Electronic Supplementary Information

Synthesized Ultrathin MoS₂ Nanosheets Perpendicular to Graphene for Catalysis of Hydrogen Evolution Reavtion

Z. H. Deng, L. Li, W. Ding, K. Xiong and Z. D. Wei*

The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044; China

Experimental section

Preparation of the MoS₂⊥**RGO catalyst:** All agents were of analytical grade. All aqueous solutions were freshly prepared with distilled water (18 M Ω ·cm resistance). GO was obtained by refluxing a mixture of natural graphite powder, KMnO₄ and a 9:1 mixture of concentrated H₂SO₄/H₃PO₄ according to Marcano *et al* report.¹ GO with two different oxidation degrees were prepared by adjusting amount of KMnO₄ (1 or 3 g) for 0.5 g of graphite, which correspond to mildly and highly oxidized graphene, respectively. The MoS₂⊥RGO catalyst was synthesized by a hydrothermal process. 30 mg oxidized graphene was dispersed in 40ml of DI water to obtain a yellow-brown aqueous suspension solution with the aid of ultrasonication for 1h, then 1/7 mmol of (NH₄)₆Mo₇O₂₄·4H₂O and 8 mmol of H₂NCSNH₂ (molar ratio Mo:S=1:8) were added into the solution, the mixture solution was strongly stirred for 30 min, then 40 µl N₂H₄·H₂O was added with stirring. The homogeneous solution was transferred into a 100 mL Teflon-lined autoclave and heated in an oven at 180°C for 30 h. After that, the black precipitate was collected by centrifugation, washed several times with DI water and ethanol, and dried in an oven at 50°C for 12 h.

Characterization of the MoS₂⊥RGO catalyst: Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) analysis were conducted on a Zeiss LIBRA 200 FETEM instrument using at 120 kV accelerating voltage. Field emission scanning electron microscope (FESEM) analysis was performed at an accelerating voltage of 5kV using a JSM-7800F scanning electron microscope instrument. X-ray diffraction (XRD) patterns were obtained on a XRD-6000 with Cu Karadiation at a step rate of 1° ·s⁻¹. X-ray photoelectron spectroscopy (XPS) measurements were performed on a Kratos XSAM800 spectrometer equipped with a monochromatic Al X-ray source. Fourier transform infrared spectroscopy (FTIR) spectra were measured through a Nicolet iN10 spectrometer using the standard KBr pellet method. The Brunauer-Emmet-Teller (BET) surface areas measured by nitrogen adsorption-desorption at 77 K using an ASAP 2020M specific surface area and pore analyzer instrument.

Electrochemical measurements: All electrochemical experiments were performed in a standard three-electrode cell at room temperature. The cell consisted of a standard rotating disc electrode (RDE, 5 mm in diameter, PINE: AFEST050GC), an Ag/AgCl (saturated KCl) reference electrode, and a Pt wire counter electrode. All the potentials reported in this works were given relative to a reversible hydrogen electrode (RHE). The working electrodes were prepared by applying catalyst ink onto RDE. In brief, 2 mg of catalyst and 20 µl of 5wt% Nafion solution were dispersed in 400 µl of 3:1 V/V ethanol/water with at least 30 min sonication to form a homogeneous ink. Then 10 µl of the catalyst ink (containing 40 µg of catalyst) was pipetted onto a prepolished RDE. This is equivalent to MoS₂ loading of 0.204 mg·cm⁻². After drying at room temperature, a drop of 0.5wt% Nafion solution was pipetted onto the surface of the catalyst layer to form a thin protective film. Linear sweep voltammetry (using the Versa STAT3-4000/V3) was conducted in N₂-saturated 0.5M H₂SO₄ solution from 0.30 to -0.50 V *vs*. RHE with a scan rate of 5 mV·s⁻¹ and rotation of 1600 rpm.

The electrical resistances of the $MoS_2 \perp RGO(x)$ were determined by operating a homemade button cell (Fig. S11). The sample was inserted between two smooth polished steel discs. A Solartron SI 1287 electrochemical interface equipped with a Solartron SI 1260 impedance/gain-phase analyzer coupling system was used. The operating frequency range was between 10⁻¹ Hz and 10⁴ Hz, the AC amplitude was 10 mV, and the DC potential was 0 V compared to an open circuit.

