Cation-*π* **Interactions in MacMillan Organocatalysis**

Supporting Information

Mareike C. Holland, Jan B. Metternich, Christian Mück-Lichtenfeld and Ryan Gilmour*

M. C. Holland, J. B. Metternich, Dr. C. Mück-Lichtenfeld, Prof. Dr. R. Gilmour Organisch Chemisches Institut, and Excellence Cluster EXC 1003, Cells in Motion, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, Münster (Germany). E-mail: <u>ryan.gilmour@uni-muenster.de</u> Homepage: www.uni-muenster.de/Chemie.oc/gilmour/

•	General Information	S2
•	Experimental Section	S2
•	Catalysis with HPLC Data	S22
•	NMR Spectra of Key Compounds	S33
•	DFT calculations	S45
•	References	S47

General Information

All chemicals were purchased as reagent grade and used without further purification. Solvents for purification (extraction and chromatography) were purchased as technical grade and distilled on the rotary evaporator prior to use. For column chromatography SiO₂-60 (230-400 mesh ASTM; *Fluka*) was used as stationary phase. Analytical thin layer chromatography (TLC) was performed on glass plates pre-coated with SiO₂-60 F₂₅₄ (Merck) and visualized with a UV-lamp (254 nm) and KMnO₄ solution. Concentration in vacuo was performed at ~10 mbar and 40 °C, drying at ~10⁻² mbar and rt. NMR spectra were measured by the NMR service of the Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster on a Bruker AV300 or an Agilent DD2 600 spectrometer at rt. ¹H NMR spectra are reported as follows: chemical shift δ in ppm (multiplicity, number of protons, coupling constant J in Hz, assignment of proton). The deuterated solvent residual peak was used as internal reference: CHCl₃ ($\delta_{\rm H}$ 7.26) and CD₂HCN ($\delta_{\rm H}$ 1.94). ¹³C NMR spectra are reported as follows: chemical shift δ in ppm (multiplicity if different from s due to heteronuclear couplings to fluorine, number of carbons if different from 1, coupling constant ${}^{x}J_{CF}$ in Hz, assignment of carbon). The solvent peak was used as internal reference: CDCl₃ (δ_C 77.16) and CD₃CN (δ_C 1.32). ¹⁹F NMR spectra are reported as follows: chemical shift δ in ppm (multiplicity, number of fluorines, coupling constant ${}^{x}J_{YF}$ in Hz, assignment of fluorine). The resonance multiplicity is abbreviated as: s (singlet), d (doublet), t (triplet), q (quadruplet), m (multiplet) and b (broad). Assignments of unknown compounds are based on DEFT, COSY (HH and FF), HMBC, HSQC and NOESY spectra. Melting points were measured on a Büchi B-545 melting-point apparatus in open capillaries and are uncorrected. IR spectra were recorded on a Perkin-Elmer 100 FT-IR spectrometer, selected adsorption bands are reported in wavenumbers (cm⁻¹) and intensities are reported as: w (weak), m (medium), s (strong) and br (broad). Optical rotations were measured on a JASCO P-2000 polarimeter or a Perkin-Elmer 341 polarimeter. HPLC spectra were recorded on an Agilent 1100 series (DAD, Agilent technologies 1200 series) using a Chiralcel OJ-H (5 µm, 250.4.6 mm) and n-hexane/iso-propanol as eluent. Highresolution mass spectra (HR ESI) were measured by the MS service of the Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster.

Experimental Section

Syntheses of (5*S*)-5-Benzyl-2,2,3-trimethyl-4-imidazolidinone (1) and (5*S*)-5-Benzyl-2,2,3-trimethyl-4-oxo-1-[(*E*)-3-phenylallylidene]-imidazolidin-1-ium salt (1a)

L-Phenylalanine methyl amide 13¹

To a suspension of *L*-phenylalanine (6.98 g, 42.3 mmol, 1.0 equiv.) in MeOH (17.1 mL, 423 mmol, 10 equiv.) was added thionyl chloride (3.70 mL, 50.7 mmol, 1.2 equiv.) over 15 min at 0 °C and the resulting solution was allowed to come to RT before it was heated to reflux for 22 h. The solution was allowed to come to RT and evaporated *in vacuo* to give the

L-phenylalanine methyl ester hydrochloride as a white solid. To the ester was added MeNH₂ (8 N in EtOH, 21.0 mL, 169 mmol, 4.0 equiv.) at RT and the solution stirred for 23 h. The reaction was concentrated *in vacuo* and a saturated aqueous solution of NaHCO₃ (45 mL) was

added. The aqueous layer was extracted with CH_2Cl_2 (3 x 55 mL). The combined organic layers were dried over MgSO₄, filtrated and concentrated *in vacuo* to give the amide **13** as a yellowish solid (6.44 g, 86%).

 $R_{\rm f} = 0.37$ (CH₂Cl₂/MeOH 10:1); M.p. = 58.5–59.6 °C; $[\alpha]_{\rm D}^{20}$: -66.1 (*c* = 1.07, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.32$ (2H, t, *J* = 7.2, H–C4'), 7.28–7.19 (4H, m, H–C3', H–C5', H–N^{amide}), 3.61 (1H, dd, *J* = 9.4, 3.9, H–C2), 3.29 (1H, dd, *J* = 13.7, 3.9, H–C1'), 2.82 (3H, d, *J* = 5.0, H–C3), 2.68 (1H, dd, *J* = 13.7, 9.4, H–C1'), and 1.38 (2H, b, H–N^{amine}) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 174.9$ (C1), 138.2 (C2'), 129.4 (2C, C3'), 128.8 (2C, C4'), 126.9 (C5'), 56.6 (C2), 41.2 (C1'), and 26.0 (C3) ppm; IR (ATR): $\tilde{\nu} = 3343w$, 3291w, 3033w, 2940w, 2915w, 2877w, 1644s, 1524s, 1455m, 1439m, 1399m, 1342w, 1322w, 1268w, 1229w, 1152w, 1109m, 978w, 927w, 913w, 877m, 858m, 834w, 745s, and 699s cm⁻¹, HR-ESI-MS: *m/z*: 179.1186 ([*M*+H]⁺, calcd for C₁₀H₁₅N₂O⁺: 179.1179); analytical data in agreement with the literature.¹

(5*S*)-5-Benzyl-2,2,3-trimethyl-4-imidazolidinone (1)²

To a solution of amide **13** (1.00 g, 5.6 mmol, 1 equiv.) in MeOH (12.0 mL) was added acetone (2.1 mL, 28.1 mmol, 5.0 equiv.) and NEt₃ (0.6 mL, 4.5 mmol, 0.8 equiv.) at RT under an atmosphere of argon and the yellow solution was heated to reflux overnight. The reaction was allowed to come to RT and concentrated *in vacuo* to give **1** as a yellow oil (1.22 g, quant.).

 $R_{\rm f} = 0.79$ (CH₂Cl₂/MeOH 10:1); $[\alpha]_{\rm D}^{20}$: -33.2 (*c* = 0.94, CH₃OH); ¹H NMR (400 MHz, CDCl₃): δ = 7.36–7.18 (5H, m, H–C2', H–C3', and H–C4'), 3.80 (1H, dd, *J* = 6.8, 4.5, H–C5), 3.15 (1H, dd, *J* = 14.2, 4.5, H–C8), 3.01 (1H, dd, *J* = 14.2, 6.8, H–C8), 2.76 (3H, s, H–C7), 1.70 (1H, b, H–N^{amine}), 1.27 (3H, s, H–C6), and 1.16 (3H, s, H–C6) ppm; ¹³C NMR (101 MHz, CDCl₃): δ = 173.5 (C4), 137.3 (C1'), 129.7 (2C, C2'), 128.7 (2C, C3'), 126.9 (C4'), 75.7 (C2), 59.4 (C5), 37.4 (C8), 27.4 (C6), 25.5 (C6), and 25.4 (C7) ppm; IR (ATR): \tilde{v} = 3317b, 2979w, 2931w, 1745w, 1680s, 1602w, 1496w, 1424s, 1398s, 1367m, 1269m, 1148m, 1089w, 1030w, 922w, 904w, 748s, 701s, and 673w cm⁻¹; HR-ESI-MS: *m/z*: 219.1492 ([*M*+H]⁺, calcd for C₁₃H₁₉N₂O⁺: 219.1492); analytical data in agreement with the literature.²

(5S)-5-Benzyl-2,2,3-trimethyl-4-oxo-1-[(*E*)-3-phenylallylidene]-imidazolidin-1-ium perchlorate $(1a \cdot ClO_4^{-})$:³

To imidazolidinone **1** (34.9 mg, 0.16 mmol, 1 equiv.) in Et₂O (0.20 mL) was added perchloric acid (60% in H₂O, 26.80 mg, 0.16 mmol, 1 equiv.) in EtOH/Et₂O (1:1, 0.40 mL) at RT and the resulting mixture stirred for 15 min before it was evaporated *in vacuo* to give the imidazolidinone salt. The salt was redissolved in MeOH (0.40 mL) and heated to 35 °C. (*E*)-cinnamaldehyde (40.2 μ L, 0.32 mmol, 2 equiv.) was added and the yellow solution stirred for 1 h. The solvent was removed *in vacuo* and the residue

dissolved in a minimum amount of MeOH. From this solution the iminium salt was crashed out with Et_2O and the supernatant solution taken off. The washing procedure was repeated and the iminium salt isolated as a yellow solid (31.9 mg, 46%).

M.p. = 189.9–191.9 °C; $[\alpha]_D^{20.5}$: +2.5 (*c* = 0.45, CH₃CN); ¹H NMR (300 MHz, CD₃CN): $\delta_H = 8.73$ (1H, dd, *J* = 10.7, 1.9, H–C1''), 8.18 (1H, d, *J* = 15.0, H–C3''), 7.93 (2H, d, *J* = 7.3,

H–C5"), 7.77–7.68 (1H, m, H–C7"), 7.62 (2H, t, J = 7.6, H–C6"), 7.38–7.20 (4H, m, H–C3', H–C4', H–C2"), 7.09 (2H, dd, J = 7.9, 1.7, H–C2'), 5.20 (1H, s, H–C5), 3.57 (1H, dd, J = 14.7, 5.7, H–C8), 3.47 (1H, dd, J = 14.7, 3.7, H–C8), 2.78 (3H, s, H–C7), 1.70 (3H, s, H–C6anti), and 0.79 (3H, s, H–C6syn) ppm; ¹³C NMR (151 MHz, CD₃CN): $\delta_{\rm C} = 168.2$ (C1"), 166.7 (C3"), 165.2 (C4), 136.1 (C7"), 134.8 (C1'), 134.4 (C4"), 132.5 (2C, C5"), 131.1 (2C, C2'), 130.7 (2C, C6"), 130.1 (2C, C3'), 129.2 (C4'), 118.4 (C2"), 86.5 (C2), 65.2 (C5), 37.2 (C8), 27.5 (C6anti), 26.1 (C7), and 24.8 (C6syn) ppm; IR (ATR): $\tilde{\nu} = 2938b$, 1712s, 1620s, 1601s, 1587s, 1455m, 1438m, 1420m, 1043m, 1335w, 1311w, 1281m, 1235w, 1197m, 1179m, 1151w, 1115m, 1081m, 1051w, 1012m, 999m, 955w, 933w, 872w, 756m, 750m, 705m, 684w, 642w, and 622s cm⁻¹; HR-ESI-MS: m/z: 333.19602 ([M-CIO₄⁻]⁺, calcd for C₂₂H₂₅N₂O⁺: 333.19614); analytical data in agreement with the literature.^{3,4}

(2S)-1-Boc-2-(*tert*-butyl)-3-methyl-4-imidazolidinone (S-Boc-BMI) 14⁵

To a solution of (*R*)-BMI trifluoroacetic acid (2.00 g, 7.40 mmol, 1.00 equiv.) in CH_2Cl_2 (5.00 mL) was added aqueous NaOH (2 N, approx. 7 mL) to adjust the pH to approx. 8. The layers were separated and the aqueous phase extracted three times with CH_2Cl_2 . The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. The residue was dissolved in acetone (14.0 mL) and Boc₂O (2.21 mL, 9.62 mmol, 1.3 equiv.) and DMAP (90.4 mg, 0.74 mmol, 0.1 equiv.) were added under Ar at 0 °C. The solution was allowed to come to RT and stirred for 19 h. Et₃N (1.0 mL, 7.4 mmol, 1.0 equiv.) and after another

2 h H₂O (0.7 mL) were added. After stirring for an additional 2 h, the organic solvent was evaporated *in vacuo*. Et₂O (10 mL) and an aqueous solution of HCl (1 N, 10 mL) were added to the residue, the layers were separated and the organic layer was washed with an aqueous solution of HCl (1 N, 10 mL) and with a saturated aqueous solution of NaHCO₃ (10 mL). The organic layer was dried over MgSO₄ and concentrated *in vacuo* give (S)-Boc-BMI (14) as a white solid (1.53 g, 81%).

 $R_{\rm f} = 0.69 \text{ (SiO}_2; CH_2Cl_2/MeOH 10:1); M.p. = 65.0-65.7 \,^{\circ}C; [\alpha]_D^{20}: -11.6 (c = 1.05, CH_2Cl_2);$ ¹H NMR (400 MHz, CDCl_3): $\delta = 4.88 \text{ (bd, 1H, } J = 55.0, H-C2), 4.08 \text{ (bd, 1H, } J = 14.1, H-C5), 3.73 \text{ (bd, 1H, } J = 16.0, H-C5), 2.98 (s, 3H, H-C8), 1.46 (s, 9H, H-C4'), and 0.96 (s, 9H, H-C7) ppm; ¹³C NMR (100 MHz, CDCl_3): <math>\delta = 170.6 \text{ (C4)}, 154.7 \text{ (b, C1')}, 82.3 \text{ (b, C2)}, 81.0 \text{ (b, C3')}, 59.5 \text{ (b, C5)}, 39.5 \text{ (C6)}, 31.5 \text{ (C8)}, 28.2 (3C, C4'), and 25.9 (3C, C7) ppm; IR (ATR): <math>\tilde{v} = 2968w, 2951w, 1694s, 1480w, 1450w, 1434w, 1400m, 1362s, 1301s, 1288m, 1252s, 1162s, 1118m, 1104s, 1035w, 1007w, 939m, 928m, 877m, 868m, 776m, 762w, 728w, and 664w cm⁻¹; HR-ESI-MS: <math>m/z$: 257.1861 ($[M+H]^+$, calcd for $C_{13}H_{25}N_2O_3^+$: 257.1860); analytical data in agreement with the literature.⁵

Syntheses of (5*S*)-2,2,3-Trimethyl-5-(pentafluorobenzyl)-4-imidazolidinone (2) and 5-Pentafluorobenzyl-2,2,3-trimethyl-4-oxo-1-[(*E*)-3-phenylallylidene]-imidazolidin-1-ium salt (2a)

(2S,5S)-1-Boc-2-(*tert*-butyl)-3-methyl-5-(pentafluorobenzyl)-4-imidazolidinone 15⁶

A solution of (S)-Boc-BMI 14 (128 mg, 0.50 mmol, 1.0 equiv.) in dry THF (0.70 mL) in a flame-dried Schlenck under an atmosphere of argon was cooled to -78 °C. LDA (0.28 mL, 0.55 mmol, 1.1 equiv.) was added resulting in a dark red solution. After 30 min, pentafluorobenzylbromide (131 mg, 0.50 mmol, 1.0 equiv.) in dry THF (0.25 mL) was added slowly upon which the solution turned purple. The reaction was stirred at -78 °C for 5 h and then quenched by addition of saturated aqueous solution of NH₄Cl (2 mL) and extracted with CH₂Cl₂ (3 · 5 mL). The combined

organic layers were dried over MgSO₄ and concentrated *in vacuo*. Purification by CC (SiO₂; CH/EtOAc 8:1) gave **15** as an off-white solid (179 mg, 82%).

*R*_f = 0.66 (SiO₂; CH/EtOAc 2:1); M.p. = 65.9–69.6°C; $[\alpha]_D^{2^3}$: -0.7 (*c* = 0.95, CH₃OH); ¹H NMR (300 MHz, CDCl₃): δ = 4.99 (1H, bs, H–C2), 4.22 (1H, bs, H–C5), 3.89 (1H, dd, *J* = 13.9, 3.0, H–C1'), 2.95 (3H, s, H–C8), 2.91 (1H, bs, H–C1'), 1.48 (9H, s, H–C4''), and 0.95 (9H, s, H–C7) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 170.8 (C4), 152.8 (C1''), 145.6 (2C, dm, ¹*J*_{CF} = 246.8, C^{Ar}), 137.2 (dm, ¹*J*_{CF} = 268.6, C5'), 137.0 (2C, dm, ¹*J*_{CF} = 205.2, C^{Ar}), 111.1 (b, C2'), 81.8 (C2), 80.9 (C3''), 56.8 (C5), 41.1 (C6), 32.1 (C1'), 28.3 (3C, C4''), 26.6 (3C, C7), and 24.7 (b, C8) ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ = -141.7 (2F, bs, F–C3'), -157.3 (1F, bs, F–C5'), and -163.2 (2F, bs, F–C4') ppm; IR (ATR): $\tilde{\nu}$ = 2973w, 2932w, 1695s, 1658w, 1602w, 1511m, 1506m, 1478w, 1457w, 1400m, 1376s, 1364s, 1302m, 1257m, 1216m, 1178m, 1160m, 1116s, 1098m, 1035w, 1010w, 980m, 948w, 934w, 912w, 886m, 840w, 821w, 786m, 771m, and 717m cm⁻¹; HR-ESI-MS: *m/z*: 459.1662 ([*M*+Na]⁺, calcd for C₂₀H₂₅F₅N₂O₃Na⁺: 459.1678). Analytical data in agreement with the literature.⁶

L-Pentafluorophenylalanine N-methyl amide (16)

To a solution of **15** (100 mg, 0.23 mmol, 1.0 equiv.) in MeOH (3.0 mL) was added an aqueous solution of HCl (1 N, 3.0 mL) at RT and the mixture heated to reflux for 11 h. The reaction was allowed to come to RT and basified to a pH of 10 with an aqueous solution of NaOH (2 N) and extracted with CH_2Cl_2 . The combined organic layers were dried over MgSO₄ and concentrated *in vacuo* to give amide **16** as a white solid (62 mg, quant.).

