Supporting Information

Organocatalytic Multicomponent Synthesis of Enantioenriched Polycyclic 1,2,3,4-Tetrahydropyridines: Key Substrate Selection Enabling Regio- and Stereoselectivities
Yohan Dudognon, Haiying Du, Jean Rodriguez, Xavier Bugaut, Thierry Constantieux

Table of Contents

1. General considerations S2
2. Optimization of reaction conditions S3
3. General procedure, synthesis and characterization of products S6
4. Determination of absolute and relative configurations S19
5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra S26
6. HPLC traces S43

1. General Considerations:

General Procedures. Analytical thin layer chromatography (TLC) was performed on silica gel 60 F254 aluminum plates (Macherey-Nagel) containing a 254 nm fluorescent indicator. TLC plates were visualized by exposure to short wave ultraviolet light (254 nm) and to anisaldehyde (2.5 mL of p-anisaldehyde, 3 mL of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and 1.5 mL of AcOH in 100 mL of EtOH) followed by heating. Flash column chromatography was performed using silica gel ($35-70 \mu \mathrm{~m}, 60 \AA$, Acros).

Starting Materials. Unless specified, commercial reagents and solvents were used as received.

- β-Ketoamides were prepared according to known literature procedure. ${ }^{1}$
- (E)-Cinnamaldehyde was distilled just prior to use.
- Catalysts were purchased from Sigma-Aldrich.
- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried using a M-Braun SPS-800 system.

Instrumentation.

- Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were recorded with a Bruker AV 400 spectrometer. Proton chemical shifts are reported in parts per million (δ scale), and are referenced using residual protium in the NMR solvent $\left(\mathrm{CDCl}_{3}: \delta\right.$ $7.26\left(\mathrm{CHCl}_{3}\right)$). Data are reported as follows: chemical shift (multiplicity ($\mathrm{s}=$ singlet, br $\mathrm{s}=$ broad singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quadruplet, quint $=$ quintuplet, sept = septuplet, $m=$ multiplet), coupling constant(s) (Hz), integration).
- Carbon-13 nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded with Bruker AV 300 or AV 400 spectrometers. Carbon chemical shifts are reported in parts per million (δ scale), and are referenced using the carbon resonances of the solvent (δ $\left.77.16\left(\mathrm{CHCl}_{3}\right)\right)$. Data are reported as follows: chemical shift $\left(\mathrm{CH}_{\mathrm{n}}\right.$ where n is the number of hydrogen atoms linked to the carbon atom).
- HPLC analyses for the determination of enantiomeric excesses were performed on a Merck-Hitachi system equipped with Chiralpak AD-H, Chiralcel OD-3, Chiralcel IF, Lux-Cellulose-4, Chiralpak IA, Chiralpak AZ-H, and Lux-Cellulose-2.
- Optical Rotations were recorded on a Anton Paar MCP 200 Polarimeter at 589 nm and $25^{\circ} \mathrm{C}$ and specific rotations are reported as follows: specific rotation (concentration in grams $/ 100 \mathrm{~mL}$ of solution, solvent).
- High resolution mass spectra (HRMS) were recorded on a Waters Synapt G2 HDMS apparatus using a positive electrospray (ESI) ionization source.

[^0]
2. Optimization of Reaction Conditions:

2.1 Selection of the functionalized amine and β-dicarbonyl compound

Our initial screening aimed at determining which substrates (functionalized amine and β dicarbonyl compound) would be suitable to selectively deliver product B.

| Entry | X | A; B (yield, $d r$, ee $)$ |
| :--- | :---: | :---: | :---: | :---: |
| 1 | $\mathrm{Ot}-\mathrm{Bu}$ | complex mixture |

2.2 Solvents and ratio between the reactants

Having found suitable substrates for the selective formation of the 1,2,3,4-tetrahydropyridine regioisomers, we aimed to improve the yield. Changing for $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the solvent was beneficial but modifications of the ratio between the reactants to fight the competing formation of the imine were useless.

Entry	Solvent	β-dicarbonyl/enal/ aminophenol	yield, $d r$, ee
1	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CF}_{3}$	$1: 1.5: 1$	$19 \%,>20: 1 d r$, n.d. $e e$
2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$1: 1.5: 1$	$28 \%,>20: 1 d r, 93 \% e e$
3	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$1: 1.5: 1.5$	$23 \%,>20: 1 d r$, n.d. $e e$
4	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$1: 3: 3$	$30 \%,>20: 1 d r$, n.d. $e e$

2.3 Catalysts, additives, temperature and reaction time

To improve the yield of product, different aminocatalysts and additives (acids and water) were evaluated, showing that a combination of catalyst $\mathbf{I}(20 \mathrm{~mol} \%$) and $\mathrm{BzOH}(40 \mathrm{~mol} \%)$ was the best one. Reaction temperature and time were also optimized. To finish with, a twofold excess of β-ketoamide had no noticeable impact on the reaction outcome.

Entry	$\begin{gathered} \text { Catalyst } \\ (\mathrm{x} \mathrm{~mol} \mathrm{\%}) \\ \hline \end{gathered}$	Additive (y mol\%)	Temperature	Time	yield, $d r, e e$
1	I (10 mol\%)	none	$0^{\circ} \mathrm{C}$	48 h	28\%, >20:1 dr, 93\% ee
2	I (10 mol\%)	IV (20 mol\%)	$0^{\circ} \mathrm{C}$	24 h	32\%, >20:1 dr, 95\% ee
3	I ($20 \mathrm{~mol} \%$)	IV (40 mol\%)	$0^{\circ} \mathrm{C}$	24 h	36\%, >20:1dr, n.d.ee
4	I ($20 \mathrm{~mol} \%$)	IV (40 mol\%)	$0^{\circ} \mathrm{C}$	96 h	$52 \%,>20: 1 \mathrm{dr}, 95 \%$ ee
5	I (20 mol\%)	IV (100 mol\%)	$0^{\circ} \mathrm{C}$	96 h	52\%, >20:1dr, n.d. ee
6	I ($20 \mathrm{~mol} \%$)	IV (40 mol\%)	$10^{\circ} \mathrm{C}$	24 h	$36 \%,>20: 1 \mathrm{dr}, 94 \%$ ee
7	I (20 mol\%)	IV (40 mol\%)	$25^{\circ} \mathrm{C}$	48 h	$51 \%,>20: 1 \mathrm{dr}, 91 \%$ ee
8	I (20 mol\%)	IV (40 mol\%)	$10^{\circ} \mathrm{C}$	60 h	60\%, >20:1 dr, 94\% ee
9	II ($20 \mathrm{~mol} \%$)	IV (40 mol\%)	$10^{\circ} \mathrm{C}$	24 h	$23 \%,>20: 1 d r$, n.d. ee
10	III (20 mol\%)	IV (40 mol\%)	$10^{\circ} \mathrm{C}$	24 h	6\%, >20:1 dr, n.d. ee
11	I (20 mol\%)	V (40 mol\%)	$10^{\circ} \mathrm{C}$	24 h	$28 \%,>20: 1 d r$, n.d. ee
12	I (20 mol\%)	VI (40 mol\%)	$10^{\circ} \mathrm{C}$	60 h	$37 \%,>20: 1 d r$, n.d. ee
13	I (20 mol\%)	V (40 mol\%)	$10^{\circ} \mathrm{C}$	60 h	$12 \%,>20: 1 d r$, n.d. $e e$
14	I (20 mol\%)	$\begin{gathered} \text { IV }(40 \mathrm{~mol} \%) \\ \text { +water }(0.1 \mathrm{~mL}) \end{gathered}$	$10^{\circ} \mathrm{C}$	60 h	44\%, >20:1 dr, 93\% ee
15^{a}	I (20 mol\%)	IV (40 mol\%)	$10^{\circ} \mathrm{C}$	60 h	55\%, >20:1dr, 92\% ee

[^1]
3. General Procedure, Synthesis and Characterization of Products:

3.1 General procedure for the three-component reactions:

β-ketoamides ($0.2 \mathrm{mmol}, 1$ equiv), cinnamaldehyde derivatives ($0.3 \mathrm{mmol}, 1.5$ equiv), aminophenol substrates (0.2 mmol , lequiv) and benzoic acid ($0.08 \mathrm{mmol}, 0.4$ equiv) were dissolved in 2 mL of dry dichloromethane under argon and placed at $10{ }^{\circ} \mathrm{C}$. Then, the Hayashi-Jørgensen catalyst ($0.04 \mathrm{mmol}, 0.2$ equiv) was added to the mixture. After 60 h , around ten drops of $\mathrm{NH}_{4} \mathrm{Cl}$ were added to the reaction mixture to deactivate the catalyst. The organic phase was then separated and concentrated under vacuum. The diastereomeric ratio of the crude product was determined by ${ }^{1} H$ NMR. Purification over silica gel (dichloromethane/ethyl acetate 100:0.5 (unless specified otherwise)) directly yielded the corresponding three-component product.

