Supporting information for

Palladium-Catalyzed Benzothieno[2,3-b]indole Formation via Dehydrative-Dehydrogenative Double C-H Sulfuration with Sulfur Powder, Indoles and Cyclohexanones

Yunfeng Liao,^{a,c} Yi Peng,^a Hongrui Qi,^a Guo-Jun Deng,^{a,*}

Hang Gong,^{a,b} Chao-Jun Li^{b,*}

^a Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China; e-mail:gjdeng@xtu.edu.cn;

^b Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada; E-mail: cj.li@mcgill.ca

^c School of Chemistry & Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.

Table of Contents

1. General information	2
2. General procedure	2
3. Optimization of the Reaction Conditions	3
4. Characterization data of products	4-15
5. References	15
6. Crystal data of 3b.	16-21
7. Copies of ¹ H and ¹³ C NMR spectra of all products	22-46

General information:

All reactions were carried out under an atmosphere of oxygen unless otherwise noted. Column chromatography was performed using silica gel (200-300 mesh). ¹H NMR and ¹³C NMR spectra were recorded on Bruker-AV (400 and 100 MHz, respectively) instrument internally referenced to tetramethylsilane (TMS) or chloroform signals. Mass spectra was measured on Agilent 5975 GC-MS instrument (EI). High-resolution mass spectra were recorded at Institute of Chemistry, Chinese Academy of Sciences. The structure of known compounds were further corroborated by comparing their ¹H NMR, ¹³C NMR data and MS data with those of literature. All reagents were obtained from commercial suppliers and used without further purification.

General procedure (for 0.5 mmol scale):

PdI₂ (9.0 mg, 0.025 mmol), 5*H*-cyclopenta[1,2-*b*:5,4-*b*']dipyridin-5-one (9.0 mg, 0.05 mmol) and sulfur powder (32 mg, 1.0 mmol) were added to a 25 mL oven-dried reaction vessel. The reaction vessel was purged with oxygen for three times and then was added 1-methyl-1*H*-indole (**1a**, 64 μ L, 0.5 mmol), cyclohexanone (**2a**, 103.6 μ L, 1.0 mmol) and 1,2-dichlorobenzene (2.0 mL) by syringe. The reaction vessel was stirred at 125 °C for 16 h. After cooling to room temperature, the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether) to yield the desired product **3a** as pale yellow solid (83.0 mg, 70%).

General procedure (for 5.0 mmol scale):

PdI₂ (90 mg, 0.25 mmol), 5*H*-cyclopenta[1,2-*b*:5,4-*b*']dipyridin-5-one (90 mg, 0.5 mmol) and sulfur powder (320 mg, 10 mmol) were added to a 100 mL round-bottom flask. The reaction flask was purged with oxygen for three times and was added 1-methyl-1*H*-indole (**1a**, 0.64 mL, 5 mmol), cyclohexanone (**2a**, 1.04 mL, 10 mmol) and 1,2-dichlorobenzene (20 mL) by syringe. The reaction flask with an oxygen balloon was stirred at 125 °C for 16 h. After cooling to room temperature, the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether) to yield the desired product **3a** as pale yellow solid (805 mg, 68%).

	→ + ^O + "S"	catalyst solvent ►		N S	+ N	S
1a	2a		/ 5b	4b		3a
Entry	Catalyst	Ligand	S source		Yield (%) ^b	
	, ,	3		4b	5b	3a
1			S ₈	0	15	trace
2	l ₂		S ₈	2	trace	35
3	NIS		S ₈	trace	1	24
4	KI		S ₈	8	12	trace
5	Cul		S ₈	17	trace	13
6	Pdl ₂		S ₈	2	trace	42
7	Pdl ₂	1,10-phen	S ₈	2	2	10
8	PdI ₂	CPDO	S ₈	trace	trace	62
9	PdI ₂	DMAP	S ₈	trace	trace	trace
10	Pdl ₂	CPDO	sublimed sulfur	26	4	43
11	PdI ₂	CPDO	KSCN	trace	trace	trace
12	Pdl ₂	CPDO	Na ₂ S 9H ₂ O	trace	trace	trace
13 ^c	Pdl ₂	CPDO	S ₈	2	2	80
14 ^c	PdBr ₂	CPDO	S ₈	trace	7	10
15 ^c	PdCl ₂	CPDO	S ₈	3	2	trace
16 ^c	Pd(CH ₃ CN) ₂ Cl ₂	CPDO	S ₈	3	6	trace
17 ^c	Pd(OAc) ₂ /l ₂	CPDO	S ₈	1	2	75
18 ^{c,d}	Pdl ₂	CPDO	S ₈	33	4	40
19 ^{c,e}	Pdl ₂	CPDO	S ₈	3	2	70