M.p. = 98.4–99.3 °C; $[\alpha]_D^{22} = -0.263$ (c = 0.039 in CHCl₃); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.21$ (1H, bs, H–N^{amide}), 3.58 (1H, dd, J = 9.1, 4.9, H–C2), 3.37 (1H, dd, J = 14.1, 4.4, H– C1'), 2.91–2.74 (4H, m, H–C3, H–C1'), and 1.50 (2H, s, H–N^{amine}) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 173.5$ (C1), 145.6 (dm, ¹ $J_{CF} = 247.3$, C^{Ar}), 139.8 (dm, ¹ $J_{CF} = 252.1$, C^{Ar}), 137.3 (dm, ¹ $J_{CF} = 250.5$, C^{Ar}), 111.9 (td, ² $J_{CF} = 18.5$, ³ $J_{CF} = 3.7$, C2'), 54.8 (C2), 28.5 (C1'), and 26.1 (C3) ppm; ¹⁹F NMR (377 MHz, CDCl₃): $\delta = -142.4$ (2F, dd, ³ $J_{FF} = 22.6$, ⁴ $J_{FF} = 8.4$, F–C3'), – 156.0 (1F, t, ³ $J_{FF} = 20.9$, F–C5'), and –162.1 (2F, dt, ³ $J_{FF} = 22.5$, ⁴ $J_{FF} = 8.4$, F–C4') ppm; IR (ATR): $\tilde{\nu} = 3379w$, 3330m, 3298w, 2953w, 2910w, 1649s, 1540m, 1520s, 1500s, 1445m, 1423m, 1407m, 1298m, 1116s, 1098s, 1000s, 972s, 932s, 914s, 890m, 849m, 805s, 735m, 710s, and 664m cm⁻¹; HR-ESI-MS: m/z: 269.0718 ([M+H]⁺, calcd for C₁₀H₁₀F₅N₂O⁺: 269.0708).

(5S)-2,2,3-Trimethyl-5-(pentafluorobenzyl)-4-imidazolidinone (2)

To a solution of amide **16** (181 mg, 0.68 mmol, 1.0 equiv.) in MeOH (4.0 mL) were added acetone (0.37 mL, 5.06 mmol, 7.5 equiv.) and NEt₃ (0.08 mL, 0.54 mmol, 0.8 equiv.) at RT under an atmosphere argon and the solution heated to reflux for 9 h. The reaction was allowed to come to RT and concentrated *in vacuo* to give imidazolidinone **2** as an off-white solid (194 mg, 93%).

M.p. = 73.0–75.3 °C; $[\alpha]_D^{20} = -31.5$ (*c* = 0.91 in CH₃OH); ¹H NMR (300 MHz, CDCl₃): $\delta = 3.78$ (1H, dd, *J* = 10.3, 4.6, H–C5), 3.31 (1H, d, *J* = 14.1, H–C1'), 2.86–2.75 (4H, m, H–C1', H–C7), 1.72 (2H, b, H–N), 1.40 (3H, s, H–C6), and 1.30 (3H, s, H–C6) ppm; ¹³C NMR (101 MHz, CDCl₃, racemic compound): $\delta = 172.3$ (C4), 145.6 (2C, dm, ¹*J*_{CF} = 245.6, C^{Ar}), 139.6 (dm, ¹*J*_{CF} = 245.0, C5'), 137.4 (2C, dm, ¹*J*_{CF} = 251.8, C^{Ar}), 111.9 (td, ²*J*_{CF} = 18.4 ³*J*_{CF} = 3.8, C2'), 76.0 (C2), 57.7 (C5), 28.0 (C6), 26.6 (C1'), 25.6 (C6), and 25.4 (C7) ppm; ¹⁹F NMR (282 MHz, CDCl₃): $\delta = (-142.3)-(-142.7)$ (2F, m, F-C3'), -157.2 (1F, t, ³*J*_{FF} = 20.8, F–C5'), and –163.0 (2F, td, ³*J*_{FF} = 22.6, ⁴*J*_{FF} = 8.3, F–C4') ppm; IR (ATR): $\tilde{\nu} = 3318m$, 2982w, 1676s, 1519s, 1499s, 1441m, 1404s, 1384m, 1371m, 1303w, 1279w, 1202w, 1182m, 1156w, 1119s, 1099m, 1042m, 1012m, 977m, 964s, 937s, 885w, 795w, 768w, 736w, and 681w cm⁻¹; HR-EI-MS: *m/z*: 309.1018 ([*M*+H]⁺, calcd for C₁₃H₁₄F₅N₂O⁺: 309.1021); elemental analysis (racemic compound) calcd (%) for C₁₃H₁₃F₅N₂O (308.2): C 50.65, H 4.25, N 9.09, F 30.82; found: C 50.74, H 4.43, N 8.87, F 31.06.

5-Pentafluorobenzyl-2,2,3-trimethyl-4-oxo-1-[(E)-3-phenylallylidene]-imidazolidin-1ium perchlorate $(2a \cdot ClO_4)$:³

To imidazolidinone **2** (24.7 mg, 0.08 mmol, 1.0 equiv.) in Et₂O (0.10 mL) was added perchloric acid (60% in H₂O, 11.5 mg, 0.08 mmol, 1 equiv.) in Et₂O/EtOH (1:1, 0.2 mL) at RT and the resulting mixture stirred for 10 min before it was evaporated *in vacuo* to give the imidazolidinone salt. The salt was redissolved in MeOH (0.20 mL) and heated to 35 °C. (*E*)-cinnamaldehyde (20.1 μ L, 0.16 mmol, 2 equiv.) was added and the yellow solution stirred for 1 h. The solvent was removed *in vacuo* and the residue dissolved in a minimum amount of

MeOH. From this solution the iminium salt $2a \cdot ClO_4$ was crashed out as a yellow solid with Et_2O and the supernatant solution taken off. Crystals suitable for X-ray crystallographic analysis were obtained from a solution in MeOH/CH₃CN (2:1) by vapour diffusion with Et_2O .

M.p. = 185.1–186.3 °C; ¹H NMR (600 MHz, CD₃CN): $\delta_{\rm H}$ = 8.87 (1H, dd, *J* = 10.7, 1.8, H–C1"), 8.24 (1H, d, *J* = 15.0, H–C3"), 7.89 (2H, dd, *J* = 8.2, 1.0, H–C5"), 7.76–7.71 (1H, m, H–C7"), 7.63 (2H, t, *J* = 7.9, H–C6"), 7.22 (1H, dd, *J* = 15.0, 10.7, H–C2"), 5.09–5.04 (1H, m, H–C5), 3.54 (1H, dd, *J* = 15.0, 5.2, H–C8), 3.49 (1H, dd, *J* = 15.0, 8.3, H–C8), 2.90 (3H, d, *J* = 0.5, H–C7), 1.83 (3H, s, H–C6anti), and 1.70 (3H, s, H–C6syn) ppm; ¹³C NMR (151 MHz, CD₃CN, C1', C2', C3' and C4' not visible): $\delta_{\rm C}$ = 168.8 (C1"), 167.2 (C3"), 164.1 (C4), 136.5 (C7"), 134.2 (C4"), 132.3 (2C, C5"), 130.9 (2C, C6"), 117.9 (C2"), 86.8 (C2), 61.1 (C5), 27.2 (C6syn), 26.8 (C6anti), 26.5 (C8), and 26.3 (C7) ppm; ¹⁹F NMR (564 MHz, CD₃CN): $\delta_{\rm F}$ = (–141.1)–(–141.2) (2F, m, F–C2'), –155.6 (1F, t, ²*J*_{FF} = 20.1, F-C4'), and

(-163.6)-(-163.7) (2F, m, F–C3') ppm; IR (ATR): $\tilde{v} = 2997b$, 1712s, 1661w, 1617m, 1603m, 1588s, 1523m, 1506s, 1455m, 1434m, 1405m, 1396m, 1334w, 1277m, 1236w, 1215w, 1181m, 1161m, 1125m, 1093s, 1074s, 1039s, 1012m, 1004m, 976m, 964m, 935m, 865m, 823w, 765s, 700w, 685w, and 621m cm⁻¹; HR-ESI-MS: m/z: 423.1484 ([M-ClO₄⁻]⁺, calcd for C₂₂H₂₀F₅N₂O⁺: 423.1496).

Syntheses of (5S)-2,2,3-Trimethyl-5-(2,4,6-trifluorobenzyl)-4-imidazolidinone (3) and (S)-5-(2',4',6'-Trifluorobenzyl)-2,2,3-trimethyl-4-oxo-1-[(E)-3-phenylallylidene]-imidazolidin-1-ium salt (3a)

(2S,5S)-1-Boc-2-(*tert*-butyl)-3-methyl-5-(2,4,6-trifluorobenzyl)-4-imidazolidinone (17)

A solution of (S)-Boc-BMI (14) (570 mg, 2.22 mmol, 1.0 equiv.) in dry THF (3.00 mL) in a flame-dried Schlenck under an atmosphere of argon was cooled to -78 °C. LDA (2.0 N in THF/ⁿheptane/ethylbenzene, 1.22 mL, 2.44 mmol, 1.1 equiv.) was added dropwise and the solution stirred for 30 min before 2,4,6-trifluorobenzylbromide (500 mg, 2.22 mmol, 1.0 equiv.) in THF (1.00 mL) was added slowly. After 5 h, the reaction was quenched by addition of saturated aqueous solution of NH₄Cl (2 mL), diluted with water (3 mL) and extracted with CH₂Cl₂ (3 · 5 mL). The combined organic layers

were dried over MgSO₄ and concentrated *in vacuo*. Purification by CC (SiO₂; CH/EtOAc 10:1) gave **17** as an orange oil (757 mg, 85%).

 $R_{\rm f} = 0.51$ (SiO₂; CH/EtOAc 2:1); $[\alpha]_{\rm D}^{23}$: -1.1 (c = 0.89, CH₃OH); ¹H NMR (300 MHz, CDCl₃): $\delta = 6.62$ (2H, t, J = 8.3, H–C4'), 4.99 (1H, s, H–C2), 4.22 (1H, d, J = 5.6, H–C5), 3.79 (1H, dd, J = 13.9, 3.4, H–C1'), 2.93 (4H, s, H–C8, H–C1'), 1.49 (9H, s, H–C4"), and 0.95 (9H, s, H–C7) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 171.1$ (C4), 161.5 (2C, ddd, ${}^{1}J_{\rm CF} = 248.4$, ${}^{3}J_{\rm CF} = 15.5$, ${}^{3}J_{\rm CF} = 14.7$, C3'), 161.4 (dt, ${}^{1}J_{\rm CF} = 247.4$, ${}^{4}J_{\rm CF} = 15.7$, C5'), 152.9 (b, C1"), 109.3 (t, ${}^{2}J_{\rm CF} = 21.3$, C2'), 99.7 (2C, ddd, ${}^{2}J_{\rm CF} = 28.4$, ${}^{2}J_{\rm CF} = 25.4$, ${}^{4}J_{\rm CF} = 2.6$, C4'), 81.2 (C2), 80.6 (C3"), 57.1 (C5), 40.9 (C6), 31.8 (C1'), 28.2 (3C, C4"), 26.5 (3C, C7), and 23.9 (b, C8) ppm; ¹⁹F NMR (75 MHz, CDCl₃): $\delta = -110.4$ (2F, b, F–C3'), and -110.8 (b, F–C5') ppm; IR (ATR): $\tilde{\nu} = 3331$ w, 2976w, 2928w, 1682s, 1602w, 1508s, 1425m, 1398s, 1368w, 1219s, 1158m, 1098m, 1016w, 922w, 823m, and 731m cm⁻¹; HR-EI-MS: m/z : 423.1867 ([M–Na]⁺, calcd for C₂₀H₂₇F₃N₂O₃Na⁺: 423.1866).

L-2,4,6-Trifluorophenylalanine *N*-methyl amide (18)

To a solution of **17** (680 mg, 1.70 mmol, 1.0 equiv.) in MeOH (10.0 mL) was added an aq. solution of HCl (1 N, 10.0 mL) at RT and the mixture heated to reflux overnight. The reaction was allowed to come to RT and basified to a pH of 10 with an aqueous solution of NaOH (2 N) and extracted with CH_2Cl_2 (3 · 35 mL). The combined organic layers were dried

over MgSO₄ and concentrated *in vacuo* to give amide **18** as a white solid (355 mg, 90%).

 $R_{\rm f} = 0.56$ (CH₂Cl₂/MeOH 10:1); M.p. = 50.7–52.1 °C; $[\alpha]_{\rm D}^{23}$: +30.3 (c = 0.95, CH₃OH); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.26$ (1H, b, H–N^{amide}), 6.65 (2H, dd, J = 8.7, 7.8, H–C4'), 3.54 (1H, dd, J = 9.6, 4.3, H–C2), 3.29 (1H, dd, J = 14.1, 4.3, H–C1'), 2.81 (3H, d, J = 5.0, H–C3), 2.74 (1H, dd, J = 14.1, 9.7, H–C1'), and 1.42 (2H, bs, H–N^{amine}) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 174.2$ (C1), 161.9 (2C, ddd, ¹ $J_{\rm CF} = 247.8$, ³ $J_{\rm CF} = 14.7$, ³ $J_{\rm CF} = 11.5$, C3'),

161.6 (dt, ${}^{1}J_{CF} = 248.4$, ${}^{3}J_{CF} = 15.7$, H-C5'), 110.4 (td, ${}^{2}J_{CF} = 20.4$, ${}^{4}J_{CF} = 4.6$, C2'), 101.3–99.6 (2C, m, C4'), 55.0 (C2), 28.0 (C1'), and 26.0 (C3) ppm; ${}^{19}F$ NMR (282 MHz, CDCl₃): $\delta = -109.84$ (1F, tt, ${}^{3}J_{FH} = 22.6$, ${}^{4}J_{FF} = 5.8$, F–C5'), and –111.26 (2F, dd, ${}^{3}J_{FH} = 7.4$, ${}^{4}J_{FF} = 5.9$, F–C3') ppm; IR (ATR): $\tilde{\nu} = 3302$ w, 3077w, 2941w, 1625s, 1601s, 1538m, 1493m, 1436m, 1412w, 1345w, 1305w, 1272w, 1224w, 1157w, 1138w, 1114s, 1021m, 993m, 950w, 838m, 779w, 723w, 707w, and 659w cm⁻¹; HR-ESI-MS: *m/z*: 233.0902 ([*M*+H]⁺, calcd for C₁₀H₁₂F₃N₂O⁺: 233.0896).

(5S)-2,2,3-Trimethyl-5-(2,4,6-trifluorobenzyl)-4-imidazolidinone (3)

To a solution of amide **18** (320 mg, 1.38 mmol, 1.0 equiv.) in MeOH (8.00 mL) were added aceton (0.76 mL, 10.3 mmol, 7.5 equiv.) and NEt₃ (0.15 mL, 1.10 mmol, 0.8 equiv.) at RT under an atmosphere argon and the solution heated to reflux overnight. The reaction was allowed to come to RT and concentrated *in vacuo* to give imidazolidinone **3** as yellow oil (682 mg, quant.).

[α]_D²³: -32.2 (*c* = 0.48, CH₃OH); ¹H NMR (300 MHz, CDCl₃): δ = 6.60 (2H, dd, *J* = 8.8, 7.7, H–C4'), 3.69 (1H, dd, *J* = 10.2, 4.1, H–C5), 3.22 (1H, dd, *J* = 14.1, 4.2, H–C1'), 2.75 (3H, s, H–C7), 2.68 (1H, dd, *J* = 14.1, 10.4, H–C1'), 1.74 (1H, b, H–N), 1.35 (3H, s, H–C6), and 1.23 (3H, s, H–C6) ppm; ¹³C NMR (101 MHz, CDCl₃): δ = 172.9 (C4), 161.7 (2C, ddd, ¹*J*_{CF} = 247.7, ³*J*_{CF} = 14.8, ³*J*_{CF} = 11.6, C3'), 161.4 (dt, ¹*J*_{CF} = 248.0, ³*J*_{CF} = 15.7, C5'), 110.3 (td, ²*J*_{CF} = 20.5, ⁴*J*_{CF} = 4.7, C2'), 100.1 (2C, ddd, ²*J*_{CF} = 28.7, ²*J*_{CF} = 25.5, ⁴*J*_{CF} = 2.1, C4'), 75.7 (C2), 58.0 (C5), 27.6 (C6), 25.8 (C8), 25.3 (C6), and 25.3 (C7) ppm; ¹⁹F NMR (75 MHz, CDCl₃): δ = -110.35 (1F, t, ³*J*_{FF} = 5.7, F–C5'), and -111.45 (2F, d, ³*J*_{FF} = 5.7, F–C3') ppm; IR (ATR): $\tilde{\nu}$ = 3326w, 2976w, 1687s, 1641m, 1622m, 1605s, 1497m, 1440s, 1400m, 1268w, 1167m, 1149w, 1116s, 1058m, 998m, 940w, 839m, and 737w cm⁻¹; HR-ESI-MS: *m/z*: 273.1207 ([*M*+H]⁺, calcd for C₁₃H₁₆F₃N₂O⁺: 273.1209).

(S)-5-(2',4',6'-Trifluorobenzyl)-2,2,3-trimethyl-4-oxo-1-[(E)-3-phenylallylidene]-imidazolidin-1-ium perchlorate (3a ClO₄):³

To imidazolidinone **3** (43.6 mg, 0.16 mmol, 1.0 equiv.) in Et₂O (0.2 mL) was added HClO₄ (60% in H₂O, 26.8 mg, 0.16 mmol, 1.0 equiv.) in EtOH/Et₂O (1:1, 0.4 mL) at RT and stirred for 10 min, before the sovent was evaporated *in vacuo* to give the off-white HClO₄ salt as a solid. The solid was dissolved in MeOH (0.4 mL) and (*E*)-cinnamaldehyde (40.2 μ L, 0.32 mmol, 2.0 equiv.) was added at 35 °C and the yellow solution stirred for 1 h. The solvent was evaporated *in vacuo*. The

residue was dissolved in a minimum amount of MeOH, the iminium salt was crashed out with Et_2O and the supernatant solution taken off. This purification procedure was repeated two additional times to give **3a**·ClO₄ as a yellow solid.