(3R,4S,4aR)- N-methoxy- $N, 4 a$-dimethyl-3-phenyl-4,4a-dihydro-3H-benzo [4,5]oxazolo

[3,2-a]pyridine-4-carboxamide 1

According to the general procedure for the three-component reactions and starting from N -methoxy- N-methyl-3-oxobutanamide ($29.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 1$ equiv), ($2 E$)-cinnamaldehyde ($39.7 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.5$ equiv), 2 -aminophenol ($21.8 \mathrm{mg}, 0.200 \mathrm{mmol}$, 1 equiv), benzoic acid ($9.8 \mathrm{mg}, 0.080 \mathrm{mmol}, 0.4$ equiv) and the catalyst ($13.0 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.2$ equiv). The product 1 was isolated as an orange solid $(42.0 \mathrm{mg}, 0.120 \mathrm{mmol}, 60 \%$ yield, $94 \% \mathrm{ee}$, dr> 20:1).

TLC (DCM/EtOAc 100:0.5) Rf 0.35 (UV, p-anisaldehyde).
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} \mathbf{C l}_{3}\right) \delta(\mathrm{ppm}) 7.40-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.97-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.69$ (m, 4H), $5.05(\mathrm{dd}, J=7.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.37 (s, 3H), 3.12 (s, 3H), 1.87 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$) δ (ppm) 171.3 (C), 149.5 (C), 142.0 (C), 134.7 (C), 128.5 (2 $\mathrm{CH}), 128.2(2 \mathrm{CH}), 127.2(\mathrm{CH}), 123.9(\mathrm{CH}), 121.5(\mathrm{CH}), 119.9(\mathrm{CH}), 108.5(\mathrm{CH}), 107.3$ $(\mathrm{CH}), 106.7(\mathrm{CH}), 100.7(\mathrm{C}), 61.1\left(\mathrm{CH}_{3}\right), 48.8(\mathrm{CH}), 43.2(\mathrm{CH}), 32.1\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right)$.
HRMS (ESI) calc'd for $\left[\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}: 351.1703$, found: 351.1703.
HPLC Chiralpak AZ-H, Heptane/Isopropanol 90:10, $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \tau_{\text {minor }}=7.53 \mathrm{~min}$ $\tau_{\text {major }}=8.36 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{20}=151\left(\mathrm{c} 0.100, \mathrm{CHCl}_{3}\right)$.
m.p. $=72-73^{\circ} \mathrm{C}$.

41% yield, dr > 20:1, 82% ee
According to the general procedure for the three-component reactions and starting from N -methoxy- N-methyl-3-oxobutanamide $(29.0 \mathrm{mg}, \quad 0.200 \mathrm{mmol}, \quad 1$ equiv), trans-4methoxycinnamaldehyde ($48.7 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.5$ equiv), 2 -aminophenol ($21.8 \mathrm{mg}, 0.200$ mmol, 1 equiv), benzoic acid ($9.8 \mathrm{mg}, 0.080 \mathrm{mmol}, 0.4$ equiv) and the catalyst (13.0 mg , $0.040 \mathrm{mmol}, 0.2$ equiv). The product 2 was isolated as an orange oil ($31.0 \mathrm{mg}, 0.081 \mathrm{mmol}$, 41% yield, $82 \% e e$, dr> 20:1).

TLC (DCM/EtOAc 100:0.5) R $f 0.35$ (UV, p-anisaldehyde).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm}) 7.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{td}, J=7.4,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.78(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.71-6.63(\mathrm{~m}, 3 \mathrm{H}), 6.60(\mathrm{dd}, J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dd}, J=7.6$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H})$, 3.02 (s, 3H), 1.74 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($101 \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm}) 171.3$ (C), 158.6 (C), 149.4 (C), 134.6 (C), 133.8 (C), $129.1(2 \mathrm{CH}), 123.6(\mathrm{CH}), 121.3(\mathrm{CH}), 119.8(\mathrm{CH}), 113.7(2 \mathrm{CH}), 108.4(\mathrm{CH}), 107.6(\mathrm{CH})$, $106.6(\mathrm{CH}), 100.6(\mathrm{C}), 61.1\left(\mathrm{CH}_{3}\right), 55.2\left(\mathrm{CH}_{3}\right), 48.8(\mathrm{CH}), 42.3(\mathrm{CH}), 32.0\left(\mathrm{CH}_{3}\right), 20.9$ $\left(\mathrm{CH}_{3}\right)$.
HRMS (ESI) calc'd for $\left[\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}\right]^{+}: 381.1809$, found: 381.1808.
HPLC Chiralpak AD-H, Heptane/Isopropanol 90:10, $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \tau_{\text {minor }}=6.32 \mathrm{~min}$ $\tau_{\text {major }}=8.27 \mathrm{~min}$.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{25}=33.9\left(\mathrm{c} 0.065, \mathrm{CHCl}_{3}\right)$.
(3R,4S,4aR)-3-(4-fluorophenyl)- N-methoxy- $N, 4 a$-dimethyl-4,4a-dihydro-3H-benzo[4,5] oxazolo[3,2-a]pyridine-4-carboxamide 3

45% yield, $\mathrm{dr}>20: 1,86 \%$ ee
According to the general procedure for the three-component reactions and starting from N -methoxy- N-methyl-3-oxobutanamide ($29.0 \mathrm{mg}, \quad 0.200 \mathrm{mmol}, 1$ equiv), (2E)-3-(4-fluorophenyl)prop-2-enal ($45.0 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.5$ equiv), 2-aminophenol ($21.8 \mathrm{mg}, 0.200$
mmol, 1 equiv), benzoic acid ($9.8 \mathrm{mg}, 0.080 \mathrm{mmol}, 0.4$ equiv) and the catalyst (13.0 mg , $0.040 \mathrm{mmol}, 0.2$ equiv). The product $\mathbf{3}$ was isolated as an orange oil $(33.0 \mathrm{mg}, 0.090 \mathrm{mmol}$, 45% yield, $86 \% e e$, dr> 20:1).

TLC (DCM/EtOAc 100:0.5) Rf 0.43 (UV, p-anisaldehyde).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$) $\delta(\mathrm{ppm}) 7.22(\mathrm{dd}, J=8.4,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.83(\mathrm{td}, J=7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.60(\mathrm{~m}, 4 \mathrm{H}), 4.88(\mathrm{dd}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=$ $11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm}) 171.2(\mathrm{C}), 162.0\left(\mathrm{~d},{ }^{1} J_{C F}=245.0 \mathrm{~Hz}, \mathrm{CF}\right), 149.5(\mathrm{C})$, $137.6\left(\mathrm{~d},{ }^{4} J_{C F}=3.1 \mathrm{~Hz}, \mathrm{C}\right) .134 .5(\mathrm{C}), 129.8\left(\mathrm{~d},{ }^{3} J_{C F}=8.1 \mathrm{~Hz}, 2 \mathrm{CH}\right), 124.0(\mathrm{CH}), 121.5(\mathrm{CH})$, $120.1(\mathrm{CH}), 115.4\left(\mathrm{~d},{ }^{2} J_{C F}=21.3 \mathrm{~Hz}, 2 \mathrm{CH}\right), 108.6(\mathrm{CH}), 106.9(\mathrm{CH}), 106.8(\mathrm{CH}), 100.6(\mathrm{C})$, $61.1\left(\mathrm{CH}_{3}\right), 48.9(\mathrm{CH}), 42.5(\mathrm{CH}), 32.1\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right)$.
HRMS (ESI) calc'd for $\left[\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F}+\mathrm{H}\right]^{+}: 369.1609$, found: 369.1606 .
HPLC Chiralpak IF, Heptane/Isopropanol $95: 5,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \tau_{\text {minor }}=6.63 \mathrm{~min}$ $\tau_{\text {major }}=7.37 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{25}=186\left(\mathrm{c} 0.115, \mathrm{CHCl}_{3}\right)$.
(3R,4S,4aR)-3-(4-chlorophenyl)- N-methoxy- $N, 4 a$-dimethyl-4,4a-dihydro-3H-benzo[4,5] oxazolo[3,2-a]pyridine-4-carboxamide 4

48% yield, $\mathrm{dr}>20: 1,90 \%$ ee
According to the general procedure for the three-component reactions and starting from N -methoxy- N-methyl-3-oxobutanamide ($29.0 \mathrm{mg}, \quad 0.200 \mathrm{mmol}, 1$ equiv), (2E)-3-(4-chlorophenyl)prop-2-enal ($50.0 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.5$ equiv), 2 -aminophenol ($21.8 \mathrm{mg}, 0.200$ mmol, 1 equiv), benzoic acid $(9.8 \mathrm{mg}, 0.080 \mathrm{mmol}, 0.4$ equiv) and the catalyst (13.0 mg , $0.040 \mathrm{mmol}, 0.2$ equiv). The product 4 was isolated as a brown oil $(37.0 \mathrm{mg}, 0.096 \mathrm{mmol}$, 48% yield, $90 \% e e$, dr> 20:1).

TLC (DCM/EtOAc 100:0.5) Rf 0.45 (UV, p-anisaldehyde).
${ }^{1} \mathbf{H}$ NMR ($\left.400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm}) 7.21-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.83(\mathrm{td}, J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74$ $-6.60(\mathrm{~m}, 4 \mathrm{H}), 4.86(\mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm}) 170.9$ (C), 149.3 (C), 140.5 (C), 134.3 (C), 132.7 (C), $129.5(2 \mathrm{CH}), 128.5(2 \mathrm{CH}), 124.1(\mathrm{CH}), 121.4(\mathrm{CH}), 120.0(\mathrm{CH}), 108.5(\mathrm{CH}), 106.7(\mathrm{CH})$, $106.4(\mathrm{CH}), 100.4(\mathrm{C}), 61.1\left(\mathrm{CH}_{3}\right), 48.5(\mathrm{CH}), 42.5(\mathrm{CH}), 32.1\left(\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{3}\right)$.
HRMS (ESI)calc'd for $\left[\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}: 430.1164$, found: 430.1163.