Table S1. Optimization of the Reaction Conditions^a

^{*a*} conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), S source (0.4 mmol), catalyst (0.01 mmol), ligand (0.02 mmol), *o*dichlorobenzene (1.0 mL) under oxygen unless otherwise noted, 125 °C, 16 h. ^{*b*} GC yield based on **1a**. ^{*c*} **2a** (0.4 mmol). ^{*d*} 115 °C. ^{*e*} Under air. 1,10-phen = 1,10-phenanthroline, CPDO = 5*H*-cyclopenta[1,2-*b*:5,4-*b*']dipyridin-5one, DMAP = 4-dimethylaminopyridine. 6-Methyl-6H-benzo[4,5]thieno[2,3-b]indole (3a, CAS: 1269621-22-8)^[1]

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.08 (d, *J* = 7.6 Hz, 1H), 8.02 (d, *J* = 7.6 Hz, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.50-7.41 (m, 2H), 7.34-7.23 (m, 3H), 3.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 143.3, 141.7, 137.9, 133.2, 125.0, 123.6, 122.5, 121.7, 121.4, 120.4, 119.9, 118.7, 116.6, 109.1, 32.0; MS (EI) *m/z* (%) 237 (100), 222, 195, 152, 119.

3,6-Dimethyl-6*H*-benzo[4,5]thieno[2,3-*b*]indole (3b)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 64 μ L, 0.5 mmol) and 4-methylcyclohexanone (**2b**, 122.5 μ L, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether) afforded the product **3b** as pale yellow solid (106.7 mg, 85%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.00-7.95 (m, 2H), 7.62 (s, 1H), 7.40 (d, *J* = 8.0 Hz, 1H), 7.32-7.28 (m, 3H), 3.89 (s, 3H), 2.49 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 142.8, 141.6, 138.3, 131.5, 130.9, 126.4, 123.7, 122.5, 121.2, 120.1, 119.8, 118.7, 116.5, 109.1, 32.1, 21.4; HRMS (ESI, m/z): calcd. for C₁₆H₁₃NS [M]⁺ 251.0763, found 251.0767.

3-Ethyl-6-methyl-6*H*-benzo[4,5]thieno[2,3-*b*]indole (3c)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 64 μ L, 0.5 mmol) and 4-ethylcyclohexanone (**2c**, 141 μ L, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether) afforded the product **3c** as white solid (106 mg, 80%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.00-7.97 (m, 2H), 7.64 (s, 1H), 7.40 (d, J = 7.6 Hz, 1H),

7.32-7.27 (m, 3H), 3.89 (s, 3H), 2.79 (q, J = 7.6 Hz, 2H), 1.33 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 142.8, 141.6, 138.3, 138.1, 131.1, 125.3, 122.5, 121.2, 120.2, 119.8, 118.7, 116.5, 113.9, 109.1, 32.0, 28.9, 16.0; HRMS (ESI, m/z): calcd. for C₁₇H₁₅NS [M]⁺ 265.0920, found 265.0924.

3-Isopropyl-6-methyl-6H-benzo[4,5]thieno[2,3-b]indole (3d)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 64 μ L, 0.5 mmol) and 4-isopropylcyclohexanone (**2d**, 155 μ L, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether) afforded the product **3d** as white solid (102 mg, 73%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.99 (d, J = 7.6 Hz, 2H), 7.67 (s, 1H), 7.41-7.27 (m, 4H), 3.89 (s, 3H), 3.09-3.02 (m, 2H), 1.34 (d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 142.9, 141.6, 138.3, 131.1, 128.2, 124.0, 122.6, 121.2, 121.1, 120.3, 119.8, 118.7, 116.5, 109.1, 34.2, 32.1, 24.3; HRMS (ESI, m/z): calcd. for C₁₈H₁₇NS [M]⁺ 279.1076, found 279.1080.

6-Methyl-3-pentyl-6*H*-benzo[4,5]thieno[2,3-*b*]indole (3e)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 64 μ L, 0.5 mmol) and 4-pentylcyclohexanone (**2e**, 190 μ L, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether) afforded the product **3e** as pale yellow solid (133.5 mg, 87%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.98 (t, *J* = 6.2 Hz, 2H), 7.62 (s, 1H), 7.40 (d, *J* = 6.0 Hz, 1H), 7.32-7.27 (m, 3H), 3.89 (s, 3H), 2.74 (t, *J* = 6.2 Hz, 2H), 1.73-1.67 (m, 2H), 1.38-1.35 (m, 4H), 0.91 (t, *J* = 5.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 142.8, 141.6, 138.2, 136.7, 131.0, 125.8, 123.1, 122.5, 121.2, 120.1, 119.7, 118.7, 116.5, 109.1, 36.0, 32.0, 31.9, 31.5, 22.6, 14.1;

HRMS (ESI, m/z): calcd. for $C_{20}H_{21}NS[M]^+$ 307.1389, found 307.1393.