M.p. = 198.5 °C decomp.; $[\alpha]_D^{20}$ = +122.5 (*c* = 0.83 in CH₃CN); ¹H NMR (600 MHz, CD₃CN): δ_H = 8.87 (1H, dd, *J* = 10.7, 1.7, H–C1"), 8.20 (1H, d, *J* = 15.0, H–C3"), 7.83 (2H, dd, *J* = 8.2, 1.0, H–C5"), 7.73–7.69 (1H, m, H–C7"), 7.60 (2H, t, *J* = 7.9, H–C6"), 7.16 (1H, dd, *J* = 15.0, 10.7, H–C2"), 6.87 (2H, dd, *J* = 8.9, 7.9, H–C3'), 5.06 (1H, t, *J* = 6.0, H–C5), 3.48 (1H, dd, *J* = 15.0, 7.6, H–C8), 3.42 (1H, dd, *J* = 15.1, 5.8, H–C8), 2.89 (3H, d, *J* = 0.5, H–C7), 1.82 (3H, s, H–C6^{anti}), and 1.64 (3H, s, H–C6^{syn}) ppm; ¹³C NMR (151 MHz, CD₃CN,

C1', C2' and C4' assigned in CFdec spectrum): $\delta_{\rm C} = 168.7$ (C1"), 166.6 (C3"), 164.5 (C4), 163.6 (C4'), 162.9 (2C, C2'), 136.2 (C7"), 134.3 (C4"), 132.2 (2C, C5"), 130.8 (2C, C6"), 118.1 (C2"), 108.2 (C1'), 101.7 (2C, dd, ${}^{2}J_{\rm CF} = 31.2$, ${}^{2}J_{\rm CF} = 26.0$, C3'), 86.8 (C2), 61.9 (C5), 26.9 (C6^{syn}), 26.9 (C6^{anti}), 26.4 (C8), and 26.3 (C7) ppm; 19F NMR (564 MHz, CD₃CN): $\delta_{\rm F} = -108.7$ (1F, tt, ${}^{2}J_{\rm HF} = 9.0$, ${}^{3}J_{\rm FF} = 6.7$, F–C4'), and –110.4 (2F, dd, ${}^{2}J_{\rm HF} = 7.8$, ${}^{3}J_{\rm FF} = 6.6$, F–C2') ppm; IR (ATR): $\tilde{\nu} = 3376$ br, 3071w, 2985w, 1705s, 1619s, 1604s, 1588s, 1517m, 1442m, 1403m, 1392m, 1325w, 1276w, 1233w, 1198m, 1178m, 1153m, 1075s, 998s, 931w, 852w, 813w, 756m, 684w, and 621s cm⁻¹; HR-ESI-MS: *m/z*: 387.16776 ([*M*-ClO₄⁻]⁺, calcd for C₂₂H₂₂F₃N₂O⁺: 387.16787).

Synthesis of (5S)-2,2,3-Trimethyl-5-(para-fluorobenzyl)-4-imidazolidinone (4)

(2S,5S)-1-Boc-2-(*tert*-butyl)-3-methyl-5-(*para*-fluoro)benzyl-4-imidazolidinone (19)⁶

A solution of (S)-Boc-BMI (14) (570 mg, 2.22 mmol, 1.0 equiv.) in dry THF (3.00 mL) in a flame-dried Schlenck under an atmosphere of argon was cooled to -78 °C. LDA (2.0 N in THF/ⁿheptane/ethylbenzene, 1.22 mL, 2.44 mmol, 1.1 equiv.) was added dropwise and the solution stirred for 30 min before 4-fluorobenzylbromide (420 mg, 2.22 mmol, 1.0 equiv.) in THF (1.00 mL) was added slowly. After 4 h, the reaction was quenched by addition of a sat. aqueous solution of NH₄Cl (2 mL), diluted with water (3 mL) and extracted with CH₂Cl₂ (3 x 5 mL). The combined organic layers

were dried over MgSO₄ and concentrated *in vacuo*. Purification by CC (SiO₂; CH/EtOAc 8:1) gave **19** as a white solid (667 mg, 82%).

*R*_f = 0.49 (SiO₂; hexane/EtOAc 2:1); M.p. = 126.8 °C decomp.; $[\alpha]_D^{20}$: +26.8 (*c* = 0.91, CH₃OH); ¹H NMR (400 MHz, CDCl₃): δ = 7.12 (2H, dd, *J* = 8.2, 5.8, H–C3'), 6.87 (2H, t, *J* = 8.7, H–C4'), 4.54 (1H, b, H–C2), 4.29 (1H, s, H–C5), 3.81 (1H, b, H–C1'), 3.15 (1H, dd, *J* = 14.1, 2.2, H–C1'), 2.78 (3H, b, H–C8), 1.49 (9H, s, H–C4''), and 0.91 (9H, s, H–C7) ppm; ¹³C NMR (101 MHz, CDCl₃): δ = 171.4 (C4), 162.0 (d, ¹*J*_{CF} = 252.4, C5'), 152.7 (C1''), 131.8 (C2'), 131.6 (2C, d, ³*J*_{CF} = 3.1, C3'), 114.8 (2C, d, ²*J*_{CF} = 20.9, C4'), 81.2 (C3''), 81.2 (C2), 60.8 (C5), 41.0 (C6), 32.8 (C1'), 31.9 (C8), 28.4 (C4''), and 26.7 (C7) ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ = -116.55 (1F, b, F–C5') ppm; IR (ATR): $\tilde{\nu}$ = 2975w, 2933w, 1694s, 1602w, 1512w, 1478w, 1457w, 1440w, 1400m, 1377s, 1364s, 1302m, 1258m, 1236w, 1216m, 1179m, 1160m, 1116s, 1098w, 1934w, 1010w, 981w, 948w, 886m, 867w, 841w, 822w, 786m, 770m, 717m, and 705w cm⁻¹; HR-ESI-MS: *m/z* (%): 387.2059 ([*M*–Na]⁺, calcd for C₂₀H₂₉FN₂O₃Na⁺: 387.2060). Analytical data in agreement with the literature.⁶

L-(*para*-Fluoro)-phenylalanine N-methyl amide (20)

To a solution of **19** (575 mg, 1.58 mmol, 1.0 equiv.) in MeOH (15.0 mL) was added an aqueous solution of HCl (1 N, 15.0 mL) at RT and the mixture heated to reflux for 10 h. The reaction was allowed to come to RT and basified to a pH of 10 with an aqueous solution of NaOH (2 N) and extracted with CH_2Cl_2 (3.20.0 mL). The combined organic layers were dried over

MgSO₄ and concentrated *in vacuo* to give amide **20** as a white solid (290 mg, 94%).

M.p. = 133.7–134.5 °C; $[\alpha]_D^{23}$: +28.1 (*c* = 1.04, CH₃OH); ¹H NMR (300 MHz, CDCl₃): δ = 7.23 (1H, b, H–N^{amide}), 7.16 (2H, dd, *J* = 8.6, 5.5, H–C3'), 6.98 (2H, t, *J* = 8.7, H–C4'),

3.56 (1H, dd, J = 9.1, 4.1, H–C2), 3.20 (1H, dd, J = 13.8, 4.0, H–C1'), 2.79 (3H, d, J = 5.0, H–C3), 2.69 (1H, dd, J = 13.8, 9.1, H–C1'), and 1.32 (2H, b, H–N^{amine}) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 174.7$ (C1), 161.9 (d, ${}^{1}J_{CF} = 244.9$, C5'), 133.7 (d, ${}^{4}J_{CF} = 3.3$, C2'), 130.8 (2C, d, ${}^{3}J_{CF} = 7.9$, C3'), 115.6 (2C, d, ${}^{2}J_{CF} = 21.2$, C4'), 56.5 (d, ${}^{5}J_{CF} = 0.7$, C1'), 40.3 (C2), and 25.9 (C3) ppm; ¹⁹F NMR (382 MHz, CDCl₃): $\delta = -116.20$ (1F, tt, ${}^{3}J_{HF} = 8.7$, ${}^{4}J_{HF} = 5.4$, F–C4') ppm; IR (ATR): $\tilde{\nu} = 3375$ w, 3300m, 2943w, 1637s, 1600m, 1530m, 1507s, 1443w, 1406m, 1339w, 1311w, 1272w, 1222s, 1154m, 1110m, 1093m, 1016w, 983w, 927w, 884w, 867w, 816s, 797m, 751m, 710w, 693m, and 658w cm⁻¹; HR-ESI-MS: m/z: 197.1085 ([M+H]⁺, calcd for C₁₀H₁₄FN₂O⁺: 197.1085).

(5S)-2,2,3-Trimethyl-5-(para-fluorobenzyl)-4-imidazolidinone (4)

To a solution of amide **20** (141 mg, 0.72 mmol, 1.0 equiv.) in MeOH (4.00 mL) were added aceton (0.40 mL, 5.33 mmol, 7.5 equiv.) and NEt₃ (0.08 mL, 0.58 mmol, 0.8 equiv.) at RT under an atmosphere argon and the solution heated to reflux for 8 h. The reaction was allowed to come to RT and concentrated *in vacuo* to give imidazolidinone **4** as an orange sticky solid (172 mg, quant.).

[α]_D²³: -44.0 (*c* = 0.50, CH₃OH); ¹H NMR (300 MHz, CDCl₃): δ = 7.12 (2H, dd, *J* = 8.6, 5.5, H–C3'), 6.89 (2H, t, *J* = 8.7, H–C4'), 3.68 (1H, dd, *J* = 6.7, 4.6, H–C5), 3.02 (1H, dd, *J* = 14.2, 4.4, H–C1'), 2.87 (1H, dd, *J* = 14.2, 6.8, H–C1'), 2.66 (3H, s, H–C7), 1.71 (1H, b, H–N), 1.19 (3H, s, H–C6), and 1.10 (3H, s, H–C6) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 173.1 (C4), 161.7 (d, ¹*J*_{CF} = 244.7, C5'), 132.9 (d, ⁴*J*_{CF} = 3.2, C2'), 130.9 (2C, d, ³*J*_{CF} = 7.8, C3'), 115.2 (2C, d, ²*J*_{CF} = 21.1, C4'), 75.5 (C2), 59.2 (C5), 36.4 (C1'), 27.2 (C6), 25.2 (C6), and 25.1 (C7) ppm; 19F NMR (75 MHz, CDCl₃): δ = -116.28 (1F, s, F–C4') ppm; IR (ATR): \tilde{v} = 3315w, 2978w, 2927w, 1683s, 1602w, 1509s, 1426m, 1399s, 1220s, 1158m, 1098w, 1017w, 824m, and 722w cm⁻¹; HR-ESI-MS: *m*/*z*: 237.1398 ([*M*+H]⁺, calcd for C₁₃H₁₈FN₂O⁺: 237.1398).

Syntheses of (5*S*)-5-*para*-Hydroxybenzyl-2,2,3-trimethyl-4-imidazolidinone (5) and 5-(4'-Hydroxybenzyl)-2,2,3-trimethyl-4-oxo-1-[(*E*)-3-phenylallylidene]-imidazolidin-1-ium salt (5a)

L-Tyrosine methyl amide (21)

To *L*-tyrosine (1.00 g, 5.52 mmol, 1.0 equiv.) in EtOH (3.4 mL, 82.8 mmol, 15 equiv.) was added thionyl chloride (0.6 mL, 8.28 mmol, 1.5 equiv.) over 5 min at 0 °C and the resulting solution was allowed to come to RT before it was heated to reflux for 8 h. The solution was allowed to come to RT and evaporated *in vacuo* to give the *L*-tyrosine ethyl ester hydrochloride as a white powder. To the ester was added

MeNH₂ (8 N in EtOH, 2.80 mL, 22.1 mmol, 4.0 equiv.) at RT and the solution stirred overnight. After evaporation *in vacuo*, THF was added and the remaining white solid filtered off (MeNH₂·HCl). The filtrate was concentrated *in vacuo* to give amide **21** as an orange oil (1.09 g, quant.).

 $R_{\rm f} = 0.21$ (CH₂Cl₂/MeOH 10:1); $[\alpha]_{\rm D}^{20}$: +23.2 (*c* = 1.02, CH₃OH); ¹H NMR (300 MHz, CD₃OD): $\delta = 7.00$ (2H, d, *J* = 8.5, H–C3'), 6.71 (2H, d, *J* = 8.6, H–C4'), 3.44 (1H, t, *J* = 6.8, H–C2), 2.87 (1H, dd, *J* = 13.4, 6.5, H–C1'), 2.71 (1H, dd, *J* = 13.4, 7.1, H–C1'), and 2.67 (3H,

s, H–C3) ppm; ¹³C NMR (75 MHz, CD₃OD): $\delta = 177.1$ (C1), 157.4 (C5'), 131.3 (2C, C3'), 129.3 (C2'), 116.3 (2C, C4'), 57.9 (C2), 41.6 (C1'), and 26.1 (C3) ppm; IR (ATR): $\tilde{v} = 3275b$, 2939w, 1644s, 1612s, 1592s, 1540m, 1513s, 1447m, 1410m, 1309w, 1234s, 1170m, 1105w, 1022w, 942w, 821s, and 696w cm⁻¹; HR-ESI-MS: *m/z*: 195.1133 ([*M*+H]⁺, calculated for C₁₀H₁₅N₂O₂⁺: 195.1128); analytical data in agreement with the literature.⁷

(5S)-5-para-hydroxybenzyl-2,2,3-trimethyl-4-imidazolidinone (5)

To a solution of amide **21** (985 mg, 5.07 mmol, 1.0 equiv.) in MeOH (10.0 mL) was added acetone (1.9 mL, 25.4 mmol, 5.0 equiv.) at RT under an atmosphere of argon and the yellow solution was heated to reflux overnight. The reaction was allowed to come to RT and concentrated *in vacuo* to give imidazolidinone **5** as an off-white solid

(1.15 g, 97%).

 $R_{\rm f} = 0.64$ (CH₂Cl₂/MeOH 10:1); M.p. = 94.5–95.8 °C; $[\alpha]_{\rm D}^{20.5}$: -57.0 (*c* = 1.00, CH₃OH); ¹H NMR (300 MHz, CD₃OD): δ = 7.06 (2H, d, *J* = 8.5, H–C2'), 6.72 (2H, d, *J* = 8.6, H–C3'), 3.73 (1H, dd, *J* = 6.8, 4.4, H–C5), 3.00 (1H, dd, *J* = 14.3, 4.3, H–C8), 2.85 (1H, dd, *J* = 14.3, 7.1, H–C8), 2.75 (3H, d, *J* = 0.4, H–C7), 1.26 (3H, s, H–C6), and 1.20 (3H, s, H–C6) ppm; ¹³C NMR (101 MHz, CD₃OD): δ = 175.5 (C4), 157.4 (C4'), 131.5 (2C, C2'), 129.0 (C1'), 116.3 (2C, C3'), 77.4 (C2), 60.9 (C5), 37.0 (C8), 26.8 (C6), 25.6 (C7), and 24.8 (C6) ppm; IR (ATR): $\tilde{\nu}$ = 3276w, 2974w, 2939w, 1661s, 1479w, 1447m, 1427m, 1400s, 1384s, 1370s, 1331w, 1262m, 1243m, 1210w, 1147s, 1076m, 1037m, 1004w, 993w, 936s, 916m, 847s, and 757s cm⁻¹; HR-ESI-MS: *m/z* (%): 235.1444 ([*M*+H]⁺, calculated for C₁₃H₁₉N₂O₂⁺: 235.1441); analytical data in agreement with the literature.⁸

5-(4'-Hydroxybenzyl)-2,2,3-trimethyl-4-oxo-1-[(*E*)-3-phenylallylidene]-imidazolidin-1-ium perchlorate $(5a \cdot ClO_4)^3$

To imidazolidinone **5** (37.5 mg, 0.16 mmol, 1 equiv.) in Et₂O (0.20 mL) was added perchloric acid (60% in H₂O, 26.80 mg, 0.16 mmol, 1 equiv.) in EtOH/Et₂O (1:1, 0.40 mL) at RT and the resulting mixture stirred for 10 min before it was evaporated *in vacuo* to give the imidazolidinone salt. The salt was dissolved in MeOH (0.40 mL) and heated to 35 °C. (*E*)-cinnamaldehyde (40.2 μ L, 0.32 mmol, 2 equiv.) was added and the yellow solution stirred for 1 h. The solvent was removed *in vacuo* and the residue dissolved in a minimum amount of MeOH. From this

solution the iminium salt was crashed out with Et_2O and the supernatant solution taken off. The washing procedure was repeated and the iminium salt **5a**·**ClO**₄⁻ isolated as a yellow solid (50.3 mg, 70%).

Crystals suitable for X-ray crystallographic analysis were obtained from a solution in CH₃CN by vapor diffusion with Et₂O.

M.p. = 117.3 °C decomp.; ¹H NMR (600 MHz, CD₃CN): $\delta_{\rm H}$ = 8.71 (1H, dd, *J* = 10.7, 1.9, H–C1"), 8.14 (1H, d, *J* = 15.0, H–C3"), 7.90 (2H, dd, *J* = 8.4, 1.1, H–C5"), 7.73–7.69 (1H, m, H–C7"), 7.63–7.59 (2H, m, H–C6"), 7.23 (1H, dd, *J* = 15.0, 10.7, H–C2"), 6.92 (2H, d, *J* = 8.5, H–C2'), 6.72 (2H, d, *J* = 8.6, H–C3'), 5.13 (1H, t, *J* = 4.8, H–C5), 3.49 (1H, dd, *J* = 14.9, 5.6, H–C8), 3.36 (1H, dd, *J* = 14.9, 4.0, H–C8), 2.80 (3H, d, *J* = 0.5, H–C7), 1.71 (3H, s, H–C6^{anti}), and 0.93 (3H, s, H–C6^{syn}) ppm; ¹³C NMR (151 MHz, CD₃CN): $\delta_{\rm C}$ = 168.0 (C1"), 166.3 (C3"), 165.4 (C4), 158.0 (C4'), 136.0 (C7"), 134.4 (C4"), 132.4 (2C, C5"), 132.4

(2C, C2'), 130.7 (2C, C6''), 125.6 (C1'), 118.5 (C2''), 116.8 (2C, C3'), 86.6 (C2), 65.4 (C5), 36.7 (C8), 27.5 (C6^{anti}), 26.1 (C7), and 25.1 (C6^{syn}) ppm; IR (ATR): $\tilde{\nu} = 3370$ br, 3070w, 2985w, 1704s, 1603s, 1588s, 1517m, 1441m, 1403m, 1392m, 1325w, 1276w, 1233w, 1199m, 1178m, 1153m, 1076s, 999s, 931w, 852w, 813w, 756m, 726s, 684w, and 621s cm⁻¹; HR-ESI-MS: *m/z*: 349.19106 ([*M*-ClO₄⁻]⁺, calcd for C₂₂H₂₅N₂O₂⁺: 349.19105).

Syntheses of (5S)-2,2,3-Trimethyl-5-(3,5-dimethoxybenzyl)imidazolidin-4-one (6) and 5-(3',3'-Dimethoxybenzyl)-2,2,3-trimethyl-4-oxo-1-[(E)-3-phenylallylidene]-imidazolidin-1-ium salt (6a)

1-Bromomethyl-3,5-dimethoxybenzene 22⁹

To a solution of 3,5-dimethoxybenzyl alcohol (500m g, 2.97 mmol, 1.00 equiv.) in Et₂O (14 mL) were added successively PBr₃ (0.28 mL, 2.97 mmol, 1.00 equiv.) and pyridine (12 μ L, 0.15 mmol, 0.05 equiv.) slowly at RT. The mixture was heated to 40 °C and after completion was detected by

TLC (2 h), it was allowed to cool to RT. H_2O (20 mL) was added slowly and the aqueous layer extracted Et_2O (3.15 mL). The combined organic layers were washed with H_2O and brine and dried over MgSO₄. Concentration *in vacuo* gave 1-bromomethyl-3,5-dimethoxybenzene (**22**) as a white crystalline solid (625 mg, 91%), which should be kept in the freezer (turns first orange then brown at RT).