HPLC Chiralpak AZ-H, Heptane/Isopropanol 90:10, $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \tau_{\text {minor }}=6.23 \mathrm{~min}$ $\tau_{\text {major }}=7.29 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{25}=56.0\left(\mathrm{c} 0.220, \mathrm{CHCl}_{3}\right)$.

(3R,4S,4aR)- N-methoxy- $N, 4 a$-dimethyl-3-(4-nitrophenyl)-4,4a-dihydro-3H-benzo

[4,5]oxazolo [3,2-a]pyridine-4-carboxamide 5

According to the general procedure for the three-component reactions and starting from N -methoxy- N-methyl-3-oxobutanamide $(29.0 \mathrm{mg}, \quad 0.200 \mathrm{mmol}, \quad 1$ equiv), (2E)-3-(4-nitrophenyl)prop-2-enal ($53.1 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.5$ equiv), 2 -aminophenol ($21.8 \mathrm{mg}, 0.200$ mmol, 1 equiv), benzoic acid ($9.8 \mathrm{mg}, 0.080 \mathrm{mmol}, 0.4$ equiv) and the catalyst (13.0 mg , $0.040 \mathrm{mmol}, 0.2$ equiv). The product 5 was isolated as an orange solid ($39.5 \mathrm{mg}, 0.100 \mathrm{mmol}$, 50% yield, $94 \% e e$, dr> 20:1).

TLC (DCM/EtOAc 100:0.5) R 0.37 (UV, p-anisaldehyde).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm}) 8.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.88$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~m}, 4 \mathrm{H}), 4.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}$, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm}) 170.5$ (C), 150.0 (C), 149.2 (C), 147.2 (C), 134.1 (C), $129.1(2 \mathrm{CH}), 124.7(\mathrm{CH}), 123.6(2 \mathrm{CH}), 121.6(\mathrm{CH}), 120.3(\mathrm{CH}), 108.6(\mathrm{CH}), 106.9(\mathrm{CH})$, $104.9(\mathrm{CH}), 100.2(\mathrm{C}), 61.1\left(\mathrm{CH}_{3}\right), 48.3(\mathrm{CH}), 43.0(\mathrm{CH}), 32.1\left(\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{3}\right)$.
HRMS (ESI) calc'd for $\left[\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{5}+\mathrm{H}\right]^{+}: 396.1554$, found: 396.1552.
HPLC Chiralpak AD-H, Heptane/Isopropanol 80:20, $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \tau_{\text {minor }}=7.42 \mathrm{~min}$ $\tau_{\text {major }}=12.00 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{25}=137\left(\mathrm{c} 0.080, \mathrm{CHCl}_{3}\right)$.
m.p. $=74-75^{\circ} \mathrm{C}$.

49% yield, dr > 20:1, 94\% ee
According to the general procedure for the three-component reactions and starting from N -methoxy- N-methyl-3-oxobutanamide ($29.0 \mathrm{mg}, \quad 0.200 \mathrm{mmol}, 1$ equiv), (2E)-3-(3-chlorophenyl)prop-2-enal ($50.0 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.5$ equiv), 2 -aminophenol ($21.8 \mathrm{mg}, 0.200$ mmol, 1 equiv), benzoic acid ($9.8 \mathrm{mg}, 0.080 \mathrm{mmol}, 0.4$ equiv) and the catalyst (13.0 mg , $0.040 \mathrm{mmol}, 0.2$ equiv). The product $\mathbf{6}$ was isolated as an orange oil ($38.0 \mathrm{mg}, 0.099 \mathrm{mmol}$, 49% yield, 94% ee, dr > 20:1).

TLC (DCM/EtOAc 100:0.5) R 0.35 (UV, p-anisaldehyde).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{dd}, J=7.1,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.72-6.61(\mathrm{~m}, 4 \mathrm{H}), 4.88(\mathrm{dd}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J$ $=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta 171.1$ (C), 149.4 (C), 144.2 (C), 134.4 (C), 134.3 (C), 129.7 $(\mathrm{CH}), 128.1(\mathrm{CH}), 127.4(\mathrm{CH}), 126.6(\mathrm{CH}), 124.3(\mathrm{CH}), 121.6(\mathrm{CH}), 120.1(\mathrm{CH}), 108.6(\mathrm{CH})$, $106.8(\mathrm{CH}), 106.2(\mathrm{CH}), 100.5(\mathrm{C}), 612.2\left(\mathrm{CH}_{3}\right), 48.6(\mathrm{CH}), 42.9(\mathrm{CH}), 32.2\left(\mathrm{CH}_{3}\right), 20.9$ $\left(\mathrm{CH}_{3}\right)$.
HRMS (ESI) calc'd for [$\left.\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}+\mathrm{H}\right]^{+}: 385.1313$, found: 385.1313.
HPLC Chiralpak ID, Heptane/Ethanol $95: 5,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \tau_{\text {minor }}=6.34 \mathrm{~min} \tau_{\text {major }}=$ 7.38 min .
$[\alpha]_{\mathrm{D}}{ }^{20}=124\left(\mathrm{c} 0.100, \mathrm{CHCl}_{3}\right)$.
(3R,4S,4aR)-8-chloro- N-methoxy- $N, 4 a$-dimethyl-3-(4-nitrophenyl)-4,4a-dihydro-3H-benzo[4,5]oxazolo[3,2-a]pyridine-4-carboxamide 7

43% yield, dr > 20:1, 90% ee
According to the general procedure for the three-component reactions and starting from N -methoxy- N-methyl-3-oxobutanamide $(29.0 \mathrm{mg}, \quad 0.200 \mathrm{mmol}, 1$ equiv), (2E)-3-(4-
nitrophenyl)prop-2-enal ($53.1 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.5$ equiv), 2-amino-4-chlorophenol (28.7 mg , $0.200 \mathrm{mmol}, 1$ equiv), benzoic acid ($9.8 \mathrm{mg}, 0.080 \mathrm{mmol}, 0.4$ equiv) and the catalyst (13.0 $\mathrm{mg}, 0.040 \mathrm{mmol}, 0.2$ equiv). The product 7 was isolated as an orange solid ($37.0 \mathrm{mg}, 0.086$ mmol, 43% yield, 90% ee, dr> 20:1).

TLC (DCM/EtOAc 100:0.5) Rf 0.29 (UV, p-anisaldehyde).
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm}) 8.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.69$ $-6.54(\mathrm{~m}, 4 \mathrm{H}), 4.92(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=11.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm}) 170.1$ (C), 149.5 (C), 148.0 (C), 147.2 (C), 135.2 (C), $129.1(2 \mathrm{CH}), 126.6(\mathrm{C}), 124.2(\mathrm{CH}), 123.7(2 \mathrm{CH}), 119.6(\mathrm{CH}), 108.9(\mathrm{CH}), 107.4(\mathrm{CH})$, $106.3(\mathrm{CH}), 101.3(\mathrm{C}), 61.1\left(\mathrm{CH}_{3}\right), 48.3(\mathrm{CH}), 43.0(\mathrm{CH}), 32.1\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right)$.
HRMS (ESI) calc'd for $\left[\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Cl}+\mathrm{Na}\right]^{+}: 452.0984$, found: 452.0984 .
HPLC Chiralcel OD-3, Heptane/Isopropanol 80:20, $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \tau_{\text {minor }}=6.87 \mathrm{~min}$ $\tau_{\text {major }}=13.51 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{25}=218\left(\mathrm{c} 0.095, \mathrm{CHCl}_{3}\right)$.
m.p. $=85-87^{\circ} \mathrm{C}$.

(3R,4S,4aR)-7-chloro- N-methoxy- $N, 4 a$-dimethyl-3-(4-nitrophenyl)-4,4a-dihydro-3Hbenzo[4,5]oxazolo $[3,2-a$]pyridine-4-carboxamide 8

41% yield, $\mathrm{dr}>20: 1,92 \%$ ee
According to the general procedure for the three-component reactions and starting from N -methoxy- N-methyl-3-oxobutanamide ($29.0 \mathrm{mg}, \quad 0.200 \mathrm{mmol}, \quad 1$ equiv), (2E)-3-(4-nitrophenyl)prop-2-enal ($53.1 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.5$ equiv), 2-amino-5-chlorophenol (28.7 mg , $0.200 \mathrm{mmol}, 1$ equiv), benzoic acid ($9.8 \mathrm{mg}, 0.080 \mathrm{mmol}, 0.4$ equiv) and the catalyst (13.0 $\mathrm{mg}, 0.040 \mathrm{mmol}, 0.2$ equiv). The product $\mathbf{8}$ was isolated as an orange solid ($35.0 \mathrm{mg}, 0.081$ mmol, 41% yield, $92 \% e e$, dr> 20:1).