6-Methyl-3-(*tert*-pentyl)-6*H*-benzo[4,5]thieno[2,3-*b*]indole (3f)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 64 μ L, 0.5 mmol) and 4-(*tert*-pentyl)cyclohexanone (**2f**, 183 μ L, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether) afforded the product **3f** as white solid (130.5 mg, 85%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.01-7.99 (m, 2H), 7.76 (s, 1H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.40 (d, *J* = 7.6 Hz, 1H), 7.32-7.27 (m, 2H), 3.89 (s, 3H), 1.73 (q, *J* = 7.3 Hz, 2H), 1.38 (s, 6H), 0.72 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 143.5, 143.0, 141.6, 138.3, 130.8, 123.5, 122.6, 121.2, 120.9, 119.9, 119.8, 118.7, 116.5, 109.1, 38.1, 37.1, 32.1, 28.8, 9.2; HRMS (ESI, m/z): calcd. for C₂₀H₂₁NS [M]⁺ 307.1389, found 307.1393.

6-Methyl-3-phenyl-6*H*-benzo[4,5]thieno[2,3-*b*]indole (3g)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 64 μ L, 0.5 mmol) and 4-phenylcyclohexanone (**2g**, 174 mg, 1.0 mmol), 24 h. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 100:1) afforded the product **3g** as pale yellow solid (126.8 mg, 81%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.12 (d, J = 8.0 Hz, 1H), 8.04-8.03 (m, 2H), 7.73-7.68 (m, 3H), 7.49-7.42 (m, 3H), 7.37-7.29 (m, 3H), 3.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 143.7, 141.8, 141.2, 138.8, 135.1, 132.4, 128.8, 127.1, 126.9, 124.5, 122.6, 122.1, 121.6, 120.6, 120.1, 118.9, 116.4, 109.3, 32.3; HRMS (ESI, m/z): calcd. for C₂₁H₁₅NS [M]⁺ 313.0920, found 313.0924.

Ethyl 6-methyl-6*H*-benzo[4,5]thieno[2,3-*b*]indole-3-carboxylate (3h)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 64 μ L, 0.5 mmol) and ethyl 4-oxocyclohexanecarboxylate (**2h**, 159.3 μ L, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1) afforded the product **3h** as pale yellow solid (114.3 mg, 74%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.53 (s, 1H), 8.16 (d, *J* = 8.0 Hz, 1H), 8.07-8.02 (m, 2H), 7.43 (d, *J* = 7.6 Hz, 1H), 7.37-7.30 (m, 2H), 4.43 (q, *J* = 7.1 Hz, 2H), 3.91 (s, 3H), 1.44 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 166.6, 145.9, 141.8, 137.3, 136.5, 126.4, 125.4, 123.5, 122.3, 121.9, 120.3, 119.5, 118.9, 116.4, 109.2, 60.8, 32.1, 14.4; HRMS (ESI, m/z): calcd. for C₁₈H₁₅NO₂S [M+H]⁺ 310.0896, found 310.0900.

2,6-Dimethyl-6H-benzo[4,5]thieno[2,3-b]indole (3i)

The reaction was conducted with 1-methyl-1*H*-indole (**1a**, 64 μ L, 0.5 mmol) and 3-methylcyclohexanone (**2i**, 121.7 μ L, 1.0 mmol), 24 h. The residue was purified by column chromatography on silica gel (petroleum ether) afforded the product **3i** as pale yellow solid (75.3 mg, 60%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.02 (d, *J* = 7.6 Hz, 1H), 7.89 (s, 1H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.40 (d, *J* = 7.2 Hz, 1H), 7.33-7.28 (m, 2H), 7.08 (d, *J* = 8.0 Hz, 1H), 3.88 (s, 3H), 2.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 143.7, 141.7, 135.0, 134.9, 133.4, 125.2, 123.2, 122.6, 121.3, 120.9, 119.8, 118.8, 118.1, 109.1, 32.1, 21.6; HRMS (ESI, m/z): calcd. for C₁₆H₁₃NS [M]⁺ 251.0763, found 251.0767.

6,9-Dimethyl-6*H*-benzo[4,5]thieno[2,3-*b*]indole (3k)

The reaction was conducted with 1,5-dimethyl-1*H*-indole (**1b**, 72.5 mg, 0.5 mmol) and cyclohexanone (**2a**, 103.6 μ L, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether) afforded the product **3k** as pale yellow solid (75.4 mg, 60%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.06 (d, *J* = 7.6 Hz, 1H), 7.81 (m, 2H), 7.46 (t, *J* = 7.2 Hz, 1H), 7.30-7.12 (m, 3H), 3.86 (s, 3H), 2.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 143.5, 140.3, 138.0, 133.5, 129.3, 125.0, 123.6, 122.9, 122.8, 121.6, 120.5, 118.8, 116.4, 108.8, 32.1, 21.5. HRMS (ESI, m/z): calcd. for C₁₆H₁₃NS [M]⁺ 251.0763, found 251.0759.

