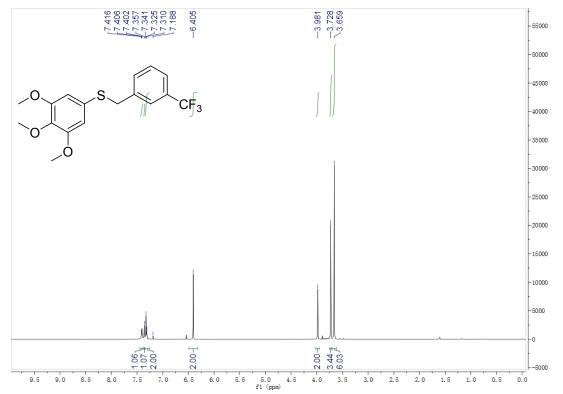


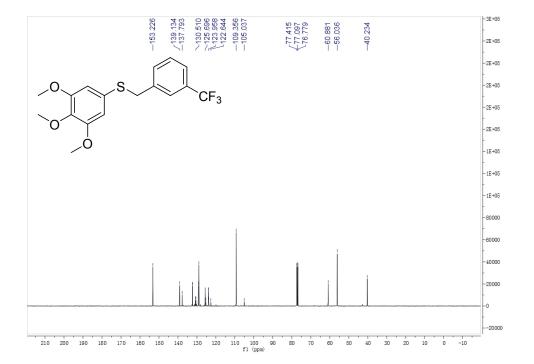

3h¹H NMR



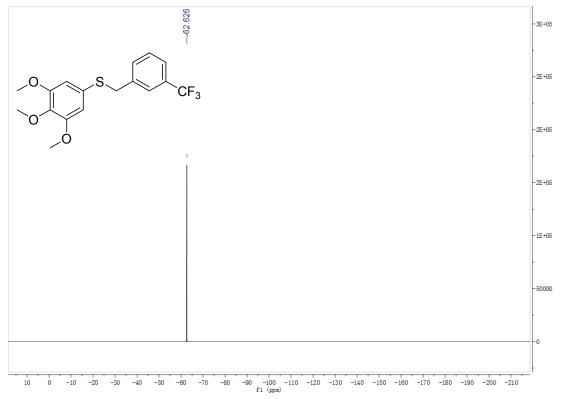



3i¹H NMR

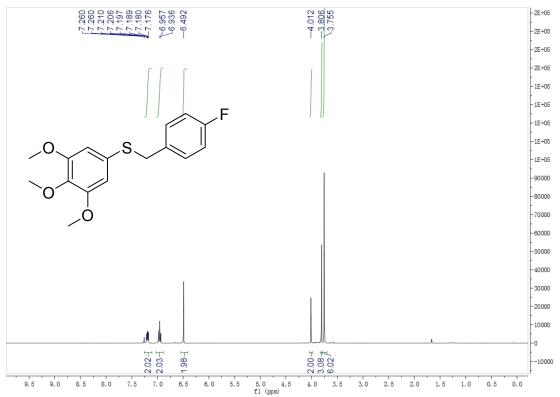

3i¹³C NMR



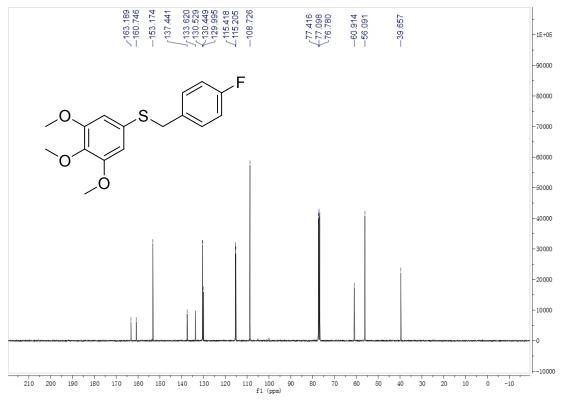
3j ¹H NMR