TLC (DCM/EtOAc 100:0.5) Rf 0.28 (UV, p-anisaldehyde).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm}) 8.17-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{dd}$, $J=8.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=7.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.89(\mathrm{dd}, J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.37 (s, 3H), 3.00 (s, 3H), 1.73 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z , ~ C D C l} 3$) $\delta(\mathrm{ppm}) 170.2$ (C), 150.0 (C), 149.6 (C), 147.2 (C), 133.0 (C), $129.1(2 \mathrm{CH}), 124.8(\mathrm{C}), 124.4(\mathrm{CH}), 123.7(2 \mathrm{CH}), 121.3(\mathrm{CH}), 109.5(\mathrm{CH}), 107.0(\mathrm{CH})$, $105.6(\mathrm{CH}), 101.4(\mathrm{C}), 61.2\left(\mathrm{CH}_{3}\right), 48.3(\mathrm{CH}), 42.9(\mathrm{CH}), 32.1\left(\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{3}\right)$.

HRMS (ESI) calc'd for $\left[\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Cl}+\mathrm{H}\right]^{+}: 430.1164$, found: 430.1163.
HPLC Chiralpak AD-H, Heptane/Isopropanol 80:20, $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \tau_{\text {minor }}=5.87 \mathrm{~min}$ $\tau_{\text {major }}=10.16 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{25}=63.7\left(\mathrm{c} 0.110, \mathrm{CHCl}_{3}\right)$.
m.p. $=77-79^{\circ} \mathrm{C}$.

(3R,4S,4aR)- N-methoxy- $N, 4 a, 9$-trimethyl-3-(4-nitrophenyl)-4,4a-dihydro-3H-benzo[4,5] oxazolo[3,2-a]pyridine-4-carboxamide 9

45% yield, $\mathrm{dr}>20: 1,90 \%$ ee
According to the general procedure for the three-component reactions and starting from N -methoxy- N-methyl-3-oxobutanamide $(29.0 \mathrm{mg}, \quad 0.200 \mathrm{mmol}, 1$ equiv), (2E)-3-(4-nitrophenyl)prop-2-enal ($53.1 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.5$ equiv), 2-amino-3-methylphenol (24.6 $\mathrm{mg}, 0.200 \mathrm{mmol}, 1$ equiv), benzoic acid ($9.8 \mathrm{mg}, 0.080 \mathrm{mmol}, 0.4$ equiv) and the catalyst ($13.0 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.2$ equiv). The product 9 was isolated as an orange solid (36.0 mg , $0.088 \mathrm{mmol}, 45 \%$ yield, $90 \% e e$, dr> 20:1).

TLC (DCM/EtOAc 100:0.5) Rf 0.29 (UV, p-anisaldehyde).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm}) 8.11(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.99$ (dd, $J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.60(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{dd}, J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.77$ (dd, $J=$ $8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~s}$, 3H), 2.42 ($\mathrm{s}, 3 \mathrm{H}$), 1.73 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm}) 170.7$ (C), 150.2 (C), 149.2 (C), 147.1 (C), 131.6 (C), $129.1(2 \mathrm{CH}), 126.3(\mathrm{CH}), 124.6(\mathrm{CH}), 123.6(2 \mathrm{CH}), 120.4(\mathrm{CH}), 119.0(\mathrm{C}), 106.6(\mathrm{CH})$, $104.2(\mathrm{CH}), 99.6(\mathrm{C}), 61.2\left(\mathrm{CH}_{3}\right), 48.6\left(\mathrm{CH}_{3}\right), 42.6(\mathrm{CH}), 32.1(\mathrm{CH}), 20.6\left(\mathrm{CH}_{3}\right), 18.7\left(\mathrm{CH}_{3}\right)$.
HRMS (ESI) calc'd for $\left[\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5}+\mathrm{H}\right]^{+}: 410.1710$, found: 410.1711.
HPLC Lux-Cellulose-4, Heptane/Isopropanol 80:20, $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \tau_{\text {minor }}=9.35 \mathrm{~min}$
$\tau_{\text {major }}=11.23 \mathrm{~min}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=36.9\left(\mathrm{c} 0.095, \mathrm{CHCl}_{3}\right)$.
m.p. $=89-90^{\circ} \mathrm{C}$

45\% yield, dr > 20:1, 92\% ee
According to the general procedure for the three-component reactions and starting from N -methoxy- N-methyl-3-oxobutanamide $(29.0 \mathrm{mg}, \quad 0.200 \mathrm{mmol}, 1$ equiv), (2E)-3-(4-nitrophenyl)prop-2-enal ($53.1 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.5$ equiv), 6 -amino- m-cresol ($24.6 \mathrm{mg}, 0.200$ mmol, 1 equiv), benzoic acid ($9.8 \mathrm{mg}, 0.080 \mathrm{mmol}, 0.4$ equiv) and the catalyst (13.0 mg , $0.040 \mathrm{mmol}, 0.2$ equiv). The product $\mathbf{1 0}$ was isolated as an orange solid ($36.0 \mathrm{mg}, 0.088$ mmol, 45% yield, $92 \% e e$, dr> 20:1).

TLC (DCM/EtOAc 100:0.5) R 0.28 (UV, p-anisaldehyde).
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm}) \delta 8.17-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.38(\mathrm{~m}, 2 \mathrm{H}), 6.68-6.63$ $(\mathrm{m}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{dd}, J=7.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=$ $11.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}$, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm}){ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8(\mathrm{C}), 150.3(\mathrm{C})$, 149.4 (C), 147.2 (C), 132.0 (C), 130.4 (C), $129.2(2 \mathrm{CH}), 125.1(\mathrm{CH}), 123.7(2 \mathrm{CH}), 121.6$ $(\mathrm{CH}), 109.7(\mathrm{CH}), 106.6(\mathrm{CH}), 104.4(\mathrm{CH}), 100.4(\mathrm{C}), 61.3\left(\mathrm{CH}_{3}\right), 48.4\left(\mathrm{CH}_{3}\right), 43.0(\mathrm{CH})$, $32.2(\mathrm{CH}), 21.3\left(\mathrm{CH}_{3}\right), 21.0\left(\mathrm{CH}_{3}\right)$.
HRMS (ESI) calc'd for $\left[\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5}+\mathrm{H}\right]^{+}: 410.1710$, found: 410.1711.
HPLC Chiralpak IF, Heptane/Isopropanol $80: 20,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \tau_{\text {minor }}=6.57 \mathrm{~min}$ $\tau_{\text {major }}=8.75 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{25}=255\left(\mathrm{c} 0.090, \mathrm{CHCl}_{3}\right)$.
m.p. $=73-74^{\circ} \mathrm{C}$.

(3R,4S,4aR)-N-methoxy-N,4a-dimethyl-3-(4-nitrophenyl)-4,4a-dihydro-3H-naphtho [2',3':4,5]oxazolo[3,2-a]pyridine-4-carboxamide 11

55\% yield, dr > 20:1, 96\% ee

According to the general procedure for the three-component reactions and starting from N -methoxy- N-methyl-3-oxobutanamide $(29.0 \mathrm{mg}, \quad 0.200 \mathrm{mmol}, \quad 1$ equiv), (2E)-3-(4-
nitrophenyl)prop-2-enal ($53.1 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.5$ equiv), 3-aminonaphthalen-2-ol (31.8 mg , $0.200 \mathrm{mmol}, 1$ equiv), benzoic acid ($9.8 \mathrm{mg}, 0.080 \mathrm{mmol}, 0.4$ equiv) and the catalyst (13.0 $\mathrm{mg}, 0.040 \mathrm{mmol}, 0.2$ equiv). The product 11 was isolated as an orange solid ($49.0 \mathrm{mg}, 0.110$ $\mathrm{mmol}, 55 \%$ yield, $96 \% e e$, dr> 20:1).

2-mmol scale reaction: According to the general procedure for the three-component reactions, a larger amount of ($3 R, 4 S, 4 a R$)- N-methoxy- $N, 4 a$-dimethyl-3-(4-nitrophenyl)-4,4a-dihydro$3 H$ naphtho $\left[2 ', 3^{\prime}: 4,5\right]$ oxazolo[3,2-a]pyridine-4-carboxamide was prepared starting from N -methoxy- N-methyl-3-oxobutanamide ($290 \mathrm{mg}, 2 \mathrm{mmol}, 1$ equiv), ($2 E$)-3-(4-nitrophenyl)prop2 -enal ($531 \mathrm{mg}, 3 \mathrm{mmol}, 1.5$ equiv), 3 -aminonaphthalen 2 -ol ($318 \mathrm{mg}, 2 \mathrm{mmol}, 1$ equiv), benzoic acid ($98 \mathrm{mg}, 0.800 \mathrm{mmol}, 0.4$ equiv) and the catalyst ($130 \mathrm{mg}, 0.400 \mathrm{mmol}, 0.2$ equiv). The product 11 was isolated as an orange solid ($472 \mathrm{mg}, 1.06 \mathrm{mmol}, 53 \%$ yield, 94% $e e$, dr>20:1).