9-Methoxy-6-methyl-6H-benzo[4,5]thieno[2,3-b]indole (3l)

The reaction was conducted with 5-methoxy-1-methyl-1*H*-indole (**1c**, 80.5 mg, 0.5 mmol) and cyclohexanone (**2a**, 103.6 μ L, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) afforded the product **3l** as pale yellow solid (68.1 mg, 51%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.03 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.48-7.45 (m, 2H), 7.30-7.22 (m, 2H), 6.97-6.94 (m, 1H), 3.96 (s, 3H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 154.5, 143.9, 137.9, 137.1, 133.3, 125.1, 123.6, 123.0, 121.7, 120.3, 116.3, 110.4, 109.7, 102.2, 56.1, 32.3; HRMS (ESI, m/z): calcd. for C₁₆H₁₃NOS [M]⁺ 267.0712, found 267.0715.

6-Methyl-6*H*-benzo[4,5]thieno[2,3-*b*]indole-9-carbonitrile (3m)

The reaction was conducted with Palladium(II) iodide (18 mg, 0.05 mmol), 5H-cyclopenta[1,2-*b*:5,4-*b*']dipyridin-5-one (18 mg, 0.1 mmol), 1-methyl-1*H*-indole-5-carbonitrile (**1d**, 78 mg, 0.5 mmol) and cyclohexanone (**2a**, 103.6 μ L, 1.0 mmol), 150 °C, 24 h. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1) afforded the product **3m** as white solid (68.2 mg, 52%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.27 (s, 1H), 8.03 (d, *J* = 7.6 Hz, 1H), 7.83 (d, *J* = 7.6 Hz, 1H), 7.55-7.50 (m, 2H), 7.43 (d, *J* = 8.4 Hz, 1H), 7.32 (t, *J* = 7.6 Hz, 1H), 3.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 145.4, 142.9, 138.1, 132.2, 125.5, 124.5, 123.7, 123.3, 122.8, 122.0, 120.7, 120.4, 116.7, 109.7, 102.9, 32.3; HRMS (ESI, m/z): calcd. for C₁₆H₁₀N₂S [M]⁺ 262.0559, found 262.0557.

9-Fluoro-6-methyl-6*H*-benzo[4,5]thieno[2,3-*b*]indole (3n)

The reaction was conducted with 5-fluoro-1-methyl-1*H*-indole (**1f**, 74.5 mg, 0.5 mmol) and cyclohexanone (**2a**, 103.6 μ L, 1.0 mmol), 24 h. The residue was purified by column chromatography on silica gel (petroleum ether) afforded the product **3n** as pale yellow solid (79.1 mg, 62%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.98 (d, *J* = 7.6 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.64-7.61 (m, 1H), 7.47 (t, *J* = 7.4 Hz, 1H), 7.29-7.23 (m, 2H), 7.06-7.01 (m, 1H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 158.8 (d, *J* = 234.0 Hz), 144.8, 138.1, 137.7, 132.8, 125.1, 123.6, 122.5 (d, *J* = 10.4 Hz), 122.0, 120.3, 116.2, 109.5 (d, *J* = 9.8 Hz), 109.0 (d, *J* = 15.7 Hz), 104.2 (d, *J* = 24.0 Hz), 32.2; HRMS (ESI, m/z): calcd. for C₁₅H₁₀FNS [M]⁺ 255.0513, found 255.0515.

9-Chloro-6-methyl-6*H*-benzo[4,5]thieno[2,3-*b*]indole (30)

The reaction was conducted with 5-chloro-1-methyl-1*H*-indole (**1g**, 82.5 mg, 0.5 mmol) and cyclohexanone (**2a**, 103.6 μ L, 1.0 mmol), 24 h. The residue was purified by column chromatography on silica gel (petroleum ether) afforded the product **3o** as white solid (85.4 mg, 63%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.01 (d, J = 8.0 Hz, 1H), 7.94 (s, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.47 (t, J = 7.4 Hz, 1H), 7.30-7.28 (m, 3H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 144.4, 139.9, 137.8, 132.6, 125.6, 125.2, 123.6, 123.1, 122.1, 121.3, 120.4, 118.2, 115.9, 109.9, 32.1; HRMS (ESI, m/z): calcd. for C₁₅H₁₀CINS [M]⁺ 271.0217, found 271.0218.

9-Bromo-6-methyl-6*H*-benzo[4,5]thieno[2,3-*b*]indole (3p)

The reaction was conducted with 5-bromo-1-methyl-1*H*-indole (**1h**, 104.5 mg, 0.5 mmol) and cyclohexanone (**2a**, 103.6 μ L, 1.0 mmol), 24 h. The residue was purified by column chromatography on silica gel (petroleum ether) afforded the product **3p** as white solid (94.5 mg, 60%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.11 (s, 1H), 8.02 (d, *J* = 7.6 Hz, 1H), 7.81 (d, *J* = 7.6 Hz, 1H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.39 (d, *J* = 8.4 Hz, 1H), 7.27 (t, *J* = 7.6 Hz, 2H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 144.4, 140.3, 137.9, 132.7, 125.2, 124.0, 123.9, 123.6, 122.3, 121.3, 120.5, 116.0, 113.3, 110.4, 32.2; HRMS (ESI, m/z): calcd. for C₁₅H₁₀BrNS [M]⁺ 314.9712, found 314.9712.