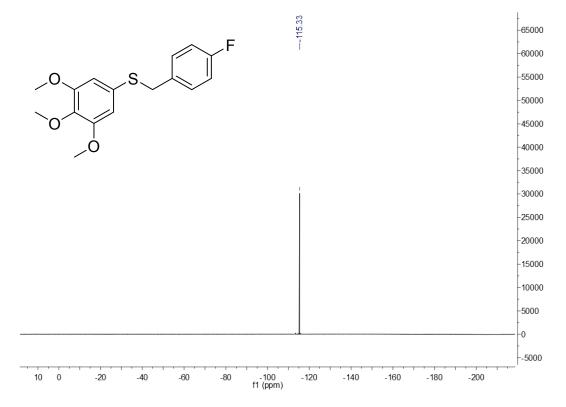


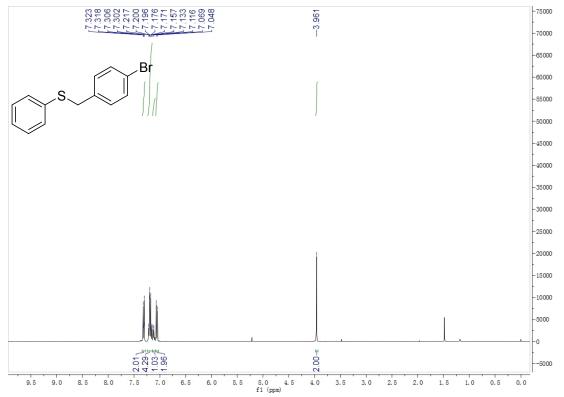
3j¹³C NMR

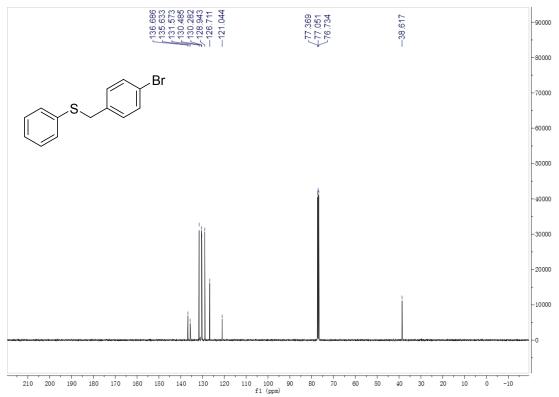


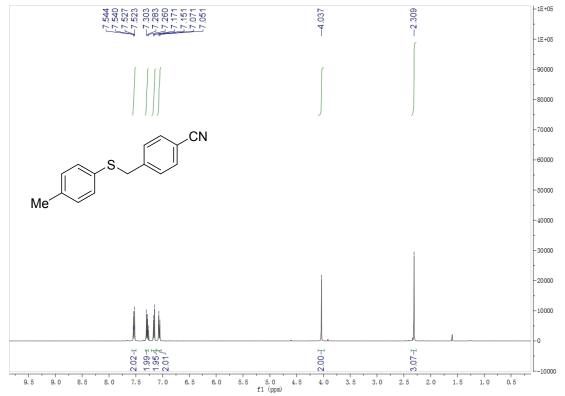
77

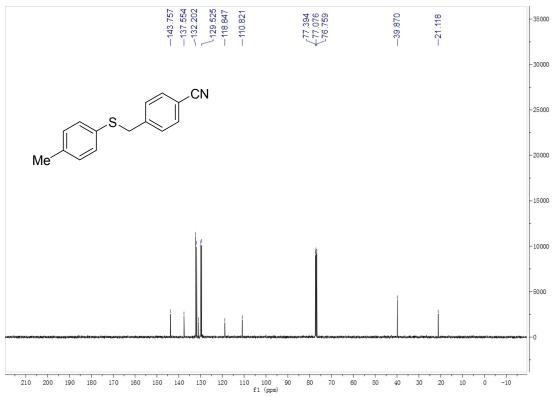


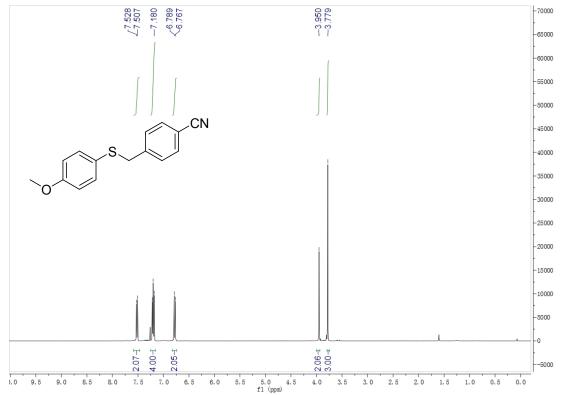

3k¹H NMR