TLC (DCM/EtOAc 100:0.5) Rf 0.39 (UV, p-anisaldehyde).
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm}) 8.12(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H})$, $6.84(\mathrm{dd}, J=7.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{dd}, J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.65$ (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm}) 170.3(\mathrm{C}), 149.7$ (C), 149.6 (C), 147.2 (C), 134.2 (C), $130.8(\mathrm{C}), 129.9(\mathrm{C}), 129.1(2 \mathrm{CH}), 126.9(\mathrm{CH}), 126.1(\mathrm{CH}), 124.5(\mathrm{CH}), 124.2(\mathrm{CH}), 123.7$ $(3 \mathrm{CH}), 106.4(\mathrm{CH}), 103.8(\mathrm{CH}), 101.5(\mathrm{CH}), 100.3(\mathrm{C}), 61.2\left(\mathrm{CH}_{3}\right), 48.9(\mathrm{CH}), 43.2(\mathrm{CH})$, $32.1\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right)$.
HRMS (ESI) calc'd for $\left[\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5}+\mathrm{H}\right]^{+}: 446.1710$, found: 446.1709.
HPLC Chiralpak IA, Heptane/Isopropanol $80: 20,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \tau_{\text {minor }}=7.03 \mathrm{~min}$
$\tau_{\text {major }}=8.01 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{25}=281.6\left(\mathrm{c} 0.100, \mathrm{CHCl}_{3}\right)$.
m.p. $=112-113^{\circ} \mathrm{C}$.
(3R,4S,4aR)-N-methoxy-N,4a-dimethyl-3-phenyl-4,4a-dihydro-3H-naphtho[2',3':4,5] oxazolo[3,2-a]pyridine-4-carboxamide 12

43% yield, $\mathrm{dr}>20: 1,94 \%$ ee
$\underline{2-m m o l ~ s c a l e ~ r e a c t i o n: ~ A c c o r d i n g ~ t o ~ t h e ~ g e n e r a l ~ p r o c e d u r e ~ f o r ~ t h e ~ t h r e e-c o m p o n e n t ~ r e a c t i o n s, ~}$ a larger amount of ($3 \mathrm{R}, 4 \mathrm{~S}, 4 \mathrm{a} \mathrm{R}$)- N -methoxy- $\mathrm{N}, 4 \mathrm{a}$-dimethyl-3-phenyl-4,4a-dihydro- 3 H naphtho $\left[2^{\prime}, 3^{\prime}: 4,5\right]$ oxazolo [3,2-a]pyridine-4-carboxamide was prepared starting from N -
methoxy- N-methyl-3-oxobutanamide ($290 \mathrm{mg}, 2 \mathrm{mmol}, 1$ equiv), ($2 E$)-cinnamaldehyde (378 $\mu \mathrm{L}, 3 \mathrm{mmol}, 1.5$ equiv), 3 -aminonaphthalen- 2 -ol ($318 \mathrm{mg}, 2 \mathrm{mmol}, 1$ equiv), benzoic acid (98 $\mathrm{mg}, 0.800 \mathrm{mmol}, 0.4$ equiv) and the catalyst ($130 \mathrm{mg}, 0.400 \mathrm{mmol}, 0.2$ equiv). The product 12 was isolated as a yellow oil ($344 \mathrm{mg}, 0.859 \mathrm{mmol}, 43 \%$ yield, 94% ee, $\mathrm{dr}>20: 1$).

TLC (DCM/EtOAc 100:0.5) Rf 0.38 (UV, p-anisaldehyde).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta(\mathrm{ppm}) 7.63(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ $-7.13(\mathrm{~m}, 7 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=7.6,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 1.81$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm}) 171.0$ (C), 150.2 (C), 141.7 (C), 134.8 (C), 131.0 (C), $129.9(\mathrm{C}), 128.5(2 \mathrm{CH}), 128.2(2 \mathrm{CH}), 127.3(\mathrm{CH}), 126.9(\mathrm{CH}), 126.1(\mathrm{CH}), 124.4(\mathrm{CH})$, $123.5(\mathrm{CH}), 123.4(\mathrm{CH}), 108.8(\mathrm{CH}), 103.7(\mathrm{CH}), 101.1(\mathrm{CH}), 100.8(\mathrm{C}), 61.1\left(\mathrm{CH}_{3}\right), 49.5$ $(\mathrm{CH}), 43.5(\mathrm{CH}), 32.1\left(\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{3}\right)$.
HRMS (ESI) calc'd for $\left[\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}: 401.1865$, found: 401.1866.
HPLC Chiralpak AZ-H, Heptane/Isopropanol 95:5, $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \tau_{\text {minor }}=11.36 \mathrm{~min}$ $\tau_{\text {major }}=14.39 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{25}=54.5\left(\mathrm{c} 0.090, \mathrm{CHCl}_{3}\right)$.

(3R,4S,4aR)- $N, N, 4 a$-trimethyl-3-(4-nitrophenyl)-4,4a-dihydro-3H-benzo[4,5]oxazolo[3,2-a]pyridine-4-carboxamide 13

29% yield, $\mathrm{dr}>20: 1,92 \%$ ee
According to the general procedure for the three-component reactions and starting from N, N dimethylacetoacetamide ($24.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 1$ equiv), ($2 E$)-3-(4-nitrophenyl)prop-2-enal ($53.1 \mathrm{mg}, 0.300 \mathrm{mmol}$, 1.5 equiv), 2-aminophenol ($21.8 \mathrm{mg}, 0.200 \mathrm{mmol}, 1$ equiv), benzoic acid ($9.8 \mathrm{mg}, 0.080 \mathrm{mmol}, 0.4$ equiv) and the catalyst ($13.0 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.2$ equiv). The product $\mathbf{1 3}$ was isolated as an orange solid ($22.0 \mathrm{mg}, 0.058 \mathrm{mmol}, 29 \%$ yield, $92 \% \mathrm{ee}$, dr> 20:1).

TLC (DCM/EtOAc 100:0.5) Rf 0.21 (UV, p-anisaldehyde).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm}) 8.10(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.90$ $-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.77-6.65(\mathrm{~m}, 4 \mathrm{H}), 4.85(\mathrm{dd}, J=7.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.28(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm}){ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.9$ (C), 150.6 (C), 149.1 (C), 147.1 (C), 134.2 (C), $129.1(2 \mathrm{CH}), 124.5(\mathrm{CH}), 123.7(2 \mathrm{CH}), 121.8(\mathrm{CH}), 120.3$
$(\mathrm{CH}), 108.6(\mathrm{CH}), 107.0(\mathrm{CH}), 105.5(\mathrm{CH}), 100.8(\mathrm{C}), 49.7(\mathrm{CH}), 42.9(\mathrm{CH}), 38.0\left(\mathrm{CH}_{3}\right)$, $36.2\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right)$.
HRMS (ESI) calc'd for $\left[\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}+\mathrm{H}\right]^{+}: 380.1605$, found: 380.1602.
HPLC Chiralpak IA, Heptane/Isopropanol $80: 20,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \tau_{\text {minor }}=5.58 \mathrm{~min}$ $\tau_{\text {major }}=6.42 \mathrm{~min}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{25}=86.7\left(\mathrm{c} 0.090, \mathrm{CHCl}_{3}\right)$.
m.p. $=69-71{ }^{\circ} \mathrm{C}$

(3R,4S,4aR)-N,N-dibenzyl-4a-methyl-3-(4-nitrophenyl)-4,4a-dihydro-3H-benzo[4,5] oxazolo[3,2-a]pyridine-4-carboxamide 14

34% yield, $\mathrm{dr}>20: 1,92 \%$ ee
According to the general procedure for the three-component reactions and starting from $\mathrm{N}, \mathrm{N}-$ dibenzyl-3-oxobutanamide ($56.3 \mathrm{mg}, 0.200 \mathrm{mmol}, 1$ equiv), ($2 E$)-3-(4-nitrophenyl)prop-2enal ($53.1 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.5$ equiv), 2 -aminophenol ($21.8 \mathrm{mg}, 0.200 \mathrm{mmol}$, 1 equiv), benzoic acid ($9.8 \mathrm{mg}, 0.080 \mathrm{mmol}, 0.4$ equiv) and the catalyst ($13.0 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.2$ equiv). The product $\mathbf{1 4}$ was isolated as an orange oil ($36.0 \mathrm{mg}, 0.068 \mathrm{mmol}, 34 \%$ yield, 92% $e e, \mathrm{dr}>20: 1$).

TLC (DCM/EtOAc 97:3) Rf 0.45 (UV, p-anisaldehyde).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm}) 8.03(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.29$ $-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.65(\mathrm{~m}, 3 \mathrm{H}), 6.60(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.96$ (d, $J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{dd}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=$ $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, 1.77 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm}) 169.6$ (C), 150.4 (C), 148.8 (C), 147.1 (C), 136.8 (C), $136.1(\mathrm{C}), 134.1(\mathrm{C}), 129.5(2 \mathrm{CH}), 128.6(4 \mathrm{CH}), 127.6(\mathrm{CH}), 127.4(2 \mathrm{CH}), 127.3(\mathrm{CH})$, $126.3(2 \mathrm{CH}), 124.5(\mathrm{CH}), 123.7(2 \mathrm{CH}), 121.9(\mathrm{CH}), 120.4(\mathrm{CH}), 108.7(\mathrm{CH}), 107.0(\mathrm{CH})$, $105.5(\mathrm{CH}), 100.7(\mathrm{C}), 50.4\left(\mathrm{CH}_{2}\right), 50.3(\mathrm{CH}), 48.8\left(\mathrm{CH}_{2}\right), 42.9(\mathrm{CH}), 21.1\left(\mathrm{CH}_{3}\right)$.
HRMS (ESI) calc'd for $\left[\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4}+\mathrm{H}\right]^{+}: 532.2231$, found: 532.2233 .
HPLC Chiralpak IA, Heptane/Isopropanol $80: 20,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \tau_{\text {minor }}=6.29 \mathrm{~min}$ $\tau_{\text {major }}=8.81 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{25}=147\left(\mathrm{c} 0.115, \mathrm{CHCl}_{3}\right)$.