 $R_{\rm f} = 0.88$ (CH/EtOAc 1:1); M.p. = 71.2–71.8 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 6.55$ (2H, d, J = 2.3, H–C3), 6.41 (1H, d, J = 2.3, H–C5), 4.42 (2H, s, H–C1), and 3.79 (6H, s, H–C6) ppm; ¹³C NMR (101 MHz, CDCl₃): $\delta = 161.0$ (2C, C4), 139.8 (C2), 107.0 (2C, C3), 100.6 (C5), 55.4 (2C, C6), and 33.7 (C1) ppm; HR-EI-MS: m/z: 151.0758 ([*M*-Br⁻]⁺, calcd for C₉H₁₁O₂⁺: 151.0759); analytical data in agreement with the literature.⁹

(2*S*,5*S*)-1-Boc-2-(*tert*-butyl)-3-methyl-5-(3,5-dimethoxybenzyl)-4-imidazolidinone (23)⁵

A solution of HMDS (0.3 mL, 1.42 mmol, 1.2 equiv.) in dry THF (1.00 mL) in a flame-dried Schlenck under an atmosphere of argon was cooled to 0 °C. ^{*n*}BuLi (1.6 N in ^{*n*}hexane, 0.9 mL, 1.42 mmol, 1.2 equiv.) was added dropwise and the solution stirred for 15 min before it was cooled to -78 °C. DMPU (0.43 mL, 3.54 mmol, 3.0 equiv.) and then (*S*)-Boc-BMI (14) (300 g, 1.18 mmol, 1.0 equiv.) in THF (1.00 mL) was added dropwise, the solution turned yellow during the addition. After 30 min, 1-

bromomethyl-3,5-dimethoxybenzene **22** (273 g, 1.18 mmol, 1.0 equiv.) in THF (1.00 mL) was added slowly and the resulting mixture stirred for 5 h. The reaction was quenched by addition of a saturated aqueous solution of NaHCO₃ (4 mL) and extracted with CH₂Cl₂ (3.5 mL). The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. Purification by CC (SiO₂; CH/EtOAc 3:1) gave **23** as a colourless oil (352 mg, 73%).

C4'), and 26.6 (3C, C7) ppm; IR (ATR): $\tilde{v} = 2966$ w, 2838w, 1698s, 1595s, 1457m, 1431m, 1407m, 1397s, 1366s, 1312w, 1251m, 1204m, 1151s, 1127s, 1067m, 1033w, 960w, 887w, 862w, 774w, 755w, 736w, and 696w cm⁻¹; HR-ESI-MS: m/z: 407.2542 ([M+H]⁺, calcd for C₂₂H₃₅N₂O₅⁺: 407.2540).

L-3,5-Dimethoxyphenylalanine *N*-methyl amide (24)¹⁰

To a solution of **23** (300 mg, 0.74 mmol, 1.0 equiv.) in MeOH (7.0 mL) was added an aqueous solution of HCl (1 N, 7.0 mL) at RT and the mixture heated to reflux for 8 h. The reaction was allowed to come to RT and basified to a pH of 10 with an aqueous solution of NaOH (2 N, circa 4 mL) and extracted three times with CH_2Cl_2 . The combined organic layers were dried over MgSO₄ and concentrated *in vacuo* to give amide **24** as a white solid (175 mg, 99%).

M.p. = 61.7–63.6 °C; $[\alpha]_D^{2^3}$: +15.1 (*c* = 0.60, CH₃OH); ¹H NMR (400 MHz, CDCl₃): δ = 7.33 (1H, bd, *J* = 5.5, H–N^{amide}), 6.34 (2H, s, H–C3'), 6.31 (1H, s, H–C5'), 3.74 (6H, d, *J* = 1.2, H–C6'), 3.56 (1H, dd, *J* = 9.7, 3.9, H–C2), 3.19 (1H, dd, *J* = 13.6, 3.9, H–C1'), 2.79 (3H, d, *J* = 5.0, H–C3), 2.56 (1H, dd, *J* = 13.6, 9.6, H–C1'), and 1.45 (2H, bs, H–N^{amine}) ppm; ¹³C NMR (101 MHz, CDCl₃): δ = 174.9 (C1), 161.0 (2C, C4'), 140.4 (C2'), 107.2 (2C, C3'), 98.8 (C5'), 56.4 (C2), 55.4 (2C, C6'), 41.4 (C1'), and 25.9 (C3) ppm; IR (ATR): $\tilde{\nu}$ = 3379w, 3314w, 2958w, 2935w, 2865w, 1636m, 1595s, 1524m, 1463m, 1446m, 1428m, 1400m, 1346m, 1332w, 1291m, 1205s, 1147s, 1147s, 1097w, 1081w, 1057s, 994w, 955w, 907w, 877w, 838w, 822m, 786w, 742m, 690m, and 657w cm⁻¹; HR-ESI-MS: *m/z*: 239.1397 ([*M*+H]⁺, calcd for C₁₂H₁₉N₂O₃⁺: 239.1390).

(5S)-2,2,3-Trimethyl-5-(3,4,5-trimethoxybenzyl)imidazolidin-4-one (6)

To a solution of amide **24** (100 mg, 0.42 mmol, 1.0 equiv.) in MeOH (2.0 mL) were added aceton (0.23 mL, 3.15 mmol, 7.5 equiv.) and NEt₃ (47 μ L, 0.34 mmol, 0.8 equiv.) at RT under an atmosphere argon and the solution heated to reflux for 6 h. The reaction was allowed to come to RT and concentrated *in vacuo* to give imidazolidinone **6** as a yellow oil (122 mg, quant.).

[α]_D²³: -39.3 (*c* = 1.02, CH₃OH); ¹H NMR (400 MHz, CDCl₃): δ = 6.37 (2H, d, *J* = 2.3, H–C3'), 6.31 (1H, d, *J* = 2.3, H–C5'), 3.73 (7H, m, H–C5, H–C6'), 3.06 (1H, dd, *J* = 14.1, 4.5, H–C1'), 2.91 (1H, dd, *J* = 14.0, 6.9, H–C1'), 2.74 (3H, s, H–C7), 1.24 (3H, s, H–C6), and 1.18 (3H, s, H–C6) ppm; ¹³C NMR (101 MHz, CDCl₃): δ = 173.5 (C4), 160.9 (2C, C4'), 139.6 (C2'), 107.4 (2C, C3'), 99.0 (C5'), 75.6 (C2), 59.2 (C5), 55.4 (2C, C6'), 37.7 (C1'), 27.4 (C6), 25.4 (C6), and 25.3 (C7) ppm; IR (ATR): \tilde{v} = 2933w, 2839w, 1684s, 1595s, 1461m, 1429s, 1398m, 1368w, 1315w, 1294w, 1205s, 1151s, 1066m, 931w, 832w, and 698w cm⁻¹; HR-ESI-MS: *m/z*: 279.1708 ([*M*+H]⁺, calcd for C₁₅H₂₃N₂O₃⁺: 279.1703).

5-(3',3'-Dimethoxybenzyl)-2,2,3-trimethyl-4-oxo-1-[(E)-3-phenylallylidene]-imidazolidin-1-ium perchlorate (6a·ClO₄⁻):

To racemic imidazolidinone **6** (3.3 mg, 12 µmol, 1.0 equiv.) in Et₂O (20 µL) was added HClO₄ (70% in H₂O, 1.7 mg, 12 µmol, 1.0 equiv.) in EtOH/Et₂O (1:1, 40 µL) at RT and stirred for 10 min, before the yellow solution was evaporated *in vacuo* to give the off-white HClO₄ salt as a solid. The solid was dissolved in MeOH (20 µL) and (*E*)-cinnamaldehyde (3.0 µL, 24 µmol, 2.0 equiv.) was added at 35 °C and the yellow solution stirred for 1 h. The solvent was evaporated *in vacuo*. The residue was dissolved in a minimum amount of MeOH, the iminium salt was crashed out with Et₂O and the supernatant solution taken off.

The iminium salt $6a \cdot ClO_4^-$ was isolated as a yellowish solid contaminated with (*E*)-cinnamaldehyde (P/(*E*)-cinnamaldehyde 1:1.3).

¹H NMR (300 MHz, CD₃CN): $\delta_{\rm H} = 8.73$ (1H, dd, J = 10.7, 1.7, H–C1"), 8.10 (1H, d, J = 14.8, H–C3"), 7.88–7.82 (2H, m, H–C5"), 7.72–7.58 (3H, m, H–C7", H–C6"), 7.11 (1H, dd, J = 15.1, 10.6, H–C2"), 6.34–6.27 (3H, m, H–C2', H–C4'), 5.16 (1H, b, H–C5), 3.67 (6H, s, H–C5'), 3.50 (1H, dd, J = 14.5, 5.3, H–C8), 3.30 (1H, dd, J = 14.5, 5.1, H–C8), 2.84 (3H, d, J = 0.7, H–C7), 1.74 (3H, s, H–C6^{anti}), and 1.13 (3H, s, H–C6^{syn}) ppm; HR-ESI-MS: m/z: 393.2170 ([M–ClO₄⁻]⁺, calcd for C₂₄H₂₉N₂O₃⁺: 393.2173).

Syntheses of (S)-5-(1-Methylindol-3-ylmethyl)-2,2,3-trimethylimidazolidin-4-one (7) and (S)-5-(1-Methylindol-3-ylmethyl)-2,2,3-trimethyl-4-oxo-1-[(E)-3-phenylallylidene]-imidazolidin-1-ium salt (7a·ClO₄)

1-Methyl-L-tryptophan methyl ester (25)

To 1-methyl-L-tryptophan (500 mg, 2.29 mmol, 1.0 equiv.) in MeOH (1.86 mL, 45.8 mmol, 20 equiv.) was added thionyl chloride (0.20 mL, 2.75 mmol, 1.2 equiv.) over 10 min at 0 °C and the resulting mixture was allowed to come to RT before it was heated to reflux overnight. The solution was allowed to come to RT and evaporated *in vacuo* to give 1-methyl-L-tryptophan methyl ester hydrochloride (**25**) as an off-white

solid (615 mg, quant.).

M.p. = 197.6–198.4 °C; $[\alpha]_D^{23}$: +14.5 (*c* = 0.89, CH₃OH); ¹H NMR (300 MHz, CD₃OD): δ = 7.54 (1H, dt, *J* = 7.9, 1.0, H–C5'), 7.39 (1H, dt, *J* = 8.3, 0.8, H–C8'), 7.21 (1H, ddd, *J* = 8.2, 7.1, 1.1, H–C7'), 7.14–7.07 (2H, m, H–C6', H–C2'), 4.32 (1H, dd, *J* = 7.3, 5.5, H–C2), 3.80 (6H, s, H–C3, H–C10'), 3.45 (1H, ddd, *J* = 15.1, 5.5, 0.6, H–C4), and 3.36 (1H, dd, *J* = 9.6, 5.6, H–C4) ppm; ¹³C NMR (75 MHz, CD₃OD): δ = 170.8 (C1), 138.8 (C9'), 129.9 (C2'), 128.7 (C4'), 123.1 (C7'), 120.4 (C6'), 119.1 (C5'), 110.7 (C8'), 106.8 (C3'), 54.6 (C2), 53.7 (C3), 32.9 (C10'), and 27.4 (C4) ppm; IR (ATR): $\tilde{\nu}$ = 3009w, 2837m, 2637w, 2010w, 1746s, 1613w, 1575w, 1542w, 1505m, 1474m, 1445m, 1377w, 1359w, 1327w, 1284w, 1251w, 1228s, 1186w, 1159w, 1123w, 1074m, 1047w, 1011w, 9909w, 945w, 919w, 890w, 864w, 833w, 739m, 727s, and 657w cm⁻¹; HR-ESI-MS: *m/z*: 233.1283 ([*M*–C1]⁺, calcd for C₁₃H₁₇N₂O₂⁺: 233.1285); analytical data in agreement with the literature.¹¹

1-Methyl-L-tryptophan methyl amide (26)

To 1-methyl-L-tryptophan methyl ester **25** (584 mg, 2.17 mmol, 1.0 equiv.) was added MeNH₂ (8 N in EtOH, 1.10 mL, 8.70 mmol, 4.0 equiv.) at RT and the solution stirred overnight. After evaporation *in vacuo*, the crude product was dissolved in a saturated aqueous solution of NaHCO₃ (20 mL) and CHCl₃ (15 mL), the aqueous layer was extracted twice with CHCl₃ (2 \cdot 15 mL), the combined organic layers were dried

over MgSO₄ and concentrated *in vacuo* to give amide **26** as a sticky oil (502 mg, quant.).

[α]_D²³: +6.7 (c = 0.95, CH₃OH); ¹H NMR (300 MHz, CDCl3): δ = 7.67 (1H, dt, *J* = 7.9, 1.1, H–C5'), 7.31 (1H, dt, *J* = 8.2, 1.2, H–C8'), 7.23 (1H, dd, *J* = 8.2, 1.1, H–C7'), 7.12 (1H, ddd, *J* = 8.0, 6.8, 1.2, H–C6'), 6.92 (1H, s, H–C2'), 3.76 (3H, s, H–C10'), 3.70 (1H, dd, *J* = 8.9, 4.1, H–C2), 3.38 (1H, ddd, *J* = 14.4, 4.1, 0.6, H–C4), 2.90 (1H, dd, *J* = 14.4, 9.0, H–C4), 2.81 (3H, d, *J* = 5.0, H–C3), and 1.46 (2H, bs, H–N^{amine}) ppm; ¹³C NMR (75 MHz, CD₃OD): δ = 175.4 (C1), 137.2 (C9'), 128.1 (C4'), 127.9 (C2'), 121.9 (C7'), 119.2 (2C, C5', C6'), 110.3 (C3'), 109.4 (C8'), 55.8 (C2), 32.8 (C10'), 30.7 (C3), and 25.9 (C4) ppm; IR (ATR): \tilde{v} = 3300w, 3052w, 2934w, 1652s, 1532m, 1471m, 1409w, 1375w, 1326m, 1250w, 1156w, 1130w, 1012w, 909w, 846w, and 735s cm⁻¹; HR-ESI-MS: *m/z*: 232.1445 ([*M*+H]⁺, calcd for C₁₃H₁₈N₃O⁺: 232.1444).

(S)-5-(1-Methylindol-3-ylmethyl)-2,2,3-trimethylimidazolidin-4-one (7):

To a solution of amide **26** (502 mg, 2.17 mmol, 1.0 equiv.) in MeOH (10.0 mL) was added acetone (1.20 mL, 16.3 mmol, 7.5 equiv.) and NEt₃ (0.24 mL, 1.74 mmol, 0.8 equiv.) at RT under an atmosphere of argon and the yellow solution was heated to reflux overnight. The reaction was allowed to come to RT and concentrated *in vacuo*. Purification by CC

(SiO₂; CH₂Cl₂/MeOH/NH₃ (25% in H₂O) 20:1:0.2) gave imidazolidinone 7 as a yellow oil (484 mg, 82%).

 $R_{\rm f} = 0.46$ (CH₂Cl₂/MeOH 10:1); $[\alpha]_{\rm D}^{23}$: -37.8 (c = 0.31, CH₃OH); ¹H NMR (600 MHz, CDCl₃): $\delta = 7.64$ (1H, dt, J = 7.8, 0.9, H–C4'), 7.27 (1H, dt, J = 8.2, 0.9, H–C7'), 7.21 (1H, ddd, J = 8.2, 7.0, 1.1, H–C6'), 7.10 (1H, ddd, J = 8.0, 7.0, 1.0, H–C5'), 6.95 (1H, s, H–C2'), 3.82 (1H, ddd, J = 5.9, 4.7, 0.5, H–C5), 3.73 (3H, s, H–C10'), 3.32 (1H, ddd, J = 15.1, 4.6, 0.7, H–C8), 3.17 (1H, ddd, J = 15.1, 6.1, 0.7, H–C8), 2.73 (3H, d, J = 0.6, H–C7), 1.25 (3H, s, H–C6), and 1.09 (3H, s, H–C6) ppm; ¹³C NMR (151 MHz, CDCl₃): $\delta = 174.1$ (C4), 136.9 (C9'), 128.4 (C8'), 128.0 (C2'), 121.6 (C6'), 119.1 (C5'), 119.0 (C4'), 109.1 (C7'), 109.0 (C3'), 75.4 (C2), 59.1 (C5), 32.7 (b, C10'), 27.0 (C6), 26.3 (C8), 25.2 (C7), and 25.1 (C6) ppm; IR (ATR): $\tilde{v} = 3295b$, 2921w, 2239w, 1682s, 1615w, 1526w, 1472m, 1425m, 1397m, 1379m, 1327w, 1253w, 1205w, 1150w, 1086w, 1013w, 921w, 799w, and 738s cm⁻¹; HR-ESI-MS: m/z: 272.1763 ([M+H]⁺, calcd for C₁₆H₂₂N₃O⁺: 272.1757).

(S)-5-(1-Methylindol-3-ylmethyl)-2,2,3-trimethyl-4-oxo-1-[(E)-3-phenylallylidene]-imidazolidin-1-ium perchlorate (7a·ClO₄):³

To imidazolidinone **7** (43.4 mg, 0.16 mmol, 1.0 equiv.) in Et₂O (0.2 mL) was added HClO₄ (60% in H₂O, 26.8 mg, 0.16 mmol, 1.0 equiv.) in EtOH/Et₂O (1:1, 0.4 mL) at RT and stirred for 10 min, before the solution was evaporated *in vacuo* to give the HClO₄ salt as a solid. The solid was dissolved in MeOH (0.4 mL) and (*E*)-cinnamaldehyde (40.2 μ L, 0.32 mmol, 2.0 equiv.) was added at 35 °C and the solution stirred for 1 h. The solvent was evaporated *in vacuo*.

The residue was dissolved in a minimum amount of MeOH, the iminium salt was crashed out with Et_2O and the supernatant solution taken off. This purification procedure was repeated two additional times to give iminium salt **7a**·ClO₄⁻ as a red solid.