9-Iodo-6-methyl-6*H*-benzo[4,5]thieno[2,3-*b*]indole (3q)

The reaction was conducted with 5-iodo-1-methyl-1*H*-indole (**1i**, 128.5 mg, 0.5 mmol) and cyclohexanone (**2a**, 103.6 μ L, 1.0 mmol), 24 h. The residue was purified by column chromatography on silica gel (petroleum ether) afforded the product **3q** as white solid (96.2 mg, 53%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.31 (s, 1H), 8.02 (d, *J* = 7.6 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.56 (d, *J* = 8.4 Hz, 1H), 7.47 (t, *J* = 7.4 Hz, 1H), 7.28 (d, *J* = 8.0 Hz, 1H), 7.17 (d, *J* = 8.4 Hz, 1H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 144.1, 140.8, 137.9, 132.7, 129.7, 127.5, 125.3, 124.7, 123.7, 122.2, 120.6, 115.7, 111.0, 83.4, 32.2; HRMS (ESI, m/z): calcd. for C₁₅H₁₀INS [M]⁺ 362.9573, found 362.9567.

6,8-Dimethyl-6*H*-benzo[4,5]thieno[2,3-*b*]indole (3r)

The reaction was conducted with 1,6-dimethyl-1*H*-indole (**1j**, 72.5 mg, 0.5 mmol) and cyclohexanone (**2a**, 103.6 μ L, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether) afforded the product **3r** as pale yellow solid (87.9 mg, 70%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.05 (d, *J* = 7.6 Hz, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.46 (t, *J* = 7.4 Hz, 1H), 7.23-7.20 (m, 2H), 7.11 (d, *J* = 7.6 Hz, 1H), 3.85 (s, 3H), 2.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 142.8, 142.2, 137.9, 133.3, 131.3, 125.0, 123.6

(2C), 121.6, 121.4, 120.4, 118.4, 116.5, 109.5, 32.2, 21.9; HRMS (ESI, m/z): calcd. for C₁₆H₁₃NS [M]⁺ 251.0763, found 251.0765.

Methyl 6-methyl-6H-benzo[4,5]thieno[2,3-b]indole-8-carboxylate (3s)

The reaction was conducted with methyl 1-methyl-1*H*-indole-6-carboxylate (**1k**, 94.5 mg, 0.5 mmol) and cyclohexanone (**2a**, 103.6 μ L, 1.0 mmol), 24 h. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1) afforded the product **3s** as white solid (95.9 mg, 65%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.16 (s, 1H), 8.08 (d, *J* = 7.6 Hz, 1H), 7.99 (m, 2H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.50 (t, *J* = 7.4 Hz, 1H), 7.29 (t, *J* = 8.2 Hz, 1H), 3.99 (s, 3H), 3.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 168.0, 146.7, 141.2, 138.1, 132.9, 125.9, 125.4, 123.8, 123.0, 122.6, 121.4, 120.8, 120.4, 118.1, 111.3, 52.0, 32.5; HRMS (ESI, m/z): calcd. for C₁₇H₁₃NO₂S [M]⁺ 295.0662, found 295.0664.

6-Methyl-6*H*-benzo[4,5]thieno[2,3-*b*]indole-8-carbonitrile (3t)

The with Palladium(II) iodide reaction was conducted (18 mg, 0.05 mmol), 5H-cyclopenta[1,2-b:5,4-b']dipyridin-5-one (18)0.1 mmol), methyl mg, 1-methyl-1H-indole-6-carbonitrile (1k, 78 mg, 0.5 mmol) and cyclohexanone (2a, 103.6 µL, 1.0 mmol), 24 h. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) afforded the product **3t** as white solid (62.9 mg, 48%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.01 (d, J = 7.6 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.66 (s, 1H), 7.50 (t, J = 6.6 Hz, 2H), 7.31 (t, J = 7.6 Hz, 1H), 3.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 147.2, 140.5, 138.1, 132.3, 125.6, 125.1, 123.8, 123.3, 123.0, 120.8, 120.4, 119.1, 117.1, 113.4, 103.7, 32.4; HRMS (ESI, m/z): calcd. for C₁₆H₁₀N₂S [M]⁺ 262.0559, found 262.0556.

8-Fluoro-6-methyl-6*H*-benzo[4,5]thieno[2,3-*b*]indole (3u)

The reaction was conducted with 6-fluoro-1-methyl-1H-indole (11, 74.5 mg, 0.5 mmol) and

cyclohexanone (**2a**, 103.6 µL, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether) afforded the product **3u** as pale yellow solid (91.8 mg, 72%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.03 (d, *J* = 8.0 Hz, 1H), 7.91-7.88 (m, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 1H), 7.28-7.24 (m, 1H), 7.11-7.01 (m, 2H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 159.5 (d, *J* = 237.1 Hz), 143.3, 141.9 (d, *J* = 11.7 Hz), 138.0, 132.9, 125.1, 123.6, 121.9, 120.4, 119.2, 119.2 (d, *J* = 9.9 Hz), 116.5, 108.4 (d, *J* = 24.0 Hz), 96.3 (d, *J* = 26.7 Hz), 32.2; HRMS (ESI, m/z): calcd. for C₁₅H₁₀FNS [M]⁺ 255.0513, found 255.0515.