3.2 Procedures for the post-functionalization of product 11:

(3R,4S,4aR)-3-(4-aminophenyl)- N-methoxy- $N, 4 a$-dimethyl-2,3,4,4a-tetrahydro-1H-naphtho[2',3':4,5]oxazolo[3,2-a]pyridine-4-carboxamide 15

91\% yield, dr > 20:1, 94\% ee

The previously described ($3 R, 4 S, 4 a R$)- N-methoxy- $N, 4 a$-dimethyl-3-(4-nitrophenyl)-4,4a-dihydro-3H naphtho $\left[2^{\prime}, 3^{\prime}: 4,5\right]$ oxazolo[3,2-a]pyridine-4-carboxamide 11 ($20 \mathrm{mg}, 0.045 \mathrm{mmol}$, 1 equiv) was dissolved in methanol (2 mL) under an argon atmosphere. Then, $\mathrm{Pd} / \mathrm{C}(4 \mathrm{mg}$, $0.038 \mathrm{mmol}, 20 \mathrm{wt} . \%$) was added to the solution before flushing the reaction mixture with hydrogen. The reaction was stirred at room temperature during 13 h . After filtration on celite and washing with dichloromethane, solvents were removed under vaccum. Purification over silica gel (dichloromethane/ethyl acetate (gradient from 80:20 to 2:1)) directly yielded the corresponding hydrogenated product 15 as a red solid ($17 \mathrm{mg}, 0.041 \mathrm{mmol}, 91 \%$ yield, 94% $e e$, dr>20:1).

TLC (DCM/EtOAc 100:0.5) Rf 0.35 (UV, p-anisaldehyde).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $7.59(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.34(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.87(\mathrm{~m}$, $3 \mathrm{H}), 6.65-6.57(\mathrm{~m}, 3 \mathrm{H}), 3.88(\mathrm{dd}, J=14.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}$, 3 H), $3.44-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{td}, J=13.0$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H})$. The 2 H of the NH_{2} group appear as a very broad and flat signal between 4.40 and 2.60 ppm .
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z , ~ C D C l} 3$) 171.8 (C), 149.9 (C), 143.7 (C), 139.0 (C), 133.3 (C), 131.5 (C), $129.4(\mathrm{C}), 128.6(2 \mathrm{CH}), 126.8(\mathrm{CH}), 125.8(\mathrm{CH}), 124.2(\mathrm{CH}), 122.7(\mathrm{CH}), 115.8(2 \mathrm{CH})$, $103.8(\mathrm{CH}), 102.2(\mathrm{C}), 99.5(\mathrm{CH}), 61.4\left(\mathrm{CH}_{3}\right), 49.4(\mathrm{CH}), 42.9(\mathrm{CH}), 41.7\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{CH}_{3}\right)$, $30.5\left(\mathrm{CH}_{2}\right), 20.3\left(\mathrm{CH}_{3}\right)$.
HRMS (ESI) calc'd for $\left[\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3}+\mathrm{H}\right]^{+}: 418.2125$, found: 418.2122 .
HPLC Lux-Cellulose-4, Heptane/Ethanol 80:20, $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \tau_{\text {minor }}=18.99 \mathrm{~min}$ $\tau_{\text {major }}=21.02 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{25}=112\left(\mathrm{c} 0.095, \mathrm{CHCl}_{3}\right)$.
m.p. $=126-127^{\circ} \mathrm{C}$.

77\% yield, dr > 20:1, 90\% ee
A mixture of (3R,4S,4aR)-N-methoxy- $N, 4 a$-dimethyl-3-(4-nitrophenyl)-4,4a-dihydro-3H naphtho[2',3':4,5]oxazolo[3,2-a]pyridine-4-carboxamide $11(20 \mathrm{mg}, 0.045 \mathrm{mmol}, 1$ equiv), potassium phenylacetylenetrifluoroborate ($11.2 \mathrm{mg}, 0.054 \mathrm{mmol}, 1.2$ equiv) and scandium triflate ($2.2 \mathrm{mg}, 0.004 \mathrm{mmol}, 0.1$ equiv) was dissolved in 2 mL dichloromethane under argon atmosphere. The reaction mixture was stirred at room temperature during 13h. After filtration on celite, the dichloromethane were removed under vaccum. Purification over silica gel (dichloromethane/ethyl acetate (100:0.5)) directly yielded the desired product $\mathbf{1 6}$ as pale yellow solid ($19 \mathrm{mg}, 0.035 \mathrm{mmol}, 77 \%$ yield, $90 \% e e$, dr> 20:1).

TLC (DCM/EtOAc 100:0.5) Rf 0.35 (UV, p-anisaldehyde).
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm}) 8.17-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.50$ $(\mathrm{m}, 2 \mathrm{H}), 7.42-7.23(\mathrm{~m}, 7 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=5.2$ and $1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.02-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.06(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm}) 170.8$ (C), 149.4 (C), 148.8 (C), 147.1 (C), 137.8 (C), $131.8(2 \mathrm{CH}), 131.2(\mathrm{C}), 129.7(\mathrm{C}), 129.0(\mathrm{CH}), 128.8(2 \mathrm{CH}), 128.6(2 \mathrm{CH}), 126.9(\mathrm{CH})$, $126.1(\mathrm{CH}), 124.5(\mathrm{CH}), 123.9(2 \mathrm{CH}), 123.4(\mathrm{CH}), 122.4(\mathrm{C}), 104.2(\mathrm{CH}), 102.3(\mathrm{C}), 100.3$ $(\mathrm{CH}), 87.2(\mathrm{C}), 85.1(\mathrm{C}), 61.5\left(\mathrm{CH}_{3}\right), 49.2\left(\mathrm{CH}_{3}\right), 45.0\left(\mathrm{CH}_{3}\right), 40.1(\mathrm{CH}), 36.2\left(\mathrm{CH}_{2}\right), 32.2$ $(\mathrm{CH}), 23.2(\mathrm{CH})$.
HRMS (ESI) calc'd for $\left[\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5}+\mathrm{H}\right]^{+}: 548.2180$, found: 548.2180.
HPLC Lux-Cellulose-2, Heptane/Ethanol 70:30, $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \tau_{\text {major }}=8.96 \mathrm{~min}$ $\tau_{\text {minor }}=9.91 \mathrm{~min}$. $[\alpha]_{\mathrm{D}}{ }^{25}=49.5\left(\mathrm{c} 0.090, \mathrm{CHCl}_{3}\right)$. m.p. $=136-137{ }^{\circ} \mathrm{C}$.

4.DETERMINATION OF Relative Configurations:

4.1 Absolute Configurations of the products of the multicomponent reaction 1-14:

Even though no definitive proof for the absolute configuration could be obtained, it could be tentatively deduced from the previous results by Jørgensen and coworkers. ${ }^{2}$ The fact that the sequential reaction (Table 1, entry 9), in which the Michael addition is performed in the absence of the 2-aminophenol, affords the product with the same absolute configuration as the multicomponent reaction (Table 1, entry 8) tends to show that the 2 -aminphenol has no direct influence on the enantiodiscriminating step. As a consequence, the absolute configuration of the 1,2,3,4-tetrahydropyridines $\mathbf{1 - 1 4}$ can be attributed with reasonable confidence by comparison with the results obtained by Jørgensen.

Jørgensen and co-workers:

Sequential reaction (Table 1, entry 8):

$10^{\circ} \mathrm{C}, 24 \mathrm{~h}$

1

Multicomponent reaction (Table 1, entry 9):

[^2]
4.2 Relative Configurations of the products of the multicomponent reaction 1-14:

The absolute configurations of the products were determined by analogy with related organocatalytic Michael additions. ${ }^{3}$ With the use of (S)-catalyst, the title multicomponent reaction delivers the product with a $(3 R)$-configuration.

The relative configurations of the products were assigned by the analysis of the coupling constants in ${ }^{1} \mathrm{H}$ NMR and NOESY experiments (the study below is given on compound 11). At first, all the signals of the protons and carbon atoms were attributed thanks to 2D NMR studies (COSY, HMQC, HMBC). These 2D NMR spectra are presented at the end of this discussion on the relative configuration.

11

Attributions:

The attribution of protons and carbon atoms 3 and 4 can be done thanks to HMQC and HMBC experiments:

- The HMQC spectrum shows that the carbon atom at 43.2 ppm is linked to the proton at 4.18 ppm whereas the carbon atom at 48.9 ppm is linked to the proton at 3.65 ppm (see below)
- In HMBC, we can see interactions between C_{3} at 43.2 ppm and $\mathrm{H}_{2}(4.98 \mathrm{ppm}), \mathrm{H}_{1}$ (6.84 ppm) and H_{20} and $\mathrm{H}_{24}(7.44 \mathrm{ppm}$) (see below).
- In HMBC, we can see interactions between C_{4} at 48.9 ppm and $\mathrm{H}_{15}(1.79 \mathrm{ppm})$ and H_{2} (4.98 ppm) (see below).
- There is also an interaction between H_{4} at 3.65 ppm and $\mathrm{C}_{4 \mathrm{a}}$ at 110.3 ppm .