M.p. = 137.8 °C decomp.; $[\alpha]_D^{20}$ = +195.3 (*c* = 0.43 in CD₃CN); ¹H NMR (600 MHz, CD₃CN): δ_H = 8.67 (1H, d, *J* = 10.7, H–C1"), 7.94 (1H, d, *J* = 15.1, H–C3"), 7.66–7.62 (1H, m, H–C7"), 7.59 (1H, dt, *J* = 8.0, 0.9, H–C4'), 7.50 (2H, t, *J* = 7.8, H–C6"), 7.40 (2H, dd, *J* = 8.2, 1.0, H–C5"), 7.24–7.18 (2H, m, H–C6', H–C7'), 7.14 (1H, ddd, *J* = 8.0, 6.5, 1.5, H–5'), 6.93 (1H, s, H–C2'), 6.68 (1H, dd, *J* = 15.0, 10.6, H–C2"), 5.08 (1H, t, *J* = 5.0, H–C5), 3.81 (1H, dd, *J* = 15.5, 5.0, H–C8), 3.59 (3H, s, H–C10'), 3.43 (1H, dd, *J* = 17.8, 6.6, H–C8), 2.78 (3H, d, *J* = 0.4, H–C7), 1.72 (3H, s, H–C6^{anti}), and 1.14 (3H, s, H–C6^{syn}) ppm; ¹³C NMR (151 MHz, CD₃CN): δ_C = 167.7 (C1"), 166.0 (C4), 164.6 (C3"), 138.1 (C9'), 135.5 (C7"), 134.2 (C4"), 131.9 (2C, C5"), 130.8 (C2'), 130.6 (2C, C6"), 128.3 (C3'), 123.4 (C8'), 120.6 (C5'), 119.6 (C4'), 118.5 (C2"), 111.0 (C7'), 107.0 (C3'), 86.5 (C2), 64.7 (C5), 33.1 (C10'), 29.3 (C8), 27.3 (C6^{anti}), 26.1 (C7), and 25.6 (C6^{syn}) ppm; IR (ATR): $\tilde{\nu}$ = 3058w, 2939w, 1712s, 1621m, 1604m, 1589s, 1474m, 1455m, 1429m, 1390m, 1324w, 1282w, 1197m, 1180m, 1073s, 1011m, 999m, 932w, 743s, 686m, and 621s cm⁻¹; HR-ESI-MS: *m/z*: 386.22284 ([*M*-CIO₄⁻]⁺, calcd for C₂₅H₂₈N₃O⁺: 386.22324).

Syntheses of (5*S*)-5-(Indol-3-ylmethyl)-2,2,3-trimethyl-4-imidazolidinone (8) and (*S*)-5-(Indol-3-ylmethyl)-2,2,3-trimethyl-4-oxo-1-[(*E*)-3-phenylallylidene]-imidazolidin-1-ium salt (8a)

L-Tryptophan methyl amide (27)

To *L*-tryptophan (1.00 g, 4.90 mmol, 1.0 equiv.) in MeOH (5.00 mL, 123 mmol, 25 equiv.) was added thionyl chloride (0.43 mL, 5.88 mmol, 1.2 equiv.) over 10 min at 0 °C and the resulting mixture was allowed to come to RT before it was heated to reflux for 19 h. The solution was allowed to come to RT and evaporated *in vacuo* to give the tryptophan methyl ester hydrochloride as an off-white solid. To the ester was added MeNH₂ (8 N in

EtOH, 2.50 mL, 19.6 mmol, 4.0 equiv.) at RT and the solution stirred for 42.5 h. After evaporation *in vacuo*, the crude product was dissolved in sat. aq. solution of NaHCO₃ (20 mL) and CHCl₃, the aqueous layer was extracted with CHCl₃ ($3 \cdot 30$ mL), the combined organic layers were dried over MgSO₄ and concentrated *in vacuo* to give amide **27** as an orange sticky solid (868 mg, 82%).

M.p. = 96.2–99.1 °C; $[\alpha]_D^{23}$: +11.0 (c = 0.75, CH₃OH); ¹H NMR (400 MHz, CDCl3): δ = 8.31 (1H, b, H–N^{Ar}), 7.67 (1H, d, *J* = 7.6, H–C5'), 7.38 (1H, d, *J* = 7.9, H–C8'), 7.26 (1H,

b, H–N^{amide}), 7.20 (1H, t, J = 7.4, H–C7'), 7.12 (1H, t, J = 7.2, H–C6'), 7.06 (1H, s, H–C2'), 3.72 (1H, dd, J = 8.4, 3.4, H–C2), 3.40 (1H, dd, J = 14.4, 3.2, H–C4), 2.92 (1H, dd, J = 14.3, 9.1, H–C4), 2.81 (3H, d, J = 4.4, H–C3), and 1.45 (2H, b, H–N^{amine}) ppm; ¹³C NMR (101 MHz, CDCl₃): $\delta = 175.59$ (C1), 136.56 (C9'), 127.67 (C4'), 123.18 (C2'), 122.38 (C7'), 119.72 (C6'), 119.12 (C5'), 112.03 (C3'), 111.38 (C8'), 55.78 (C2), 30.95 (C4), and 25.97 (C3) ppm; IR (ATR): $\tilde{\nu} = 3274m$, 2922w, 1643s, 1533s, 1456m, 1436m, 1409m, 1232w, 1158w, 1101w, 1010w, 908w, 848, and 739s cm⁻¹; HR-EI-MS: *m/z*: 218.1278 ([*M*+H]⁺, calcd for C₁₂H₁₆N₃O⁺: 218.1288); analytical data in agreement with the literature.¹²

(5S)-5-(Indol-3-ylmethyl)-2,2,3-trimethyl-4-imidazolidinone (8)

To a solution of amide **27** (432 mg, 2.0 mmol, 1.0 equiv.) in MeOH (8.0 mL) was added acetone (1.1 mL, 14.9 mmol, 7.5 equiv.) and NEt₃ (0.22 mL, 1.59 mmol, 0.8 equiv.) at RT under an atmosphere of argon and the yellow solution was heated to reflux overnight. The reaction was allowed to come to RT and concentrated *in vacuo* to give imidazolidinone **8** as a

yellow sticky solid (516 mg, quant.).

M.p. = 109.6–110.8 °C; $[\alpha]_D^{20}$: – 66.3 (c = 0.98, CH₃OH); ¹H NMR (400 MHz, CDCl₃): δ = 8.07 (1H, b, H–N^{Ar}), 7.67 (1H, d, *J* = 7.8, H–C4'), 7.36 (1H, d, *J* = 8.1, H–C7'), 7.19 (1H, dd, *J* = 7.5, 0.9, H–C6'), 7.16–7.09 (2H, m, H–C5', H–C2'), 3.85 (1H, t, *J* = 5.2, H–C5), 3.33 (1H, dd, *J* = 15.1, 4.6, H–C8), 3.21 (1H, dd, *J* = 15.0, 5.8, H–C8), 2.73 (3H, s, H–C7), 1.25 (3H, s, H–C6), and 1.07 (3H, s, H–C6) ppm; ¹³C NMR (101 MHz, CDCl₃): δ = 174.2 (C4), 136.3 (C9'), 128.1 (C8'), 123.4 (C2'), 122.3 (C6'), 119.8 (C5'), 119.1 (C4'), 111.2 (C7'), 110.9 (C3'), 75.6 (C2), 59.1 (C5), 27.1 (C6), 26.5 (C8), 25.4 (C7), and 25.3 (C6); IR (ATR): $\tilde{\nu}$ = 3262bw, 2976w, 2926w, 1668s, 1429m, 1400m, 1367w, 1339w, 1257w, 1208w, 1185w, 1148w, 1090w, 1010w, 923w, 878w, 796w, and 739s cm⁻¹; HR-ESI-MS: *m/z*: 258.1597 ([*M*+H]⁺, calcd for C₁₅H₂₀N₃O⁺: 258.1601).

(S)-5-(Indol-3-ylmethyl)-2,2,3-trimethyl-4-oxo-1-[(E)-3-phenylallylidene]-imidazolidin-1-ium perchlorate (8a·ClO₄)

To imidazolidinone **8** (20.3 mg, 0.08 mmol, 1.0 equiv.) in Et₂O (0.1 mL) was added HClO₄ (70% in H₂O, 11.5 mg, 0.08 mmol, 1.0 equiv.) in EtOH/Et₂O (1:1, 0.2 mL) at RT and stirred for 10 min, before the solution was evaporated *in vacuo* to give the HClO₄ salt as a solid. The solid was dissolved in MeOH (0.2 mL) and (*E*)-cinnamaldehyde (20.1 μ L, 0.16 mmol, 2.0 equiv.) was added at 35 °C and the solution stirred for 1 h. The solvent was evaporated *in vacuo*. The residue was dissolved in a minimum amount of MeOH, the iminium salt was

crashed out with Et_2O and the supernatant solution taken off. This purification procedure was repeated two additional times to give iminium salt **8a**·ClO₄⁻ as a red solid.

M.p. = 135.1 °C decomp.; $[\alpha]_D^{23} = +522.9$ (c = 0.77 in CH₃CN); ¹H NMR (400 MHz, CD₃CN): $\delta = 9.30$ (1H, bs, H–N^{Ar}), 8.65 (1H, dd, J = 10.7, 1.8, H–C1"), 7.95 (1H, d, J = 15.1, H–C3"), 7.67–7.57 (2H, m, H–C7", H–C4'), 7.50 (2H, t, J = 7.8, H–C6"), 7.43 (2H, d, J = 7.4, H–C5"), 7.29 (1H, d, J = 8.0, H–7'), 7.21–7.10 (2H, m, H–C6', H–C5'), 7.00 (1H, d, J = 2.5, H–2'), 6.78 (1H, dd, J = 15.0, 10.7, H–C2"), 5.11 (1H, t, J = 5.0, H–C5), 3.83 (1H, dd, J = 15.4, 5.1, H^{si}–C8), 3.47 (1H, dd, J = 15.4, 6.0, H^{re}–C8), 2.78 (3H, s, H–C7), 1.71 (3H, s, H–

C6^{anti}), and 1.07 (3H, s, H–C6^{syn}) ppm; ¹³C NMR (151 MHz, CD₃CN): $\delta = 167.7$ (C1"), 166.0 (C4), 164.9 (C3"), 137.5 (C9'), 135.6 (C7"), 134.2 (C4"), 132.0 (2C, C5"), 130.6 (2C, C6"), 127.9 (C8'), 126.7 (C2'), 123.5 (C7'), 120.8 (C5'), 119.4 (C4'), 118.3 (C2"), 112.9 (C7'), 108.0 (C3'), 86.5 (C2), 64.6 (C5), 29.3 (C8), 27.3 (C6^{anti}), 26.1 (C7), and 25.5 (C6^{syn}) ppm; IR (ATR): $\tilde{\nu} = 3359$ w, 3059w, 1709m, 1621m, 1603m, 1588s, 1456w, 1429w, 1390m, 1341w, 1312w, 1281w, 1233w, 1155w, 1197m, 1179m, 1071s, 999m, 931w, 866w, 745s, and 684w cm⁻¹; HR-ESI-MS: m/z: 372.2073 ([*M*–ClO₄⁻]⁺, calcd for C₂₄H₂₆N₃O⁺: 372.2070).

Syntheses of (5S)-2,2,3-Trimethyl-5-(3,4,5-trimethoxybenzyl)imidazolidin-4-one (9) and 5-(3',3',4'-Trimethoxybenzyl)-2,2,3-trimethyl-4-oxo-1-[(*E*)-3-phenylallylidene]imidazolidin-1-ium salt (9a)

1-Bromomethyl-3,4,5-trimethoxybenzene (28)⁹

To a solution of 3,4,5-trimethoxybenzyl alcohol (4.00 g, 20.2 mmol, 1.00 equiv.) in Et_2O (1.00 L) were added successively PBr₃ (5.46 g, 20.2 mmol, 1.00 equiv.) and pyridine (79.8 mg, 1.01 mmol, 0.05 equiv.) slowly at RT. The mixture was heated to 40 °C and after completion was detected by TLC (3 h), it was allowed to cool to RT. H₂O was added and the

aqueous layer extracted twice with Et_2O . The combined organic layers were dried over MgSO₄ and concentrated *in vacuo* to give 1-bromomethyl-3,4,5-trimethoxybenzene (**28**) as a white solid (5.27 g, quant.), which should be kept in the freezer (turns first orange then brown at RT).

 $R_{\rm f} = 0.76$ (CH/EtOAc 1:1); M.p. = 72.3–73.4 °C (Lit. 74–75 °C); ¹H NMR (300 MHz, CDCl₃): $\delta = 6.62$ (2H, s, H–C3), 4.47 (2H, s, H–C1), 3.88 (6H, d, J = 0.7, H-C6), and 3.85 (3H, d, J = 0.8 Hz, H-C7) ppm; ¹³C NMR (101 MHz, CDCl₃): $\delta = 153.5$ (2C, C4), 138.3 (C5), 133.3 (C2), 106.3 (2C, C3), 61.0 (C7), 56.3 (2C, C6), and 34.4 (C1) ppm; HR-EI-MS: m/z: 181.0866 ([M-Br⁻]⁺, calcd for C₁₀H₁₃O₃⁺: 181.0859); analytical data in agreement with the literature.¹³

(2S,5S)-1-Boc-2-(*tert*-butyl)-3-methyl-5-(3,4,5-trimethoxybenzyl)-4-imidazolidinone (29)⁵

A solution of HMDS (1.28 mL, 6.16 mmol, 1.2 equiv.) in dry THF (4.00 mL) in a flame-dried Schlenck under an atmosphere of argon was cooled to 0 °C. ⁿBuLi (1.6 N in ⁿhexane, 3.85 mL, 6.16 mmol, 1.2 equiv.) was added dropwise and the solution stirred for 15 min before it was cooled to -78 °C. DMPU (1.86 mL, 15.4 mmol, 3.0 equiv.) and then (S)-Boc-BMI (14) (1.30 g, 5.13 mmol, 1.0 equiv.) in THF (4.00 mL) was added dropwise to the orange solution that turned darker upon addition. After 30 min, 1-bromomethyl-3,4,5-trimethoxybenzene (28) (1.34 g,

5.13 mmol, 1.0 equiv.) in THF (4.00 mL) was added slowly and the resulting mixture stirred for 3 h during which time a brown solid formed. The reaction was quenched by addition of a saturated aqueous solution of NH_4Cl and extracted three times with CH_2Cl_2 . The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. Purification by CC (SiO₂; CH/EtOAc 3:1) gave **29** as a white solid (1.93 g, 86%).

 $R_{\rm f} = 0.40$ (CH/EtOAc 1:1); M.p. = 69.6–71.2 °C; $[\alpha]_{\rm D}^{23}$: +34.4 (c = 0.83, CH₃OH); ¹H NMR (300 MHz, CDCl₃): $\delta = 6.38$ (2H, s, H–C3'), 4.65 (1H, d, J = 1.5, H–C2), 4.28 (1H, dd,

J = 4.4, 2.2, H-C5), 3.80 (6H, s, H-C6'), 3.79 (3H, s, H-C7'), 3.65 (1H, bs, H-C1'), 3.13 (1H, bd, J = 12.8, H-C1'), 2.80 (s, 3H, H-C8), 1.47 (s, 9H, H-C4'), and 0.93 (s, 9H, H-C7) ppm; ¹³C NMR (100 MHz, CDCl₃, racemic compound, C4 and C1" not visible): $\delta = 152.8$ (C4'), 136.9 (C2'), 131.7 (b, C5'), 107.4 (2C, C3'), 81.1 (C2), 77.4 (C3"), 61.0 (C7'), 60.9 (C5), 56.4 (2C, C6'), 41.1 (C6), 32.0 (C1'), 28.4 (3C, C4"), 26.8 (3C, C7), and 25.9 (C8) ppm; IR (ATR): $\tilde{v} = 2966w, 2931w, 2840w, 1693s, 1588w, 1509w, 1456w, 1433w, 1407w, 1380m, 1363m, 1339w, 1325w, 1302w, 1254m, 1239m, 1165m, 1126s, 1112s, 1050w, 1019m, 966w, 956w, 930w, 889w, 859w, 835w, 787w, 764m, 713w, and 668w cm⁻¹; HR-ESI-MS:$ *m/z*: 459.2464 ([*M*+Na]⁺, calcd for C₂₃H₃₆N₂O₆Na⁺: 459.2466).

L-3,4,5-Trimethoxyphenylalanine N-methyl amide (30)¹⁰

To a solution of **29** (1.75 g, 4.01 mmol, 1.0 equiv.) in MeOH (45.0 mL) was added an aqueous solution of HCl (1 N, 45.0 mL) at RT and the mixture heated to reflux for 11 h. The reaction was allowed to come to RT and basified to a pH of 10 with an aqueous solution of NaOH (2 N) and extracted three times with CH₂Cl₂. The combined organic layers were dried over MgSO₄ and concentrated *in vacuo* to give amide **30** as an off-white solid (812 mg, 75%).

 $R_{\rm f} = 0.26$ (CH₂Cl₂/MeOH 10:1); M.p. = 127.8–128.6 °C; $[\alpha]_{\rm D}^{20}$: +16.6 (*c* = 0.98, CH₃OH); ¹H NMR (300 MHz, CDCl₃): δ = 7.30 (1H, b, H–N^{amide}), 6.43 (2H, s, H–C3'), 3.83 (6H, s, H–C6'), 3.81 (3H, s, H–C7'), 3.59 (1H, dd, *J* = 9.4, 3.9, H–C2), 3.19 (1H, dd, *J* = 13.6, 3.9, H–C1'), 2.82 (3H, d, *J* = 5.0, H–C3), 2.61 (1H, dd, *J* = 13.6, 9.4, H–C1'), and 1.48 (2H, bs, H–N^{amine}) ppm; ¹³C NMR (101 MHz, CDCl₃): δ = 174.8 (C1), 153.3 (2C, C4'), 136.7 (C2'), 133.6 (C5'), 106.0 (2C, C3'), 60.8 (C7'), 56.6 (C2), 56.1 (2C, C6'), 41.4 (C1'), and 25.9 (C3) ppm; IR (ATR): $\tilde{\nu}$ = 3390w, 3311w, 2998w, 2945w, 2841w, 1648m, 1589m, 1507m, 1454m, 1420w, 1402w, 1328m, 1232s, 1185w, 1149w, 1123s, 1040w, 1002m, 972w, 920w, 857w, 812s, 783w, 760m, 739m, and 686w cm⁻¹; HR-ESI-MS: *m/z*: 269.1497 ([*M*+H]⁺, calculated for C₁₃H₂₁N₂O₄⁺: 269.1496).

(5S)-2,2,3-Trimethyl-5-(3,4,5-trimethoxybenzyl)imidazolidin-4-one (9)

To a solution of amide **30** (300 mg, 1.12 mmol, 1.0 equiv.) in MeOH (5.0 mL) were added aceton (0.62 mL, 8.40 mmol, 7.5 equiv.) and NEt₃ (0.12 mL, 0.90 mmol, 0.8 equiv.) at RT under an atmosphere argon and the solution heated to reflux for 7 h. The reaction was allowed to come to RT and concentrated *in vacuo* to give imidazolidinone **9** as an off-white solid (345 mg, quant.).