8-Chloro-6-methyl-6*H*-benzo[4,5]thieno[2,3-*b*]indole (3v)

The reaction was conducted with 6-chloro-1-methyl-1*H*-indole (**1m**, 82.5 mg, 0.5 mmol) and cyclohexanone (**2a**, 103.6 μ L, 1.0 mmol), 24 h. The residue was purified by column chromatography on silica gel (petroleum ether) afforded the product **3v** as white solid (89.4 mg, 66%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.01 (d, *J* = 7.6 Hz, 1H), 7.86 (d, *J* = 8.4 Hz, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 1H), 7.38 (s, 3H), 7.28-7.23 (m, 2H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 143.9, 142.0, 138.0, 132.8, 127.4, 125.2, 123.7, 122.1, 121.0, 120.5, 120.4, 119.3, 116.5, 109.4, 32.2; HRMS (ESI, m/z): calcd. for C₁₅H₁₀CINS [M]⁺ 271.0217, found 271.0219.

6,7-Dimethyl-6*H*-benzo[4,5]thieno[2,3-*b*]indole (3w)

The reaction was conducted with 1,7-dimethyl-1*H*-indole (**1n**, 72.5 mg, 0.5 mmol) and cyclohexanone (**2a**, 103.6 μ L, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether) afforded the product **3w** as white solid (76.6 mg, 61%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.05 (d, J = 8.0 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.81 (d, J =

8.0 Hz, 1H), 7.46 (t, J = 7.4 Hz, 1H), 7.23 (d, J = 7.6 Hz, 1H), 7.15 (t, J = 7.6 Hz, 1H), 7.00 (d, J = 7.2 Hz, 1H), 4.14 (s, 3H), 2.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 144.7, 140.4, 137.9, 133.4, 125.0, 124.5, 123.6 (2C), 121.8, 121.2, 120.5, 120.2, 117.0, 116.3, 36.4, 19.6; HRMS (ESI, m/z): calcd. for C₁₆H₁₃NS [M]⁺ 251.0763, found 251.0765.

Methyl 6-methyl-6H-benzo[4,5]thieno[2,3-b]indole-7-carboxylate (3x)

was conducted with Palladium(II) iodide The reaction (18 mg, 0.05 mmol), 5H-cyclopenta[1,2-b:5,4-b']dipyridin-5-one (18)mg, 0.1 mmol), methyl 1-methyl-1H-indole-7-carboxylate (10, 94.5 mg, 0.5 mmol) and cyclohexanone (2a, 103.6 µL, 1.0 mmol), 24 h. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) afforded the product 3x as white solid (56.1 mg, 38%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.17 (d, *J* = 7.6 Hz, 1H), 8.07 (d, *J* = 8.0 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.75 (d, *J* = 7.6 Hz, 1H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.31-7.27 (m, 2H), 4.01 (s, 3H), 3.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 167.7, 146.5, 139.2, 138.3, 133.0, 125.3, 125.0, 124.5, 123.7, 122.8, 122.4, 120.6, 119.3, 116.7, 116.3, 52.2, 37.2; HRMS (ESI, m/z): calcd. for C₁₇H₁₃NO₂S [M]⁺ 295.0662, found 295.0658.

6-Benzyl-6H-benzo[4,5]thieno[2,3-b]indole (3z, CAS: 1269621-18-2)^[1]

The reaction was conducted with methyl 1-benzyl-1*H*-indole (**1q**, 103.5 mg, 0.5 mmol) and cyclohexanone (**2a**, 103.6 μ L, 1.0 mmol). The residue was purified by column chromatography on silica gel (petroleum ether) afforded the product **3z** as white solid (114.3 mg, 73%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.09 (d, J = 6.4 Hz, 1H), 8.05-8.03 (m, 1H), 7.75 (d, J = 6.4 Hz, 1H), 7.48-7.42 (m, 2H), 7.32-7.22 (m, 8H), 5.43 (s, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ

142.8, 141.4, 138.3, 135.6, 132.9, 128.8, 128.0, 127.4, 125.0, 123.5, 122.8, 122.0, 121.6, 120.5, 120.2, 118.9, 117.3, 109.6, 49.7; MS (EI) *m/z* (%) 313 (100), 222, 195, 177, 91.

3,6-Dimethyl-2,3,4,6-tetrahydro-1*H*-benzo[4,5]thieno[2,3-*b*]indole (4a)

¹H NMR (400 MHz, CDCl₃, ppm) δ 7.74 (d, J = 7.2 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.22 (d, J = 7.6 Hz, 1H), 7.14 (t, J = 7.2 Hz, 1H), 3.79 (s, 3H), 3.13-3.09 (m, 1H), 2.96-2.87 (m, 2H), 2.54-2.50 (m, 1H), 2.05-1.98 (m, 2H), 1.62 (m, 1H), 1.13 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 141.7, 141.5, 127.3, 126.9, 122.4, 121.7, 121.0, 118.9, 118.6, 108.8, 34.0, 32.0, 31.0, 30.2, 24.9, 21.5; HRMS (ESI, m/z): calcd. for C₁₆H₁₇NS [M]⁺ 255.1076, found 255.1077.