The attribution of protons and carbon atoms $6,13,8$ and 11 can be done thanks to NOESY and HMBC experiments:

- In the NOESY experiment, H_{1} (which can be identified by its NOESY, HMBC and HMQC couplings with H_{2} and C_{2}) only interacts with one proton of the napthyl

[^3]moeity: it is H_{13} at 6.90 ppm (see below) and we can deduce that H_{6} is located just near to H_{13} at 6.97 ppm .

- H_{13} interacts with H_{11} at 7.63 ppm and H_{6} interacts with H_{8} at 7.58 ppm (see below)

- On the HMBC spectrum, H_{13} at 6.90 ppm interacts with C_{14} at $149.7 \mathrm{ppm}, \mathrm{H}_{6}$ at 6.97 ppm interacts with C_{5} at 134.2 ppm . Moreover, H_{11} at 7.63 ppm interacts with C_{12} at $129.9 \mathrm{ppm}, \mathrm{H}_{8}$ at 7.58 ppm interacts with C_{7} at 130.8 ppm (see below).
- On the other aromatic system, H_{2} at $4.98 \mathrm{ppm}, \mathrm{H}_{3}$ at $4.18 \mathrm{ppm}, \mathrm{H}_{4}$ at 3.65 ppm and $\mathrm{H}_{20,24}$ at 7.44 ppm interact with C_{19} at 149.6 ppm , whereas $\mathrm{H}_{21,23}$ at 8.12 ppm and $\mathrm{H}_{20,24}$ at 7.44 pm interact with C_{22} at 147.2 ppm (see below).

Based on these observations, we can give the following attributions:
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm}) 8.12\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{21}\right.$ and $\left.\mathrm{H}_{23}\right), 7.63(\mathrm{~d}, J=7.9$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{11}\right), 7.58\left(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{8}\right), 7.44\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{20}\right.$ and $\left.\mathrm{H}_{24}\right), 7.36-7.20$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{9}\right.$ and $\left.\mathrm{H}_{10}\right), 6.97\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 6.90\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{13}\right), 6.84\left(\mathrm{dd}, J=7.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right)$, $4.98\left(\mathrm{dd}, J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 4.18\left(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 3.65(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}$, H_{4}), 3.38 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{18}$), 3.03 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{17}$), 1.79 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{15}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm}) 170.3\left(\mathrm{C}_{16}\right), 149.7\left(\mathrm{C}_{14}\right), 149.6\left(\mathrm{C}_{19}\right)$, $147.2\left(\mathrm{C}_{22}\right)$, $134.2\left(\mathrm{C}_{5}\right), 130.8\left(\mathrm{C}_{7}\right), 129.9\left(\mathrm{C}_{12}\right), 129.1\left(\mathrm{C}_{20}\right.$ and $\left.\mathrm{C}_{24}\right), 126.9\left(\mathrm{C}_{8}\right), 126.1\left(\mathrm{C}_{11}\right), 124.5\left(\mathrm{C}_{10}\right)$, $124.2\left(\mathrm{C}_{1}\right), 123.7\left(\mathrm{C}_{9}, \mathrm{C}_{21}\right.$ and $\left.\mathrm{C}_{23}\right), 106.4\left(\mathrm{C}_{2}\right), 103.8\left(\mathrm{C}_{6}\right), 101.5\left(\mathrm{C}_{13}\right), 100.3\left(\mathrm{C}_{4 \mathrm{a}}\right), 61.2$ $\left(\mathrm{C}_{18}\right), 48.9\left(\mathrm{C}_{4}\right), 43.2\left(\mathrm{C}_{3}\right), 32.1\left(\mathrm{C}_{17}\right), 20.7\left(\mathrm{C}_{15}\right)$.

Relative configurations:

On the schemes of the tetrahydropyridine ring presented below, the Weinreb amide is noted R and the two alkenyl protons are omitted for clarity. By application of Karplus equation:

- The ${ }^{2} J_{\text {gem }}$ between two geminal protons will have values between 11 and 14 Hz .
- The ${ }^{3} J_{\text {ax-ax }}$ between two axial protons on adjacent carbons will have values between 11 and 14 Hz .
- The ${ }^{3} J_{\text {ax-eq }}$ and ${ }^{3} J_{\text {eq-eq }}$ between two protons on adjacent carbons that are not both in axial positions will have values between 2 and 7 Hz .

Relative configuration at C_{4} : In the ${ }^{1} \mathrm{H}$ NMR spectrum, the coupling constants of 11.7 Hz between H_{3} and H_{4} clearly indicates that those protons are in a trans-diaxial relationship, allowing determining the relative configuration at carbon C_{4}.

Relative configuration at $\mathrm{C}_{4 \mathrm{a}}:$ The NOE interaction between the $3 \mathrm{H}_{15}$ of the methyl group and H_{3} confirms that both groups are located in close proximity, on the same side on the polycyclic ring system, allowing the determination of the relative configuration at $\mathrm{C}_{4 \mathrm{a}}$.

COSY

HMBC

YD209-HMBC.2.ser
HMBC-gradients-nuit CDCI3 $\{\mathrm{C}: \backslash$ Bruker\TOPSPIN $\}$ bugaut 4

4.3 Relative configuration of the product of postfunctionalization 16:

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta(\mathrm{ppm}) 8.17-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.50$ $(\mathrm{m}, 2 \mathrm{H}), 7.42-7.23(\mathrm{~m}, 7 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=5.2$ and $1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.02-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.06(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm}) 170.8$ (C), 149.4 (C), 148.8 (C), 147.1 (C), 137.8 (C), $131.8(2 \mathrm{CH}), 131.2(\mathrm{C}), 129.7(\mathrm{C}), 129.0(\mathrm{CH}), 128.8(2 \mathrm{CH}), 128.6(2 \mathrm{CH}), 126.9(\mathrm{CH})$, $126.1(\mathrm{CH}), 124.5(\mathrm{CH}), 123.9(2 \mathrm{CH}), 123.4(\mathrm{CH}), 122.4(\mathrm{C}), 104.2(\mathrm{CH}), 102.3(\mathrm{C}), 100.3$ $(\mathrm{CH}), 87.2(\mathrm{C}), 85.1(\mathrm{C}), 61.5\left(\mathrm{CH}_{3}\right), 49.2\left(\mathrm{CH}_{3}\right), 45.0\left(\mathrm{CH}_{3}\right), 40.1(\mathrm{CH}), 36.2\left(\mathrm{CH}_{2}\right), 32.2$ (CH), $23.2(\mathrm{CH})$.

For the signal at 5.21 ppm , both coupling constants of 5.2 and 1.9 Hz are in the range of a classic ${ }^{3} J_{\text {ax-eq }}$ and ${ }^{3} J_{\text {eq-eq }}$ interactions, respectively, showing that the alkyne was added in axial position. On the scheme below, the Weinreb amide is noted E and the para-nitro aromatic Ar.

5. ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA:

3

5


```
\underbrace山<l
```


10

6. HPLC TRaces:

1
Sample : IIIHD137-dia
Method description : Chiralpak AZ-H, Hexane/Isopropanol 90/10, $1 \mathrm{ml} / \mathrm{min}$, UV 254 nm et CD254nm

Sample : IIIHD072-rac-AZ-H
Method description : Chiralpak AZ-H, Hexane/Isopropanol 90/10, $1 \mathrm{ml} / \mathrm{min}$, UV 254 nm et CD254nm

UV Results Retention Time	Area	Area \%	Capacity factor	Relative RT	Resolution (USP)
7.68	25595534	49.05	1.56	1.00	0.00
8.56	26590076	50.95	1.85	1.19	2.22

2
Sample : YD200

Method description : Chiralpak AD-H, Heptane/Isopropanol 90/10, $1 \mathrm{ml} / \mathrm{min}$, UV 254 nm et CD254nm

UV Results

Retention Time	Area	Area \%	Capacity factor	Relative RT	Resolution (USP)
6.32	7289864	9.48	1.11	0.00	0.00
8.27	69591756	90.52	1.76	0.00	4.32

Sample : IIIHD341-rac
Method description : Chiralpak AD-H, Heptane/Isopropanol 90/10, $1 \mathrm{ml} / \mathrm{min}$, UV 254 nm et CD254nm

UV Results

Retention Time	Area	Area \%	Capacity factor	Relative RT	Resolution (USP)
6.57	27458047	49.41	1.19	0.00	0.00
8.55	28109338	50.59	1.85	0.00	4.51

3

Sample: YD201
Method description : Chiralpak IF, Heptane/Isopropanol 95/5, $1 \mathrm{ml} / \mathrm{min}$, DAD + CD254nm

Sample : IIIHD296-rac
Method description : Chiralpak IF, Heptane/Isopropanol 95/5, $1 \mathrm{ml} / \mathrm{min}$, DAD + CD254nm

Results

Retention Time	Area	Area \%	Capacity factor	Relative RT	Resolution (USP)
6.78	18645957	50.39	1.26	1.00	0.00
7.65	18356588	49.61	1.55	1.23	2.46

4
Sample: YD219
Method description : Chiralpak AZ-H, Heptane/ethanol 90/10, $1 \mathrm{ml} / \mathrm{min}$, UV 254 nm et CD254nm

UV Results

Retention Time	Area	Area $\%$	Capacity factor	Relative RT	Resolution (USP)
6.23	768439	5.53	1.08	1.00	0.00
7.29	13124214	94.47	1.43	1.33	3.11