 $R_{\rm f} = 0.73$ (CH₂Cl₂/MeOH 10:1); M.p. = 116.8–118.2 °C; $[\alpha]_{\rm D}^{20}$: –37.2 (*c* = 0.94, CH₃OH); ¹H NMR (300 MHz, CDCl₃): δ = 6.44 (2H, s, H–C3'), 3.81 (6H, s, H–C6'), 3.80 (3H, s, H–C7'), 3.75 (1H, t, *J* = 5.3, H–C5), 3.02 (2H, d, *J* = 5.3, H–C1'), 2.74 (3H, s, H–C7), 1.26 (3H, s, H–C6), and 1.16 (3H, s, H–C6) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 173.5 (C4), 153.3 (2C, C4'), 136.9 (C2'), 132.8 (C5'), 106.5 (2C, C3'), 75.7 (C2), 61.0 (C7'), 59.4 (C5), 56.2 (2C, C6'), 37.4 (C1'), 27.3 (C6), 25.4 (C6), and 25.4 (C7) ppm; IR (ATR): $\tilde{\nu}$ = 3291w, 2920w, 2686w, 2565w, 2432w, 1702s, 1673w, 1590m, 1508w, 1459m, 1424s, 1396s, 1385m, 1328m, 1315w, 1234m, 1154w, 1113s, 1064w, 1000m, 967w, 875w, 831w, 789w, and 771w cm⁻¹; HR-ESI-MS: *m/z*: 309.1814 ([*M*+H]⁺, calcd for C₁₆H₂₅N₂O₄⁺: 309.1809);

elemental analysis calcd (%, racemic compound) for $C_{16}H_{24}N_2O_4$ (308.2): C 62.32, H 7.84, N 9.08, O 20.75; found: C 62.02, H 7.68, N 8.96, O 20.82.

5-(3',3',4'-Trimethoxybenzyl)-2,2,3-trimethyl-4-oxo-1-[(*E*)-3-phenylallylidene]-imidazolidin-1-ium perchlorate $(9a \cdot \text{ClO}_4^-)$:³

To racemic imidazolidinone **9** (49.6 mg, 0.16 mmol, 1.0 equiv.) in Et₂O (0.2 mL) was added HClO₄ (60% in H₂O, 26.8 mg, 0.16 mmol, 1.0 equiv.) in EtOH/Et₂O (1:1, 0.4 mL) at RT and stirred for 10 min, before the yellow solution was evaporated *in vacuo* to give the off-white HClO₄ salt as a solid. The solid was dissolved in MeOH (0.4 mL) and *E*-cinnamaldehyde (40.2 μ L, 0.32 mmol, 2.0 equiv.) was added at 35 °C and the yellow solution stirred for 1 h. The solvent was evaporated *in vacuo*. The residue was dissolved in a minimum amount of MeOH, the iminium salt was crashed out with Et₂O and the

supernatant solution taken off. This purification procedure was repeated two additional times to give iminium salt $9a \cdot ClO_4^-$ as a yellow solid.

M.p. = 116.1 °C decomp.; ¹H NMR (600 MHz, CD₃CN): $\delta_{\rm H}$ = 8.77 (1H, dd, *J* = 10.7, 1.9, H–C1"), 8.13 (1H, d, *J* = 15.0, H–C3"), 7.87–7.83 (2H, m, H–C5"), 7.71–7.67 (1H, m, H–C7"), 7.59 (2H, t, *J* = 7.9, H–C6"), 7.11 (1H, dd, *J* = 15.0, 10.7, H–C2"), 6.38 (2H, s, H–C2'), 5.17 (1H, td, *J* = 5.3, 1.6, H–C5), 3.73 (6H, s, H–C5'), 3.52 (1H, dd, *J* = 14.7, 5.4, H–C8), 3.47 (3H, s, H–C6'), 3.31 (1H, dd, *J* = 14.7, 5.2, H–C8), 2.86 (3H, d, *J* = 0.5, H–C7), 1.75 (3H, s, H–C6^{anti}), and 1.13 (3H, s, H–C6^{syn}) ppm; ¹³C NMR (151 MHz, CD₃CN): $\delta_{\rm C}$ = 168.2 (C1"), 165.9 (C4), 165.4 (C3"), 154.8 (2C, C3'), 139.0 (C4'), 136.0 (C7"), 134.4 (C4"), 132.4 (2C, C5"), 130.6 (2C, C6"), 130.3 (C1'), 118.6 (C2"), 108.2 (2C, C2'), 86.6 (C2), 65.1 (C5), 60.7 (C6'), 56.8 (2C, C5'), 38.2 (C8), 27.3 (C6^{anti}), 26.2 (C7), and 25.5 (C6^{syn}) ppm; IR (ATR): $\tilde{\nu}$ = 3382br, 3068w, 2984w, 1704s, 1622s, 1588s, 1517m, 1441m, 1403m, 1392m, 1325w, 1277w, 1233w, 1198m, 1178m, 1153w, 1073s, 999s, 931m, 852w, 813w, 756m, 726w, 684m, and 621s cm⁻¹; HR-ESI-MS: *m/z*: 423.22755 ([*M*-ClO₄⁻]⁺, calcd for C₂₅H₃₁N₂O₄⁺: 423.22838).

Catalysis with HPLC Data

General Procedure for the Friedel-Crafts Reaction of 1-Methyl-1*H*-pyrrole (11) and (*E*)-Cinnamaldehyde to give 3-(1-Methyl-1*H*-pyrrol-2-yl)-3-phenylpropan-1-ol (31)³

To the corresponding imidazolidinone catalyst (33.0 μ mol, 0.2 equiv.) was added TFA (3.76 mg, 33.0 μ mol, 0.2 equiv.) in THF (0.33 mL) and H₂O (0.05 mL) and the solution was stirred for 5 min at the given temperature before (*E*)-cinnamaldehyde was added (63 μ L, 0.50 mmol, 3.0 equiv.). After an additional 30 min, 1-methyl-1*H*-pyrrole (**11**) (15 μ L, 0.17 mmol,

1.0 equiv.) was added and the yellow solution stirred for the given time, after which complete conversion of the starting material was observed by TLC. EtOH (0.5 mL) and NaBH₄ (19.0 mg, 0.50 mmol, 3.0 equiv.) were added (and the mixture warmed to RT). The reduction was quenched with aqueous saturated NaHCO₃ after 30 min and extracted three times with CH₂Cl₂. The combined organic layers were dried over MgSO₄ and evaporated *in vacuo*. The crude product **31** was purified by column chromatography (CH/EtOAc 4:1). The enantioselectivities were determined by chiral HPLC on a *Chiracel OJ-H* column, using *n*-hexane/*i*-PrOH 85:15 as eluent (1.0 mL/min). Retention times of the two enantiomers are: 11 min (*R*) and 18 min (*S*).

 $R_{\rm f} = 0.58$ (CH/EtOAc 1:1); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.33-7.23$ (2H, m, H–C6), 7.23–7.09 (3H, m, H–C5, H–C7), 6.53 (1H, t, J = 2.3, H–C5'), 6.19–6.14 (1H, m, H–C3'), 6.14–6.07 (1H, m, H–C4'), 4.12 (1H, t, J = 7.5, H–C3), 3.75–3.56 (2H, m, H–C1), 3.30 (3H, s, H–C6'), 2.34 (1H, dq, J = 13.4, 7.1, H–C2), 2.10 (1H, ddt, J = 14.0, 8.5, 5.7, H–C2), and 1.45 (1H, b, H–O) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 143.6$ (C4), 135.0 (C2'), 128.7 (2C, C6), 128.0 (2C, C5), 126.5 (C7), 122.0 (C5'), 106.4 (C4'), 105.8 (C3'), 60.8 (C1), 39.6 (C2), 39.1 (C6'), and 34.0 (C3) ppm; HR-ESI-MS: m/z: 238.1208 ([M+Na]⁺, calcd for C₁₄H₁₇NONa⁺: 238.1202); analytical data in agreement with the literature.

General Procedure for the Friedel-Crafts Reaction of 1-Methyl-1*H*-indole (10) and (*E*)-Cinnamaldehyde to give 3-(1-Methyl-1*H*-indole-3-yl)-3-phenylpropan-1-ol (32)

To the corresponding imidazolidinone catalyst $(33.0 \,\mu\text{mol}, 0.2 \,\text{equiv.})$ was added TFA $(3.76 \,\text{mg}, 33.0 \,\mu\text{mol}, 0.2 \,\text{equiv.})$ in CH₂Cl₂ $(0.28 \,\text{mL})$ and *i*-PrOH (0.05 mL) and the solution was stirred for 5 min at the given temperature before (*E*)-cinnamaldehyde was added (63 μ L, 0.50 mmol, 3.0 equiv.). After an additional 30 min, 1-methyl-1*H*-indole (**10**) (15 μ L, 0.17 mmol, 1.0 equiv.) was added and the yellow solution stirred for the

given time, after which complete conversion of the starting material was observed by TLC. EtOH (0.5 mL) and NaBH₄ (19.0 mg, 0.50 mmol, 3.0 equiv.) were added (and the mixture warmed to RT). The reduction was quenched with aqueous saturated NaHCO₃ after 30 min and extracted three times with CH₂Cl₂. The combined organic layers were dried over MgSO₄ and evaporated *in vacuo*. The crude product **32** was purified by column chromatography (CH/EtOAc 5:1). The enantioselectivities were determined by chiral HPLC on a *Reprosil Chiral-OM* column, using *n*-hexane/*i*-PrOH 85:15 as eluent (1.0 mL/min). Retention times of the two enantiomers are: 15 min (*R*) and 21 min (*S*).

 $R_{\rm f} = 0.17$ (CH/EtOAc 3:1); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.39$ (1H, d, J = 7.8, H–C5'), 7.28–7.16 (5H, m, H–C5, H–C6, H–C7), 7.14–7.05 (2H, m, H–C7', H–C8'), 6.94 (1H, t,

J = 7.8, H–C6'), 6.82 (1H, s, H–C2'), 4.31 (1H, t, J = 7.8, H–C3), 3.67 (3H, s, H–C10'), 3.59 (2H, td, J = 6.4, 2.2, H–C1), 2.48–2.30 (1H, m, H–C2), 2.27–2.13 (1H, m, H–C2), and 1.46 (1H, s, H–O) ppm; HR-ESI-MS: m/z: 288.1361 ([M+Na]⁺, calcd for C₁₈H₁₉NONa⁺: 288.1359); analytical data in agreement with the literature.¹⁶

General Procedure for the Conjugate Addition of Benzyl-(*tert*-butyldimethylsilyloxy)carbamate (12) and (*E*)-Crotonaldehyde to give *N*-tert-Butyldimethylsilyloxy[benzyl-(S)-1-formylpropan-2-ylcarbamate] $(33)^{17}$

The corresponding imidazolidinone (0.05 mmol, 0.2 equiv.) and pTSA·H₂O (0.05 mmol, 0.2 equiv.) were dissolved in CHCl₃ (1.0 mL), stirred for 10 min and the solvent was removed to yield an off-white solid. After dissolving the solid in CHCl₃ (0.75 mL) and cooling to -20 °C, crotonaldehyde (0.75 mmol, 3.0 equiv.) and benzyl-(*tert*-

butyldimethylsilyloxy)carbamate (12) (0.25 mmol, 1.0 equiv., in 0.25 mL CHCl₃) were added. The reaction occurred within 5 days at -20 °C. The crude reaction mixture was filtered through a silica plug, eluted with Et₂O (5 mL) and purified by column chromatography (SiO₂, *n*-pentane/Et₂O 95:5 \rightarrow 90:10) to give the product **33**. Determination of the enantiomeric excess was accomplished by HPLC analysis (Reprosil Chiral OM 5 µm 250.4.6 mm column, *n*-hexane/*i*-PrOH 95:5, 1.0 mL/min) of the corresponding alcohol after reduction with NaBH₄ with the minor enantiomer at 6 min and the major enantiomer between 7 min.

 $R_{\rm f} = 0.60 \text{ (}n\text{-pentane/Et}_{2}O 7:3\text{)}; {}^{1}\text{H} \text{NMR} (300 \text{ MHz, CDCl}_{3}\text{)}: \delta = 9.64 (1\text{H, t}, J = 1.8, \text{H}-\text{C5}\text{)}, 7.26 (5\text{H, m}, \text{H}-\text{C}^{\text{Ar}}\text{)}, 5.05 (2\text{H, s}, \text{H}-\text{C1}\text{'}\text{)}, 4.41 (1\text{H, h}, J = 6.8, \text{H}-\text{C3}\text{)}, 2.71 (1\text{H, ddd}, J = 16.8, 6.8, 1.8, \text{H}-\text{C9}\text{)}, 2.51(1\text{H, ddd}, J = 16.8, 6.8, 1.8, \text{H}-\text{C9}\text{)}, 1.17 (3\text{H, d}, J = 6.8, 3\text{H}, \text{H}-\text{C6}\text{)}, 0.81 (9\text{H, s}, \text{H}-\text{C3}^{"}\text{)}, 0.00 (3\text{H, s}, \text{H}-\text{C1}^{"}\text{)}, \text{and } -0.01 (3\text{H, s}, \text{H}-\text{C1}^{"}\text{)} \text{ ppm; HR-ESI-MS:} m/z: 352.1939 ([M+\text{H}]^+, \text{ calcd for } C_{18}\text{H}_{30}\text{NO}_4\text{Si}^+: 352.1944\text{)}; \text{ analytical data in agreement with the literature.}^{17}$

Preparation of Benzyl-(*tert*-butyldimethylsilyloxy)carbamate (12)¹⁷

N-(Benzyloxycarbonyl)hydroxylamine (5 mmol, 1.0 eq.) was dissolved in CH₂Cl₂ (25 mL) and triethylamine (5.5 mmol, 1.1 eq.), cooled to 0 °C and *tert*-butylchlorodimethylsilane (5.0 mmol, 1.0 eq.) was added. The reaction mixture was stirred at 0 °C for 10 min, gradually warmed to RT

and stirred for 12 h. The crude solution was washed with H_2O (25 mL), brine (25 mL) and was dried over MgSO₄. Purification by CC (SiO₂; pentane/Et₂O 9:1) yielded a clear oily product which crystallized to a white solid at -4 °C (70%).

 $R_{\rm f} = 0.67$ (*n*-pentane/Et₂O 7:3); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.31-7.20$ (5H, m, H–C^{Ar}), 6.88 (1H, s, H–N^{amide}), 5.08 (2H, s, H–C2), 0.85 (9H, s, H–C3'), and 0.06 (6H, s, H–C1') ppm; HR-ESI-MS: *m*/*z*: 304.1350 ([*M*+H]⁺, calcd for C₁₄H₂₃NO₃SiNa⁺: 304.1344); analytical data in agreement with the literature.¹⁷

HPLC data for the Friedel-Crafts reaction of 1-methyl-1*H*-pyrrole (11) and (*E*)cinnamaldehyde to give 3-(1-methyl-1*H*-pyrrole-3-yl)-3-phenylpropan-1-ol (31)

ee: 65%

Catalyst:

Column: Chiracel OJ-H ^{*i*}PrOH : ^{*n*}Hexane: 15:85 1.0 mLmin⁻¹ ee: 70%

Column: Chiracel OJ-H

ⁱPrOH : ⁿHexane: 15:85

Column: Chiracel OJ-H

ⁱPrOH : ⁿHexane: 15:85

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.213	MM	0.3169	74.36226	3.91120	15.1011
2	18.135	MM	0.6144	418.06561	11.34137	84.8989

Catalyst:

1.0 mLmin⁻¹

ee: 87%

Catalyst:

DAD1 D, Sig=230,16 Ref=360,100 (MH\MAREIKE 2014-04-21 19-59-05\MH1083.D) 16 20 min 14 Signal 3: DAD1 D, Sig=230,16 Ref=360,100 Peak RetTime Type Width Height Area Area # [min] [min] [mAU*s] [mAU] ŝ 6.2992 1 11.588 MM 0.3394 25.24517 1.23982 8.69086 2 19.046 MM 0.7201 375.52176 93,7008

Signal 2: DAD1 D, Sig=230,16 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	11.343	MM	0.3343	46.27386	2.30669	5.1036

Catalyst:

1.0 mLmin⁻¹ ee: 90%

Column: Chiracel OJ-H ⁱPrOH : ⁱHexane: 15:85 1.0 mLmin⁻¹ ee: 88%

Catalyst:

Column: Chiracel OJ-H ¹PrOH : "Hexane: 15:85 1.0 mLmin⁻¹ *ee*: 80%

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.486	MM	0.3410	25.36401	1.23985	9.9230
2	18.684	MM	0.6797	230.24394	5.64561	90.0770

Catalyst:

Column: Chiracel OJ-H ⁱPrOH : "Hexane: 15:85 1.0 mLmin⁻¹ *ee*: 83%

Peak #	RetTime [min]	туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.489	MM	0.3506	16.80299	7.98853e-1	8.6029
2	18.748	MM	0.7081	178.51518	4.20154	91.3971

Catalyst:

Column: Chiracel OJ-H PrOH : "Hexane: 15:85 1.0 mLmin⁻¹ *ee*: 94%

D/	AD1 D, Sig=230,16 R	ef=360,100 (MH\MARE	IKE 2013-01-07 15-0	6-16\MH542.D)			
mAU 6	N OH				N N	С	12 10 10 10 10 10 10 10 10 10 10 10 10 10
2		\$4 1, 19198					
0=	10	12			16	19	min

Signal 2: DAD1 D, Sig=230,16 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	11.456	MM	0.2922	7.57390	4.32039e-1	2.8617
2	18.569	MM	0.6513	257.09509	6.57883	97.1383

HPLC data for the Friedel-Crafts reaction of 1-methyl-1*H*-indole (10) and (*E*)cinnamaldehyde to give 3-(1-methyl-1*H*-indole-3-yl)-3-phenylpropan-1-ol (32)

Catalyst:

Catalyst:

Catalyst:

Column: Reprosil Chiral OM ⁱPrOH : "Hexane: 15:85 1.0 mLmin⁻¹ *ee*: -20%

2

Column: Reprosil Chiral OM ⁱPrOH : ⁿHexane: 15:85 1.0 mLmin⁻¹ ee: 37%

Peak RetTime Type Width Area Heig # [min] [mAU*s] [mAU	ht Area
1 15.217 BB 0.4909 435.55875 13.9	2667 68.9456
2 20.712 BB 0.6092 196.18393 4.6	6004 31.0544