Double layer capacitance of the $MoS_2 \perp RGO(x)$ was measured by cyclic voltammetry experiments in the potential range of 0.1 to 0.2 V vs. RHE in 0.5M H₂SO₄ with varying scan rates from 20 to 140 mV·s⁻¹ (20, 40, 60, 80, 100, 120 and 140 mV·s⁻¹). The C_{dl} can be calculated from the scan rate dependence of charging current density at E=0.15 V vs. RHE, where the slope of the ΔJ vs. scan rate curve is $2C_{dl}$.² The stability of the $MoS_2 \perp RGO$ catalyst was checked by 3000 continuous cycles at 100 mV·s⁻¹ from -0.4 to 0.6 V in N₂-saturated 0.5 M H₂SO₄ at room temperature.

Samples/morphology	$\eta_{10}\!/mv$	Tafel slope/mv.dec ⁻¹	Loading/µg.cm ⁻²	
1T-MoS ₂ ¹¹	187	43	-	
Amorphous MoS ₂ ⁵	198-204	53-65	-	
MoS ₂ ultrathin nanoplates ⁹	$\sim \! 175$	53	136	
MoS ₂ PTFs ⁸	180-225	1-44	-	
MoO ₃ /MoS ₂ nanowires ³	250	50-60	-	
MoS ₂ /WC/RGO ⁷	200	41	104	
MoS ₂ /RGO nanoplates ¹⁴	155	41	285	
MoS ₂ /RGO nanosheets ⁶	$\sim \! 180$	41	200	
$MoS_2 \perp RGO(in this work)$	172	43	204	

 Table S1. A Summary of Various MoS2 HER Catalysts

Table S2. The double layer capacitance and the relative active edge sites of $MoS_2 \perp RGO(x)$

Samples	$C_{dl} (\mu F/cm^2)$	Relative active edge site
MoS_2	446	1.0
$MoS_2 \perp RGO (10\%)$	3465	7.8
$MoS_2 \perp RGO$ (20%)	4907	11.0
$MoS_2 \perp RGO (15\%)$	6045	13.6

Fig.S1 XPS images and FESEM images of as-synthesized MoS₂ sample using the highly oxidized graphene and the mildly oxidized graphene

Fig.S2 A typical electron energy loss spectrum (EELS) taken from the MoS₂ region indicates an elemental ratio of Mo: S close to 1:2.31

Fig.S3 XRD patterns of the standard crystallographic spectrum of 2H-MoS₂ (JCPDS No: 37-1492) (a), the support-free MoS₂ (b) and MoS₂ ⊥RGO (c).

Fig.S4 XPS spectra of survey (a), C1s (b), S2p (c) and Mo3d (d) on the MoS₂⊥RGO catalyst.

Fig.S5 The high resolution XPS of O1s and S2p on the $MoS_2 \perp RGO$ catalyst.

Fig.S6 FTIR spectra of the GO and $MoS_2 \perp RGO$.

Fig.S7 XRD patterns of $MoS_2 \perp RGO(x)$

Fig.S8 Nyquist (a) and Bode (b) plots obtained through the application of a sine wave with an amplitude of 100mv from 0.1 to 10kHz for $MoS_2\perp RGO(x)$.

Fig.S9 Cyclic voltammograms in the region of 0.1~0.2 V vs. RHE for the $MoS_2 \perp RGO(x)$.

Fig.S10 Scan rate dependence of the current density at E=0.15V vs. RHE for $MoS_2 \perp RGO(x)$.

Fig.S11 The simple illustration of a homemade button cell.

Fig.S12 FESEM images of the as-synthesis MoS₂ under different reaction time and synthesis temperature.

The influence of different reaction time and synthesis temperatures for the $MoS_2 \perp RGO$ catalysts has been provided as shown in Fig.S12. With the increase of the reaction time, it was found that the MoS_2 nanosheets became such larger that the nanosheets crimped and wrapped in the graphene substrate for 48 h. As the synthesis temperature changes, the MoS_2 nanosheets could not be formed on the RGO at 120°C for 30h, except for bare stacking graphene. When the temperature increased to 180°C, the vertical MoS_2 nanosheets were well grown on the RGO. For the $MoS_2 \perp RGO$ catalyst synthesized over higher temperature, up to 220°C, the MoS_2 nanosheets became further larger and the by-product hydrogen sulfide gas has been formed. Therefore, the optimal condition of the ulrathin MoS_2 nanosheets perpendicular to RGO is at 180°C for 30h during the hydrothermal reactions.

References

- 1 D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A.Sinitskii, Z. Z.Sun, A.Slesarev, L. B. Alemany, W. Lu, J. M.Tour, ACS Nano. 2010. 4, 4806.
- 2 E. Gileadi, Physical Electrochemistry, Wiley-VCH, Weinheim. 2011.