Sample: YD230-rac
Method description : Chiralpak AZ-H, Heptane/ethanol 90/10, $1 \mathrm{ml} / \mathrm{min}$, UV 254 nm et CD254nm

UV Results

Retention Time	Area	Area \%	Capacity factor	Relative RT	Resolution (USP)
6.22	18619485	52.80	1.07	1.00	0.00
7.29	16644418	47.20	1.43	1.33	2.94

5
Sample : IIIHD343-dia
Method description : Chiralpak AD-H, Heptane/Isopropanol 80/20, $1 \mathrm{ml} / \mathrm{min}$, UV 254 nm et CD254nm

UV Results Retention Time	Area	Area \%	Capacity factor	Relative RT	Resolution (USP)
7.42	323863	2.93	1.47	0.00	0.00
12.00	10733675	97.07	3.00	0.00	9.01

Sample : IIIHD340
Method description : Chiralpak AD-H, Heptane/Isopropanol 80/20, $1 \mathrm{ml} / \mathrm{min}$, UV 254 nm et CD254nm

UV Results

Retention Time	Area	Area \%	Capacity factor	Relative RT	Resolution (USP)
7.21	50702065	51.26	1.40	0.00	0.00
11.63	48217051	48.74	2.88	0.00	8.50

6
Sample: YD377
Method description : Chiralpak ID, Heptane/Ethanol 95/5, $1 \mathrm{ml} / \mathrm{min}, ~ D A D$ and CD 254nm

Sample: YD376-rac
Method description : Chiralpak ID, Heptane/Ethanol 95/5, $1 \mathrm{ml} / \mathrm{min}$, DAD and CD 254nm

Sample: YD168
Method description : Chiralcel OD-3, Heptane/Isopropanol 80/20, $1 \mathrm{ml} / \mathrm{min}$, UV 254 nm et polarimetre

UV Results Retention Time	Area	Area \%	Capacity factor	Relative RT	Resolution (USP)
6.87	2788172	4.97	1.29	0.00	0.00
13.51	53296644	95.03	3.50	0.00	8.36

Sample: YD147-OD-3
Method description : Chiralcel OD-3, Heptane/Isopropanol 80/20, $1 \mathrm{ml} / \mathrm{min}$, UV 254 nm et polarimetre

8
Sample: YD167
Method description : Chiralpak AD-H, Heptane/Isopropanol 80/20, $1 \mathrm{ml} / \mathrm{min}$, UV 254 nm et CD254nm

$\begin{array}{c}\text { UV Results } \\ \text { Retention Time }\end{array}$	Area	Area \%	Capacity factor	Relative RT	Resolution (USP)
5.87	1322019	4.08	0.96	0.00	0.00
10.16	31114321	95.92	2.39	0.00	9.01

Sample : YD146-AD-H
Method description : Chiralpak AD-H, Heptane/Isopropanol 80/20, $1 \mathrm{ml} / \mathrm{min}$, UV 254 nm et CD254nm

9
Sample: YD169
Method description : Lux-Cellulose-4, Heptane/Isopropanol 80/20, $1 \mathrm{ml} / \mathrm{min}$, UV 254 nm et CD254nm

UV Results

Retention Time	Area	Area $\%$	Capacity factor	Relative RT	Resolution (USP)
9.35	418129	5.40	2.12	1.00	0.00
11.23	7320720	94.60	2.74	1.30	3.09

Sample: YD134
Method description : Lux-Cellulose-4, Heptane/Isopropanol 80/20, $1 \mathrm{ml} / \mathrm{min}$, UV 254 nm et CD254nm

UV Results

Retention Time	Area	Area \%	Capacity factor	Relative RT	Resolution (USP)
9.37	13107639	50.19	2.12	1.00	0.00
11.24	13008293	49.81	2.75	1.29	3.10

10
Sample: YD194
Method description : Chiralpak IF, Heptane/Ethanol $80 / 20,1 \mathrm{ml} / \mathrm{min}$, DAD and CD254nm

Results

Retention Time	Area	Area \%	Capacity factor	Relative RT	Resolution (USP)
6.57	1632305	4.08	1.19	0.00	0.00
8.75	38395135	95.92	1.92	0.00	4.62

Sample: YD193
Method description : Chiralpak IF, Heptane/Ethanol 80/20, $1 \mathrm{ml} / \mathrm{min}$, DAD and CD254nm

11
Sample: YD171
Method description : Chiralpak IA, Heptane/Ethanol $80 / 20,1 \mathrm{ml} / \mathrm{min}$, DAD and CD254nm

Results

Retention Time	Area	Area \%	Capacity factor	Relative RT	Resolution (USP)
7.03	865640	2.28	1.34	0.00	0.00
8.01	37178774	97.72	1.67	0.00	2.70

Sample: YD192

Method description : Chiralpak IA, Heptane/Ethanol 80/20, $1 \mathrm{ml} / \mathrm{min}, ~ D A D ~ a n d ~ C D 254 n m ~$

Results

Retention Time	Area	Area \%	Capacity factor	Relative RT	Resolution (USP)
7.04	36926333	45.08	1.35	0.00	0.00
8.02	44994629	54.92	1.67	0.00	2.63

12
Sample: YD235
Method description : Chiralpak AZ-H, Heptane/Isopropanol 95/5, $1 \mathrm{ml} / \mathrm{min}$, UV 254 nm et CD254nm

UV Results

Retention Time	Area	Area \%	Capacity factor	Relative RT	Resolution (USP)
11.36	1221790	3.04	2.79	0.00	0.00
14.39	39019274	96.96	3.80	0.00	3.97

Sample : YD234
Method description : Chiralpak AZ-H, Heptane/Isopropanol 95/5, $1 \mathrm{ml} / \mathrm{min}$, UV 254 nm et CD254nm

13
Sample: YD195
Method description : Chiralpak IA, Heptane/Ethanol 80/20, $1 \mathrm{ml} / \mathrm{min}$, DAD and CD254nm

Results

Retention Time	Area	Area \%	Capacity factor	Relative RT	Resolution (USP)
5.58	404406	4.00	0.86	0.00	0.00
6.42	9700608	96.00	1.14	0.00	2.74

Sample: YD208-rac
Method description : Chiralpak IA, Heptane/Ethanol 80/20, $1 \mathrm{ml} / \mathrm{min}$, DAD and CD254nm

Sample: YD196
Method description : Chiralpak IA, Heptane/Ethanol 80/20, $1 \mathrm{ml} / \mathrm{min}$, DAD and CD254nm

Results

Retention Time	Area	Area \%	Capacity factor	Relative RT	Resolution (USP)
6.29	4467326	3.95	1.10	0.00	0.00
8.81	108656143	96.05	1.94	0.00	6.22

Sample: YD179-IA
Method description : Chiralpak IA, Heptane/Ethanol 80/20, $1 \mathrm{ml} / \mathrm{min}$, DAD and CD254nm

Results

Retention Time	Area	Area \%	Capacity factor	Relative RT	Resolution (USP)
6.29	42105236	44.98	1.10	0.00	0.00
8.83	51507250	55.02	1.94	0.00	6.36

15
Sample: YD222
Method description : Lux-Cellulose-4, Heptane/ethanol 80/20, $1 \mathrm{ml} / \mathrm{min}$, UV 254 nm et polarimetre

UV Results

Retention Time	Area	Area $\%$	Capacity factor	Relative RT	Resolution (USP)
18.99	7689178	3.02	5.33	1.00	0.00
21.02	247155788	96.98	6.01	1.13	2.12

Sample: YD225-rac-LuxC4
Method description : Lux-Cellulose-4, Heptane/ethanol 80/20, $1 \mathrm{ml} / \mathrm{min}$, UV 254 nm et polarimetre

UV Results

Retention Time	Area	Area \%	Capacity factor	Relative RT	Resolution (USP)
18.82	90400327	49.59	5.27	1.00	0.00
20.95	91906403	50.41	5.98	1.13	2.23

16
Sample : YD215
Method description : Lux-Cellulose-2, Heptane/ethanol 70/30, $1 \mathrm{ml} / \mathrm{min}$, UV 254 nm et polarimetre

UV Results

Retention Time	Area	Area \%	Capacity factor	Relative RT	Resolution (USP)
8.96	65169253	95.02	1.99	1.00	0.00
9.91	3418247	4.98	2.30	1.16	1.79

Sample: YD231
Method description : Lux-Cellulose-2, Heptane/ethanol 70/30, $1 \mathrm{ml} / \mathrm{min}$, UV 254 nm et polarimetre

UV Results Retention Time	Area	Area \%	Capacity factor	Relative RT	Resolution (USP)
9.03	38846651	50.27	2.01	1.00	0.00
10.01	38435601	49.73	2.34	1.16	1.84

[^0]: ${ }^{1}$ H. Du, J. Rodriguez, X. Bugaut and T. Constantieux, Chem. Eur. J., 2014, 20, 8458-8466.

[^1]: ${ }^{a}$ Two equivalent of β-ketoamide were used.

[^2]: ${ }^{2}$ P. T. Franke, R. L. Johansen, S. Bertelsen and K. A. Jørgensen, Chem. Asian J., 2008, 3, 216-224

[^3]: ${ }^{3}$ P. T. Franke, R. L. Johansen, S. Bertelsenand K. A. Jørgensen, Chem. Asian J., 2008, 3, 216-224