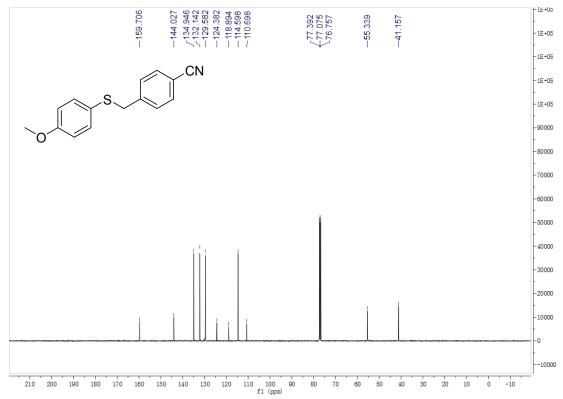

3k ¹³C NMR

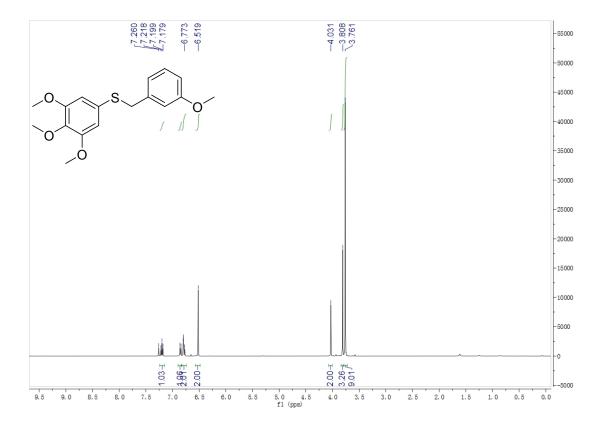

3k ¹⁹F NMR


3l¹H NMR

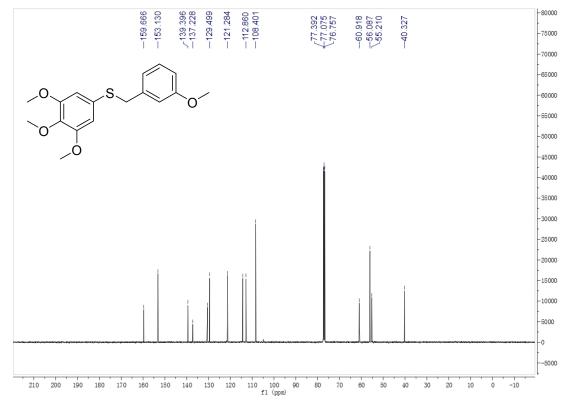

3l¹³C NMR


3m¹H NMR

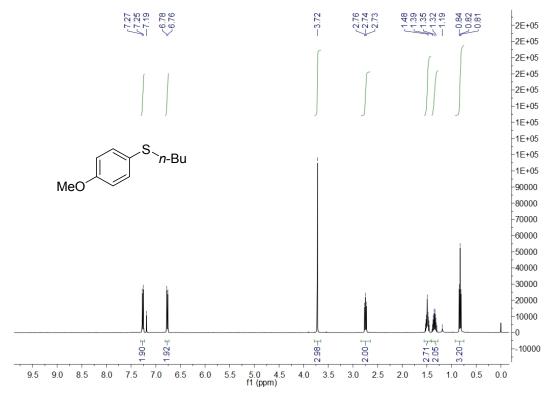

3m¹³C NMR



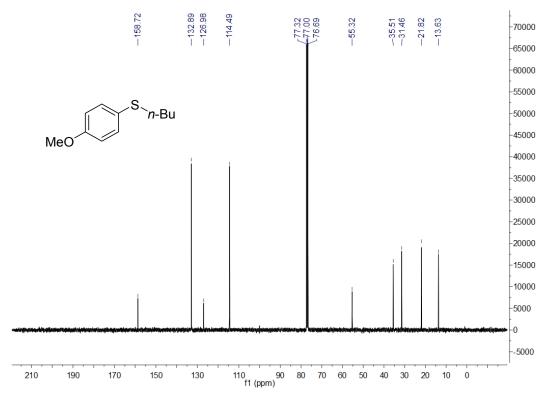
3n ¹H NMR