1	17.782	MM	0.6408	3562.63770	92.65876	65.2388
2	23.669	MM	0.8344	1898.28137	37.91484	34.7612

Catalyst:

Column: Reprosil Chiral OM ^{*i*}PrOH : ^{*n*}Hexane: 15:85 1.0 mLmin⁻¹ ee: 32%

Signal 3: DAD1 D, Sig=230,16 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	16.700	BB	0.5718	3155.68799	86.05006	65.9419
2	22.721	BB	0.7818	1629.86987	32.13181	34.0581

Catalyst:

Column: Reprosil Chiral OM ¹PrOH : "Hexane: 15:85 1.0 mLmin⁻¹ *ee*: 41%

Signal 3: DAD1 D, Sig=230,16 Ref=360,100

DAD1 D. S

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	17.886	MM	0.6447	3160.37720	81.69723	70.4896
2	23.821	MM	0.8485	1323.08850	25.98728	29.5104

0,100 (MH\MAREIKE 2012-11-19 17-51-19\MH529.D)

Catalyst:

Column: Reprosil Chiral OM ^aPrOH : ^aHexane: 15:85 1.0 mLmin⁻¹ *ee*: 36%

#	[min]		[min]	[mAU*s]	[mAU]	8
1	17.688	MM	0.6512	3052.19995	78.11877	67.9297
2	23.496	MM	0.8946	1440.97632	26.84441	32.0703

Catalyst:

Column: Reprosil Chiral OM ¹PrOH : "Hexane: 15:85 1.0 mLmin⁻¹ *ee*: 44%

Signal 3: DAD1 D, Sig=230,16 Ref=360,100

Peak #	RetTime	Туре	Width	Area	Height	Area
	[III]		[III]	[IIIA0 " S]	[IIIAO]	∞
1	17.394	MM	0.6195	2424.97070	65.24243	72.1644
2	23.166	MM	0.8157	935.36932	19.11241	27.8356

HPLC data for the conjugate addition of benzyl-(*tert*butyldimethylsilyloxy)carbamate (12) and (*E*)-crotonaldehyde to give *N*-*tert*butyldimethylsilyloxy[benzyl-(S)-1-formylpropan-2-ylcarbamate] (33)

Catalyst:

Column: Reprosil Chiral OM PrOH : "Hexane: 55:95 1.0 mLmin⁻¹ *ee*: -19%

Column: Reprosil Chiral OM

^{*i*}PrOH : ^{*n*}Hexane: 5:95

Signal 2: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RetTime [min]	туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	6 421		0 1662	499 05579	AG 73677	59 4626
2	6.881	VB	0.1822	339.53918	29.08496	40.5374

Catalyst:

Signal 2: DAD1 C, Sig=210,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
ŧ	[min]		[min]	[mAU*s]	[mAU]	%
1	6.347	BV	0.1633	678.10547	65.20390	49.8058
2	6.792	VB	0.1804	683.39441	59.31758	50.1942

Catalyst:

1.0 mLmin⁻¹ *ee*: 1%

Column: Reprosil Chiral OM ¹PrOH : "Hexane: 5:95 1.0 mLmin⁻¹ *ee*: 24%

Signal 2: DAD1 C, Sig=210,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	6.376	BV	0.1623	108.75533	10.37627	38.0745
2	6.790	VB	0.1820	176.88301	15.17692	61.9255

Catalyst:

Column: Reprosil Chiral OM ¹PrOH : "Hexane: 5:95 1.0 mLmin⁻¹ *ee*: 15%

Signal 2: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RetTime [min]	туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	6.343	BV	0.1597	99.64043	9.71378	42.5490
2	6.749	VB	0.1922	134.53789	10.88380	57.4510

Catalyst:

Column: Reprosil Chiral OM ¹PrOH : "Hexane: 5:95 1.0 mLmin⁻¹ *ee*: 26%

#	[min]	TYPC	[min]	[mAU*s]	[mAU]	%
1	6.389	BV	0.1605	161.93213	15.67273	36.8641
2	6.879	VB	0.1841	277.33594	23.77788	63.1359

Catalyst:

Signal 2: DAD1 C, Sig=210,8 Ref=360,100

Peak #	RetTime [min]	туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	6.364	BV	0.1651	170.19603	16.13466	29.7590
2	6.817	VB	0.1812	401.71808	34.66341	70.2410

Column: Reprosil Chiral OM PrOH : "Hexane: 5:95 1.0 mLmin⁻¹ *ee*: 40%

FO

-110 f1 (ppm) -101 -102 -103 -104 -105 -106 -107 -108 -109 -111 -112 -113 -114 -115 -116 -117 -118 -119

¹H NMR (600 MHz,

¹H NMR (300 MHz,

¹H NMR (300 MHz,

¹H NMR (300 MHz,

DFT Calculations

All calculations were performed with the TURBOMOLE 6.5 program.¹⁸ The structures were optimized without any geometry constraints using the TPSS functional¹⁹, which has been successfully applied to supramolecular thermochemistry,²³ and an atom-pairwise dispersion correction (D3).^{20, 21} A flexible triple zeta basis set (def2-TZVP)²² was used in all calculations. For the calculation of zero point vibrational energies and free enthalpy contributions, a rotor approximation was applied for vibrational modes with wave numbers below 100 cm⁻¹.²³ Solution energies were obtained with the COSMO model²⁴ as implemented in Turbomole with $\varepsilon = 37.5$.

Structures of conformers of iminium cations 1 and 2. The Ar-C-C-N⁺ torsional angle is printed with each conformer.

Calculated electronic energies, COSMO single point energies, zero point vibrational energies (ZPVE) and free enthalpy corrections (G298K) of the conformers of iminium cations **1** and **2**.

	Е	ZPVE	G(298K)	E(COSMO, ε=37.5)
	$[E_h]$	[kcal mol ⁻¹]	[kcal mol ⁻¹]	$[E_h]$
1 (I)	-1038,5608195	262,273	231,150	-1038,6352690
1 (II)	-1038,5599768	262,194	230,933	-1038,6347469
1 (III)	_ ^[a]	_[a]	_[a]	_[a]
2 (I)	-1534,9658731	236,590	202,274	-1535,0444704
2 (II)	-1534,9697294	236,671	202,503	-1535,0466940

2 (III)	-1534,9667378	236,541	201,985	-1535,0433049
a			0 XX	

^[a] no local minimum for III found, optimization converges to conformer II

Calculated relative energies (vacuum and solution), ZPVE-corrected relative energies and relative free enthalpies (T=298K) of the conformers of iminium cations **1** and **2**.

	ΔE_{rel} [kcal mol ⁻¹]	Δ (E+ZPVE) _{rel} [kcal mol ⁻¹]	$\frac{\Delta G_{rel}(298K)}{[kcal mol^{-1}]}$	$\Delta E_{rel}(COSMO, \epsilon=37.5)$
				[kcal mol ⁻¹]
1 (I)	0,0	0,0	0,0	0,0
1 (II)	0,53	0,45	0,31	0,33
1 (III)	_[a]	_[a]	_[a]	_[a]
2 (I)	2,42	2,34	2,19	1,40
2 (II)	0,0	0,0	0,0	0,0
2 (III)	1,88	1,75	1,36	2,13

^[a] no local minimum for III found, optimization converges to conformer II

The values of Q_{zz} for the aromatic substituents reported in the manuscript were obtained by orienting the molecule such that the center of the methyl-substituted ring was located at the origin of the coordinate system. The component of the quadrupole moment tensor perpendicular to the aromatic plane (q_{zz}) was then used to obtain the traceless quadrupole moment $Q_{zz} = q_{zz} - (1/3 \operatorname{tr}(\mathbf{q}))$.

Cartesian Coordinates (in Å) of DFT-optimized Structures (TPSS-D3/def2-TZVP)

1 (Conformer I)

С	1.9141343	1.2246182	-2.1636464
0	2.0594090	2.0829943	-3.0159083
Ν	2.8928565	0.6102706	-1.4392791
С	2.4401998	-0.3836142	-0.4697891
Ν	0.9474527	-0.3307079	-0.7069165
С	0.5626880	0.6945414	-1.6916393
С	0.1246380	-1.1475861	-0.0960103
С	4.2981931	0.9678429	-1.5926991
С	2.7704872	0.0151468	0.9716687
С	2.9676064	-1.7816804	-0.8162314
С	-0.2963123	1.8538122	-1.1151090
С	-1.2656161	-1.2371158	-0.3068974
С	-2.0040896	-2.1353125	0.4221992
С	-3.4167060	-2.3745754	0.3432909
С	-4.2684743	-1.6751612	-0.5438799
С	-5.6246725	-1.9519557	-0.5725779
С	-6.1612825	-2.9279908	0.2786695
С	-5.3361173	-3.6287844	1.1618709
С	-3.9761100	-3.3552015	1.1946568
С	-0.2207643	2.0127994	1.4003875
С	0.3421891	2.4874678	2.5852923
С	1.4106437	3.3834897	2.5382434
С	1.9015353	3.8128144	1.3033994
С	1.3360915	3.3397600	0.1195995
С	0.2738803	2.4262213	0.1576257
Н	0.0403497	0.2191923	-2.5291666
Н	0.5801643	-1.8207700	0.6270640
Н	4.3419352	1.7244001	-2.3771695
Н	4.6943045	1.3833833	-0.6615070
Н	4.8923757	0.0995159	-1.8911202
Н	2.3940701	1.0144815	1.1954807
Н	2.3342597	-0.7016989	1.6736019
Н	3.8542356	-0.0050177	1.1121890
Н	2.6882585	-2.0585672	-1.8358644

Η	4.0571661	-1.7883638	-0.7326197
Н	2.5827378	-2.5295053	-0.1169399
Н	-1.3198749	1.5073121	-0.9485704
Н	-0.3228313	2.6029589	-1.9132493
Н	-1.7331094	-0.6020550	-1.0504603
Н	-1.4674764	-2.7413872	1.1534359
Н	-3.8640692	-0.9177068	-1.2081831
Н	-6.2742847	-1.4132587	-1.2548139
Н	-7.2257281	-3.1399509	0.2499990
Н	-5.7564904	-4.3831725	1.8187551
Н	-3.3262266	-3.8949691	1.8784068
Н	1.7128391	3.6860329	-0.8391267
Н	2.7185526	4.5269603	1.2619754
Н	1.8477336	3.7587253	3.4584642
Н	-0.0578529	2.1664485	3.5425179
Н	-1.0628986	1.3249193	1.4405810

1 (Conformer II)

С	3.1803798	0.9852721	-1.3717347
\cap	3 6310967	1 6407158	-2 2020546
0	5.0510907	1.040/158	2.2920340
Ν	3.8846185	0.2658268	-0.4457501
С	3.0773159	-0.4158324	0.5670049
N	1 6046569	_0 1719650	0 0005033
IN	1.0940300	-0.1/10039	0.0095055
С	1.7013345	0.8943890	-1.0020401
С	0.6664287	-0.9271224	0.3312613
Ċ	5 3436303	0 2/01130	-0 1391508
C	5.5450505	0.2401139	0.4394300
С	3.2060981	0.2316298	1.9531517
С	3.3999562	-1.9116746	0.6138264
C	1 2310918	2 2821999	-0 4810674
ä	1.2310910	0.0000001	0.0050000
C	-0.6324498	-0.8623301	-0.2053938
С	-1.5794545	-1.7505091	0.2390988
С	-2.9424183	-1.8621666	-0.1972124
Ĉ	2 4004676	1 0402626	1 2160694
C	-3.4904070	-1.0492020	-1.2100004
С	-4.8134495	-1.2021641	-1.5938095
С	-5.6181202	-2.1642171	-0.9674685
C	-5 0931946	-2 9781074	0 0392160
Č	5.0951940	2.9701074	0.0392100
С	-3./66/181	-2.8298351	0.4205030
С	-1.2190670	2.5063350	-1.0334319
C	-2 5641178	2 4634053	-0 6701407
ä	2.0011170	2.1051055	0.0701107
C	-2.9242319	2.21/0968	0.6566944
С	-1.9335270	2.0378853	1.6215933
С	-0.5877935	2.0883348	1.2574979
Ĉ	0 0160454	2 2007/10	0 0725640
C	-0.2102434	2.308/410	-0.0733649
Η	1.1011210	0.5877757	-1.8622380
Η	0.8708488	-1.6949146	1.0734454
н	5 6703327	0 9293412	-1 2192667
	5.0703527	0.5255412	1.2192007
Н	5./311/80	0.5/2198/	0.5281665
Η	5.7213159	-0.7619540	-0.6623579
Н	3,0081977	1.3042658	1,9038603
11	2 5042220	0 2210262	2.5000000
п	2.3042239	-0.2319303	2.0320002
Η	4.2170687	0.0787169	2.3397601
Η	3.2227844	-2.3787439	-0.3582437
н	4 4528035	-2 0359507	0 8786487
	1.1320033	2.0000000	1 2025054
н	2.816//84	-2.4253083	1.3825954
Η	1.4268567	2.9737961	-1.3068315
Н	1.8750706	2,5783129	0.3526820
ц	-0 8735815	-0 1052677	-0 9/2/305
11	0.0755015	0.1032077	0.9424303
Н	-1.2780658	-2.4551599	1.0154827
Η	-2.8766695	-0.2976560	-1.7007833
н	-5 2297946	-0 5771395	-2 3774614
	6 6 6 5 1 1 4 0	0.0775000	1 0000000
н	-6.6551142	-2.2//3062	-1.2683952
Η	-5.7182857	-3.7241276	0.5189231
Н	-3.3497306	-3,4586669	1,2028626
ц	0 10170/0	1 9642522	2 0161/77
п	0.101/949	1.9042333	2.01014//
H	-2.2080129	1.8703619	2.6587808
Η	-3.9719947	2.1839796	0.9388989
н	-3 3318565	2 6352002	-1 4190011
	0.000000	2.0002002	1.1100011
Н	-0.9426212	2./093314	-2.0658965

2 (Conformer I)

С	1.8839219	1.1251716	-2.2264726
0	2.0207506	1.8603309	-3.1845380
Ν	2.8678811	0.5754023	-1.4531375
С	2.4217744	-0.3828299	-0.4442308
Ν	0.9230796	-0.3133759	-0.6502864
С	0.5371989	0.6980430	-1.6462637
C	0.1029538	-1.1697793	-0.0826520
C	4.2793491	0.8460023	-1.7075234
C	2.7921309	0.0484427	0.9779224
C	2 9268540	-1 7970901	-0 7578743
C	-0 2421892	1 9204121	-1 0827964
C	-1 2824889	-1 2590596	-0 3017190
C	-2 0138180	-2 2021932	0 3785259
C	-3 4248852	-2 4393779	0.2976738
C	-4 2860655	-1 6903892	-0 5392043
C	-4.2000000	-1.0903092	-0.5592043
C	- 1607204	-1.9031992	-0.3000237
C	-0.1097294	-2.9001//3	0.2321193
C	-3.3355451	-3./386033	1.0649534
C	-3.9/53//2	-3.46/6960	1.09/9968
C	-0.13423/7	2.09/4141	1.4386/68
C	0.3800007	2.5966497	2.63101/3
C	1.4031880	3.5440683	2.5862111
С	1.8868999	3.9819472	1.3527103
С	1.3472837	3.4605361	0.1778482
С	0.3326846	2.4987099	0.1854931
Н	-0.0612653	0.2269118	-2.4326534
Н	0.5616946	-1.8706684	0.6110763
Н	4.3133069	1.6249933	-2.4701313
Н	4.7694085	1.2016332	-0.7971433
Н	4.7936551	-0.0453133	-2.0792543
Н	2.4602210	1.0693742	1.1712770
Н	2.3376364	-0.6243585	1.7111958
Н	3.8761981	-0.0057728	1.1053365
Н	2.6109497	-2.1078468	-1.7569544
Н	4.0185566	-1.8074977	-0.7124369
Н	2.5657011	-2.5184592	-0.0195942
Н	-1.2823739	1.6394332	-0.9055457
Н	-0.2229737	2.6671629	-1.8821610
Н	-1.7592994	-0.5770821	-0.9965021
Н	-1.4696471	-2.8480861	1.0687024
Н	-3.8884965	-0.8958025	-1.1628532
Н	-6.2995369	-1.3885835	-1.2113498
Н	-7.2347390	-3.1974331	0.2040094
Н	-5.7495767	-4.5285122	1.6828816
Н	-3.3182385	-4.0448292	1.7431102
F	-1.1293663	1.1817395	1.5148808
- न	-0 0929819	2 1714214	3 8085236
- F	1 9138516	4 0306262	3 7171964
ਾ ਸ	7 8601130	4 8951695	1 30/5652
ਾ ਜ	2.0004439	3 91212090	-0 9920017
-	1.02/002	5.7121209	0.5520017
-			

2 (Conformer II)

С	2.5977273	1.8464996	-1.7437509
0	2.6963242	2.7455538	-2.5567247
Ν	3.6114236	1.1652829	-1.1308568
С	3.1977249	0.1455796	-0.1652451
Ν	1.7031278	0.1546716	-0.3985538
С	1.2783622	1.3321180	-1.1673070
С	0.9269050	-0.8385255	-0.0211862
С	5.0132463	1.4875057	-1.3812683
С	3.5127019	0.5467766	1.2815800
С	3.7919764	-1.2212835	-0.5159941
С	0.6476334	2.4660313	-0.3093902
С	-0.4407078	-0.9843154	-0.3140839
С	-1.1549399	-2.0174262	0.2409987

С	-2.5537207	-2.2864804	0.0725009
С	-3.3756792	-1.5518303	-0.8147508
С	-4.7284775	-1.8288298	-0.9042766
С	-5.2912400	-2.8437487	-0.1171969
С	-4.4936779	-3.5881979	0.7555049
С	-3.1360352	-3.3156730	0.8476585
С	-1.8604206	2.1353640	-0.3148502
С	-3.0570394	1.7323124	0.2699144
С	-3.0486236	1.2469973	1.5784225
С	-1.8505661	1.1894283	2.2902001
С	-0.6743223	1.6107900	1.6767014
С	-0.6403348	2.0825411	0.3643367
Н	0.5974629	1.0330957	-1.9678517
Н	1.4144724	-1.6158660	0.5619209
Н	5.0198452	2.3458483	-2.0542966
Н	5.5210440	1.7497559	-0.4486171
Η	5.5290067	0.6495170	-1.8584220
Н	3.1097970	1.5342202	1.5128624
Η	3.0875601	-0.1815119	1.9779702
Н	4.5955470	0.5615748	1.4291748
Н	3.4994197	-1.5257807	-1.5240234
Н	4.8816710	-1.1562380	-0.4682824
Н	3.4870348	-1.9858616	0.2034099
Η	0.4857070	3.2959250	-1.0026627
Н	1.3735372	2.7917782	0.4385002
Н	-0.9269928	-0.2576437	-0.9532336
Н	-0.6217084	-2.6926511	0.9112568
Н	-2.9497366	-0.7705970	-1.4361586
Н	-5.3542502	-1.2604806	-1.5844871
Н	-6.3539556	-3.0535796	-0.1900507
Н	-4.9336162	-4.3752237	1.3590609
Н	-2.5084078	-3.8865023	1.5268748
F	-1.8804623	2.5551782	-1.5963491
F	-4.2035655	1.7777912	-0.4184132
F	-4.1819219	0.8236035	2.1396780
F	-1.8357891	0.7133926	3.5400858
F	0.4769330	1.5191139	2.3796709