References

[1] M. Kienle, A. J. Wagner, C. Dunst, and P. Knochel. Chem. Asian J. 2011, 6, 517 - 523.

Crystal data and structure refinement for 3b

Table 1. Crystal data and structure refinement for **3b**.

Identification code	lentification code 3b	
Empirical formula		
Formula weight	251.33	
Temperature	173.1500 K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P b c a	
Unit cell dimensions	a = 5.7076(11) Å	α= 90°.
	b = 20.718(4) Å	β= 90°.
	c = 21.125(4) Å	$\gamma = 90^{\circ}$.
Volume	2498.0(9) Å ³	
Z	8	
Density (calculated)	1.337 Mg/m ³	
Absorption coefficient	0.238 mm ⁻¹	
F(000)	1056	
Crystal size	0.32 x 0.13 x 0.11 mm ³	
Theta range for data collection	3.498 to 27.507°.	
Index ranges	-7<=h<=7, -26<=k<=26, -27<=l<=26	
Reflections collected	15510	
Independent reflections	2862 [R(int) = 0.0728]	
Completeness to theta = 26.000°	99.8 %	
Absorption correction	Semi-empirical from equivalen	ts
Max. and min. transmission	1.0000 and 0.6337	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2862 / 0 / 165	
Goodness-of-fit on F ²	1.304	
Final R indices [I>2sigma(I)]	R1 = 0.0835, $wR2 = 0.1728$	
R indices (all data)	R1 = 0.0930, wR2 = 0.1774	

Extinction coefficient	n/a
Largest diff. peak and hole	0.425 and -0.358 e.Å $^{\text{-3}}$

	v	V	7	LI(eq)
	Δ	у	L	0(04)
S1	7919(1)	451(1)	4550(1)	32(1)
N1	5090(4)	1576(1)	4572(1)	32(1)
C1	5094(5)	2141(1)	4218(2)	33(1)
C2	3464(6)	2641(2)	4229(2)	44(1)
C3	3787(7)	3137(2)	3803(2)	55(1)
C4	5666(7)	3141(2)	3380(2)	51(1)
C5	7290(7)	2647(2)	3372(2)	42(1)
C6	7026(5)	2134(1)	3795(2)	33(1)
C7	8229(5)	1535(1)	3907(1)	30(1)
C8	6977(5)	1222(1)	4374(1)	30(1)
C9	3433(6)	1403(2)	5064(2)	39(1)
C10	10122(5)	1144(2)	3677(1)	29(1)
C11	10130(5)	530(1)	3972(1)	30(1)
C12	11747(5)	55(2)	3814(2)	35(1)
C13	13441(6)	184(2)	3362(2)	36(1)
C14	13498(6)	798(2)	3090(2)	37(1)
C15	11888(6)	1270(2)	3236(1)	34(1)
C16	15175(7)	-326(2)	3165(2)	48(1)

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for **3b**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table 3. Bond lengths [Å] and angles $[\circ]$ for 3b.

S1-C8	1.725(3)
S1-C11	1.764(3)
N1-C1	1.390(4)
N1-C8	1.369(4)
N1-C9	1.449(4)
C1-C2	1.391(4)
C1-C6	1.419(5)
C2-C3	1.379(6)

C3-C4	1.396(6)
C4-C5	1.381(5)
C5-C6	1.397(5)
C6-C7	1.439(4)
C7-C8	1.380(4)
C7-C10	1.435(4)
C10-C11	1.417(4)
C10-C15	1.398(4)
C11-C12	1.389(4)
C12-C13	1.385(4)
C13-C14	1.396(5)
C13-C16	1.507(5)
C14-C15	1.375(5)
C8-S1-C11	89.27(14)
C1-N1-C9	126.5(3)
C8-N1-C1	106.6(3)
C8-N1-C9	126.9(3)
N1-C1-C2	128.1(3)
N1-C1-C6	109.3(3)
C2-C1-C6	122.5(3)
C3-C2-C1	117.1(4)
C2-C3-C4	121.6(3)
C5-C4-C3	121.3(4)
C4-C5-C6	118.9(4)
C1-C6-C7	106.0(3)
C5-C6-C1	118.6(3)
C5-C6-C7	135.3(3)
C8-C7-C6	106.1(3)
C8-C7-C10	111.5(3)
C10-C7-C6	142.2(3)
N1-C8-S1	132.5(2)
N1-C8-C7	111.9(3)
C7-C8-S1	115.4(2)
C11-C10-C7	111.1(3)
C15-C10-C7	131.7(3)
C15-C10-C11	117.2(3)
C10-C11-S1	112.7(2)