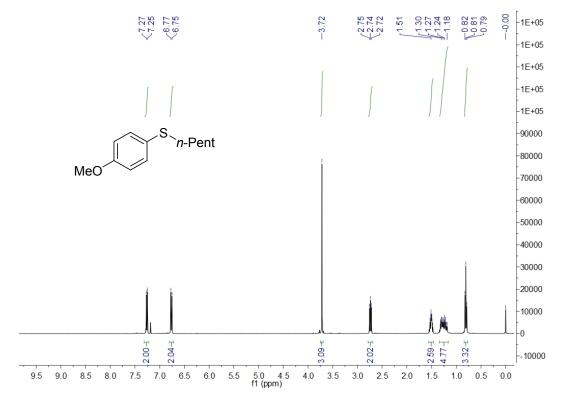
3n ¹³C NMR



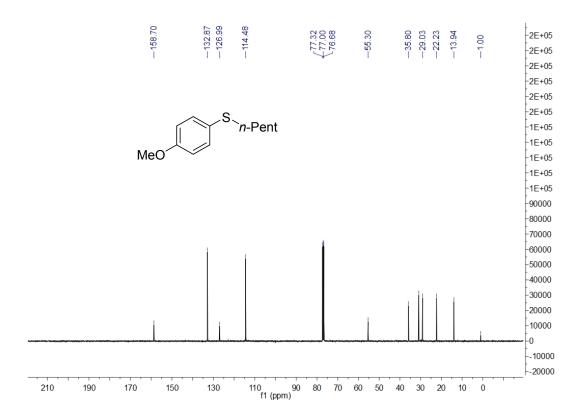
30 ¹³C NMR



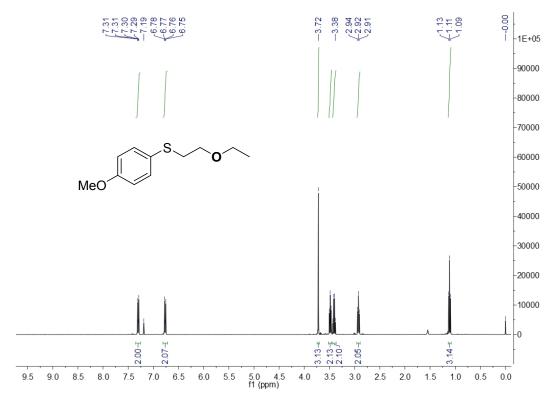
83

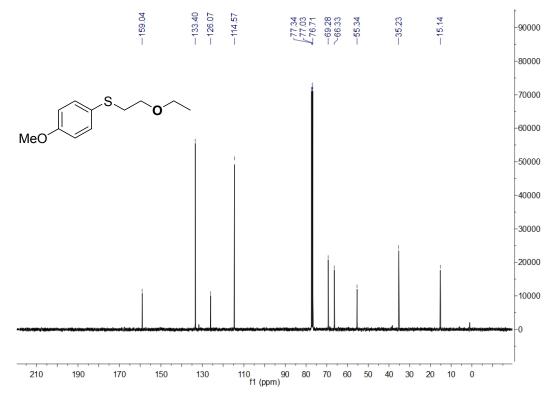



```
3p <sup>13</sup>C NMR
```



84


3q¹H NMR


3q¹³C NMR

3r¹H NMR