C12-C11-S1	125.1(2)
C12-C11-C10	122.2(3)
C13-C12-C11	119.5(3)
C12-C13-C14	118.5(3)
C12-C13-C16	120.9(3)
C14-C13-C16	120.7(3)
C15-C14-C13	122.6(3)
C14-C15-C10	120.0(3)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S1	34(1)	32(1)	29(1)	2(1)	5(1)	1(1)
N1	32(1)	34(1)	31(1)	-4(1)	2(1)	0(1)
C1	34(2)	29(2)	35(2)	-4(1)	-6(1)	-2(1)
C2	41(2)	35(2)	55(2)	-9(2)	-9(2)	4(1)
C3	50(2)	37(2)	76(3)	-4(2)	-19(2)	8(2)
C4	61(2)	35(2)	59(3)	9(2)	-17(2)	-3(2)
C5	48(2)	38(2)	41(2)	6(2)	-8(2)	-6(2)
C6	35(2)	30(2)	34(2)	-1(1)	-10(1)	-4(1)
C7	32(2)	33(2)	25(2)	-2(1)	-3(1)	-5(1)
C8	32(2)	31(2)	26(1)	-2(1)	-1(1)	-2(1)
C9	34(2)	43(2)	40(2)	-7(2)	6(1)	-4(1)
C10	31(2)	35(2)	22(1)	-3(1)	-2(1)	-5(1)
C11	32(2)	34(2)	24(1)	-2(1)	2(1)	-2(1)
C12	36(2)	37(2)	31(2)	-3(1)	0(1)	4(1)
C13	34(2)	48(2)	28(2)	-8(1)	0(1)	-1(1)
C14	32(2)	56(2)	25(2)	-4(2)	4(1)	-6(1)
C15	37(2)	43(2)	23(2)	2(1)	1(1)	-6(1)
C16	44(2)	60(2)	41(2)	-11(2)	5(2)	7(2)

Table 4. Anisotropic displacement parameters(Ųx 10³) for **3b**. The anisotropic displacement factorexponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **3b**.

	Х	У	Ζ	U(eq)
H2	2212	2639	4510	52
Н3	2727	3478	3797	66
H4	5826	3483	3098	62
Н5	8540	2656	3090	51
H9A	3651	1681	5423	58
H9B	3684	963	5188	58
Н9С	1866	1451	4905	58
H12	11692	-346	4011	42
H14	14671	892	2799	45
H15	11975	1671	3040	41
H16A	15339	-638	3499	72
H16B	16665	-129	3082	72
H16C	14623	-537	2789	72

Table 6. Torsion angles [°] for 3b.

S1-C11-C12-C13	-178.2(2)
N1-C1-C2-C3	-176.4(3)
N1-C1-C6-C5	177.0(3)
N1-C1-C6-C7	-0.2(3)
C1-N1-C8-S1	-173.6(3)
C1-N1-C8-C7	0.4(3)
C1-C2-C3-C4	-0.1(5)
C1-C6-C7-C8	0.5(3)
C1-C6-C7-C10	174.5(4)
C2-C1-C6-C5	-0.3(5)
C2-C1-C6-C7	-177.5(3)
C2-C3-C4-C5	-0.3(6)
C3-C4-C5-C6	0.4(5)
C4-C5-C6-C1	-0.1(5)
C4-C5-C6-C7	176.1(3)
C5-C6-C7-C8	-176.0(4)
C5-C6-C7-C10	-2.0(7)
C6-C1-C2-C3	0.4(5)

C6-C7-C8-S1	174.6(2)
C6-C7-C8-N1	-0.6(3)
C6-C7-C10-C11	-171.1(4)
C6-C7-C10-C15	9.6(7)
C7-C10-C11-S1	-2.8(3)
C7-C10-C11-C12	177.8(3)
C7-C10-C15-C14	-178.9(3)
C8-S1-C11-C10	1.7(2)
C8-S1-C11-C12	-179.0(3)
C8-N1-C1-C2	177.0(3)
C8-N1-C1-C6	-0.1(3)
C8-C7-C10-C11	2.7(4)
C8-C7-C10-C15	-176.6(3)
C9-N1-C1-C2	-4.1(5)
C9-N1-C1-C6	178.8(3)
C9-N1-C8-S1	7.5(5)
C9-N1-C8-C7	-178.4(3)
C10-C7-C8-S1	-1.5(3)
C10-C7-C8-N1	-176.7(2)
C10-C11-C12-C13	1.1(5)
C11-S1-C8-N1	173.8(3)
C11-S1-C8-C7	-0.1(2)
C11-C10-C15-C14	1.9(4)
C11-C12-C13-C14	1.6(5)
C11-C12-C13-C16	-178.1(3)
C12-C13-C14-C15	-2.5(5)
C13-C14-C15-C10	0.7(5)
C15-C10-C11-S1	176.6(2)
C15-C10-C11-C12	-2.8(4)
C16-C13-C14-C15	177.1(3)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen	bonds for	3b [Å	and °].
-------------------	-----------	--------------	---------

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)

Copies of ¹H and ¹³C NMR spectra of all products

---0.000

-0.000