2 (Conformer III)

С	2.2968079	1.2035072	-1.1064831
0	2.3699708	2.1559538	-1.8600717
Ν	3.3356803	0.4835417	-0.5827181
С	2.9614629	-0.6263581	0.2935301
Ν	1.4608876	-0.5842212	0.1459505
С	1.0027131	0.6315549	-0.5364091
С	0.6649921	-1.5472732	0.5579666
С	4.7255288	0.8271799	-0.8663394
С	3.3499449	-0.3688321	1.7557018
С	3.5162176	-1.9582518	-0.2197206
С	0.3227737	1.6323674	0.4416247
С	-0.7323351	-1.5668901	0.3969272
С	-1.4619339	-2.6340065	0.8649998
С	-2.8802683	-2.8176335	0.7755855
С	-3.7420713	-1.8711286	0.1697617
С	-5.1047432	-2.1077664	0.1137722
С	-5.6378316	-3.2854744	0.6566260
С	-4.8029108	-4.2307899	1.2588947
С	-3.4364830	-3.9999158	1.3184725
С	0.2782048	4.0535005	-0.3120413
С	-0.2888410	5.1117678	-1.0171459
С	-1.4670635	4.9048040	-1.7360347
С	-2.0701354	3.6453443	-1.7414977
С	-1.4740029	2.6153942	-1.0260816
С	-0.2984404	2.7834101	-0.2974047
Η	0.3148226	0.3635152	-1.3426420
Η	1.1498602	-2.3880655	1.0483324
Η	4.7031214	1.7306892	-1.4770812
Η	5.2712214	1.0262741	0.0604919

Н	5.2222817	0.0265840	-1.4217436
Н	2.9519865	0.5881472	2.1009259
Н	2.9699775	-1.1694897	2.3971562
Н	4.4386277	-0.3522583	1.8506229
Н	3.1880715	-2.1442434	-1.2453555
Н	4.6081471	-1.9244899	-0.1969304
Н	3.2069994	-2.7888199	0.4206167
Н	1.0652312	2.0046684	1.1501773
Н	-0.4442959	1.0940359	1.0071250
Н	-1.2208142	-0.7403714	-0.1072917
Н	-0.9139895	-3.4357638	1.3617541
Н	-3.3417715	-0.9557434	-0.2540553
Н	-5.7623897	-1.3807235	-0.3515117
Н	-6.7078490	-3.4632992	0.6080842
Н	-5.2214603	-5.1401439	1.6773504
Н	-2.7783112	-4.7287313	1.7841309
F	1.4142056	4.2734918	0.3743368
F	0.2860732	6.3171375	-1.0129201
F	-2.0209242	5.9096091	-2.4149843
F	-3.2030695	3.4413181	-2.4240605
F	-2.0638761	1.3868887	-1.0403936

Fragmented Iminium Cation, derived from 1 (Ar = Ph)

С	2.3698390	1.5978570	-2.1537469
0	2.6310789	2.5411506	-2.8791492
Ν	3.2404215	0.8905881	-1.3779331
С	2.6583876	-0.1945631	-0.5928873
Ν	1.2111376	-0.0890145	-1.0190865
С	0.9654761	1.0441949	-1.9270200
С	0.3110074	-0.9524626	-0.6169146
С	4,6548531	1.2371260	-1.3027328
С	2,7936781	0.0387855	0.9148074
С	3.2227026	-1.5559457	-1.0182716
С	-1.0386867	-0.9931992	-1.0193585
C	-1.8713722	-1.9518728	-0.4985324
С	-3.2614447	-2.1553911	-0.7904789
С	-3.9840910	-1.3481579	-1.7003771
С	-5.3251204	-1.5954736	-1.9395091
С	-5.9744238	-2.6484788	-1.2801206
C	-5 2776119	-3 4561702	-0 3778208
C	-3 9333689	-3 2125609	-0 1345120
C	3 3214380	3 1971042	2 6961682
C	2 6570954	3 8481576	1 6564644
C	1.2831141	3.6717929	1.4900012
C	0 5766204	2 8553637	2 3756796
C	1 2413843	2 2073023	3 4163359
C	2.6242901	2.3651733	3.5804189
Н	0.5585908	0.6724533	-2.8738564
Н	0.6630996	-1.7085529	0.0815647
Н	4.8060374	2.0736877	-1.9861031
Н	4,9238830	1.5415203	-0.2870256
Н	5.2807177	0.3958017	-1.6134857
Н	2.3940695	1.0144816	1.1954808
Н	2.2647688	-0.7421841	1.4690775
Н	3.8487011	-0.0162637	1.1950850
Н	3.0817208	-1.7150263	-2.0902642
Н	4.2911661	-1.5915053	-0.7917854
Н	2.7449372	-2.3683520	-0.4631934
Н	-1.4000194	-0.2725500	-1.7438157
Н	-1.4397924	-2.6436278	0.2261729
Н	-3.4916251	-0.5303476	-2.2173328
Н	-5.8754825	-0.9739668	-2.6384107
Н	-7.0261188	-2.8366679	-1.4732781
Н	-5.7848964	-4.2698403	0.1300400
Н	-3.3829432	-3.8353055	0.5658009
Η	0.6857817	1.5828638	4.1108654
Н	-0.4964633	2.7325597	2.2632517
Н	0.7621938	4.1809867	0.6850118
Η	3.2082820	4.4986787	0.9839000

Н	4.3905138	3.3477725	2.8316137
Н	0.4201026	1.8229621	-1.3737675
Н	3 1533756	1 8380785	4 3880219
	0.1000/00	1.0000700	1.0000219
Encourted	Incining Codi	an damined from	
Fragmented	Immum Cau	on, derived fro	$\operatorname{III} \operatorname{\mathcal{L}} (\operatorname{Ar} = \operatorname{C}_6 \operatorname{F}_5)$
С	1.8839217	1.1251717	-2.2264728
0	2.0207504	1.8603310	-3.1845378
N	2.8678809	0.5754023	-1.4531377
С	2.4217746	-0.3828300	-0.4442309
N	0.9230795	-0.3133760	-0.6502866
С	0.5371989	0.6980433	-1.6462635
С	0.1029540	-1.1697792	-0.0826522
С	4.2793496	0.8460022	-1.7075237
С	2.7921308	0.0484425	0.9779224
С	2,9268540	-1.7970901	-0.7578742
C	-1.2824887	-1.2590593	-0.3017188
C	-2 0138182	-2 2021931	0 3785256
C	-3 4248853	-2 4393777	0.2976737
C	-1 2860654	-1 690389/	-0 5392044
C	5 6422705	1 0651000	0.5592044
C	-3.0422795	-1.9651990	-0.0000200
C	-0.109/293	-2.9881771	0.2321193
C	-5.3355452	-3./386036	1.0649535
C	-3.9/53//0	-3.46/6962	1.09/9969
С	2./01/812	2.6315647	3.4866244
С	3.2652040	3.5410280	2.59/3619
С	2.4725481	4.0814744	1.5843736
С	1.1308498	3.7112881	1.4840628
С	0.5994851	2.7978565	2.3932720
С	1.3683153	2.2246101	3.4105567
Н	-0.0612655	0.2269117	-2.4326534
Н	0.5616945	-1.8706684	0.6110762
Н	4.3133069	1.6249932	-2.4701313
Н	4.7694083	1.2016330	-0.7971433
Н	4.7936552	-0.0453134	-2.0792541
Н	2.4602209	1.0693742	1.1712768
Н	2.3376365	-0.6243586	1.7111956
Н	3.8761982	-0.0057728	1.1053366
Н	2.6109496	-2.1078472	-1.7569546
Н	4.0185563	-1.8074979	-0.7124369
Н	2.5657012	-2.5184595	-0.0195944
Н	-1.7592994	-0.5770824	-0.9965023
Н	-1.4696469	-2.8480860	1.0687022
Н	-3.8884968	-0.8958026	-1.1628534
Н	-6.2995370	-1.3885834	-1.2113498
Н	-7.2347389	-3.1974328	0.2040094
Н	-5.7495770	-4.5285126	1.6828815
Н	-3.3182386	-4.0448294	1.7431103
л Т	3 4956971	2 1273473	4 4613129
- ਸ	4 5525515	3 8908664	2 7042011
- - 	2 9945632	4 9499302	0 7183854
ੂ ਸ	2.5545052	4 2327492	0.5212166
с Г	-0 6970170	7.232/492	2 275571 <i>1</i>
с U	0.03/31/50	1 1007101	Z.Z.JJ/14 A 110/7//
п	0.9439430	1 5853171	-1 1208//0
п	0.172130/	T . JUJJT / T	エ・エムシロササラ

Cartesian Coordinates (in Å) of DFT-optimized Toluene Derivatives 1-9 (cf. Figure 4) (TPSS-D3/def2-TZVP)

1 (Me-Ph)

С	-0.7258839	-0.0320580	0.000000
С	-0.0071598	-0.0230995	-1.2018661
С	1.3873556	0.0005608	-1.2048560
С	2.0906122	0.0136559	-0.000000
С	1.3873556	0.0005608	1.2048560
С	-0.0071598	-0.0230995	1.2018661
С	-2.2355186	-0.0265516	-0.000000

Н	-0.5475805	-0.0378004	-2.1459965
Н	1.9251214	0.0046215	-2.1492049
Н	3.1768108	0.0290879	-0.000000
Н	1.9251214	0.0046215	2.1492049
Н	-0.5475805	-0.0378004	2.1459965
Н	-2.6337660	-0.5277290	0.8876717
Н	-2.6221455	1.0007222	-0.000000
Н	-2.6337660	-0.5277290	-0.8876717

2 (Me-C₆F₅)

С	-0.7550270	0.0256081	0.000000
С	-0.0189840	0.0146870	-1.1853584
С	1.3733425	-0.0003970	-1.2045158
С	2.0735925	-0.0087399	0.000000
С	1.3733427	-0.0003811	1.2045158
С	-0.0189842	0.0146747	1.1853584
С	-2.2608919	0.0373949	0.000000
F	-0.6687350	0.0213680	-2.3699625
F	2.0426972	-0.0076219	-2.3687546
F	3.4144915	-0.0245794	-0.0000000
F	2.0426979	-0.0075603	2.3687546
F	-0.6687356	0.0213114	2.3699625
Н	-2.6381936	0.5437646	0.8905380
Н	-2.6565449	-0.9849160	-0.0000054
Н	-2.6381935	0.5437739	-0.8905327

3 (Me-C₆F₃H₂)

С	-0.7413205	0.0120249	0.000000
С	0.0133739	0.0010227	-1.1747142
С	1.4017957	-0.0132502	-1.2186362
С	2.0667029	-0.0203394	0.000000
С	1.4017957	-0.0132502	1.2186362
С	0.0133739	0.0010227	1.1747142
С	-2.2460467	0.0248277	0.000000
F	-0.6544658	0.0070441	-2.3576197
F	3.4220369	-0.0351946	0.000000
F	-0.6544658	0.0070441	2.3576197
Н	-2.6244494	0.5315475	0.8901786
Н	-2.6466698	-0.9959207	0.000000
Н	-2.6244494	0.5315475	-0.8901786
Н	1.9363950	-0.0190225	2.1603171
Н	1.9363950	-0.0190225	-2.1603171

4 (Me-C₆FH₄)

-0.7397549	-0.0204227	0.000000
-0.0197824	-0.0113613	-1.2011032
1.3748535	0.0122877	-1.2144149
2.0465957	0.0253101	0.000000
1.3748535	0.0122877	1.2144149
-0.0197824	-0.0113613	1.2011032
-2.2495103	-0.0137252	0.000000
-0.5563941	-0.0255312	-2.1467143
1.9355132	0.0161529	-2.1433701
1.9355132	0.0161529	2.1433701
-0.5563941	-0.0255312	2.1467143
-2.6479683	-0.5160437	0.8868185
-2.6380799	1.0126772	0.000000
-2.6479683	-0.5160437	-0.8868185
3.4083054	0.0451516	0.000000
	-0.7397549 -0.0197824 1.3748535 2.0465957 1.3748535 -0.0197824 -2.2495103 -0.5563941 1.9355132 -0.5563941 -2.6479683	-0.7397549-0.0204227-0.0197824-0.01136131.37485350.01228772.04659570.02531011.37485350.0122877-0.0197824-0.0113613-2.2495103-0.0137252-0.5563941-0.02553121.93551320.01615291.93551320.0161529-0.5563941-0.0255312-2.6479683-0.5160437-2.6479683-0.51604373.40830540.0451516

5 (Me-C₆H₄(OH))

С	-0.1685501	0.9697370	-0.0078386
С	-1.2672311	0.0981335	-0.0057661
С	-1.1055188	-1.2832152	-0.0000649
С	0.1816030	-1.8276208	0.0030026
С	1.2913905	-0.9814347	-0.0016923
С	1.1083019	0.4021411	-0.0075071

С	-0.3621507	2.4669162	0.0040893
0	0.2913883	-3.1998352	0.0072390
Н	-2.2745484	0.5089527	-0.0101911
Н	-1.9623980	-1.9497669	-0.0005924
Н	2.2966486	-1.3996168	-0.0036936
Н	1.9819732	1.0498977	-0.0131485
Н	0.5816947	2.9863995	-0.1862880
Н	-0.7430248	2.8114239	0.9737630
Н	-1.0829142	2.7819761	-0.7587880
Н	1.2333360	-3.4340883	0.0074766

6 (Me-C₆H₃(OMe)₂)

С	0.0033148	1.4001237	-0.0080557
С	-1.1960063	0.6847308	-0.0405313
С	-1.1683425	-0.7179107	-0.0316808
С	0.0435973	-1.4038475	0.0091791
С	1.2368672	-0.6804137	0.0414240
С	1.2257381	0.7194707	0.0330931
С	-0.0144100	2.9106659	-0.0172194
0	-2.2920484	-1.5042260	-0.0614465
0	2.3806972	-1.4368591	0.0806101
С	-3.5555179	-0.8392245	-0.1037568
С	3.6258911	-0.7380718	0.1145785
Н	-2.1352866	1.2251491	-0.0722485
Н	2.1502485	1.2857262	0.0580428
Н	0.4706707	3.3159187	0.8786001
Н	-1.0385401	3.2927974	-0.0506195
Н	0.5244737	3.3058448	-0.8863943
Н	-4.3024598	-1.6337585	-0.1219907
Н	-3.7027270	-0.2124958	0.7850151
Н	-3.6481001	-0.2227259	-1.0069350
Н	4.3938783	-1.5119853	0.1424074
Н	3.7561633	-0.1183489	-0.7817538
Н	3.7015411	-0.1081215	1.0100535
Н	0.0604310	-2.4880196	0.0158811

7 (Me-N-Methyl-Indole)

С	-1.3415212	0.8556560	0.000000
С	-2.4775356	0.0558335	0.000000
С	-2.3789301	-1.3498761	0.000000
С	-1.1424513	-1.9866727	0.000000
С	-0.0026753	-1.1788151	0.000000
С	-0.0763898	0.2442077	0.000000
Ν	1.3363366	-1.5123508	0.000000
С	1.2728701	0.7484169	0.000000
С	2.0961443	-0.3520900	0.000000
С	1.6887559	2.1869677	0.000000
Н	-1.4304286	1.9388942	0.000000
Н	-3.4608995	0.5172967	0.000000
Н	-3.2856689	-1.9478870	0.000000
Н	-1.0700728	-3.0711160	0.000000
Н	3.1762110	-0.4074195	0.000000
Н	2.7788486	2.2810677	0.000000
Н	1.3055410	2.7140894	0.8827429
Н	1.3055410	2.7140894	-0.8827429
Н	1.7063245	-2.4502918	0.000000

8 (Me-Indole)

	,		
С	-2.5120739	0.5404681	0.1323922
С	-3.3677066	-0.5527138	0.1880531
С	-2.8677481	-1.8702049	0.1849151
С	-1.5014600	-2.1235754	0.1260621
С	-0.6445493	-1.0216123	0.0702107
С	-1.1256988	0.3196298	0.0721289
Ν	0.7322842	-0.9550725	0.0060686
С	0.0191816	1.1912300	0.0065311

1.1241102	0.3747992	-0.0318776
0.0017844	2.6884375	-0.0151609
-2.9096991	1.5520054	0.1354328
-4.4413249	-0.3942771	0.2349102
-3.5623475	-2.7040927	0.2292961
-1.1192963	-3.1410257	0.1238195
2.1730116	0.6330873	-0.0838608
1.0171540	3.0926875	-0.0677992
-0.4763858	3.0959425	0.8844189
-0.5572584	3.0694513	-0.8790192
1.3567930	-1.7464833	-0.0106841
	$\begin{array}{c} 1.1241102\\ 0.0017844\\ -2.9096991\\ -4.4413249\\ -3.5623475\\ -1.1192963\\ 2.1730116\\ 1.0171540\\ -0.4763858\\ -0.5572584\\ 1.3567930\end{array}$	1.12411020.37479920.00178442.6884375-2.90969911.5520054-4.4413249-0.3942771-3.5623475-2.7040927-1.1192963-3.14102572.17301160.63308731.01715403.0926875-0.47638583.0959425-0.55725843.06945131.3567930-1.7464833

9 (Me-C₆H₂(OMe)₃)

С	-0.4040767	1.7741607	-0.0001303
С	-1.5016886	0.9125034	-0.0001204
С	-1.3172256	-0.4723279	0.0001397
С	-0.0242078	-1.0398876	-0.0000152
С	1.0771690	-0.1606026	0.0001735
С	0.8786836	1.2253190	0.0001623
С	-0.5972762	3.2718173	-0.0005535
0	-0.0169235	-2.4078097	-0.0004118
0	-2.3437084	-1.3794411	0.0005147
0	2.3350616	-0.7272695	0.0003398
С	1.1927312	-3.1787447	-0.0007826
С	-3.6704557	-0.8560521	0.0005850
С	3.4548280	0.1556464	0.0007063
Н	-2.5038446	1.3262482	-0.0002843
Н	1.7372383	1.8876953	0.0001010
Н	-0.1395657	3.7335948	0.8826935
Н	-1.6605637	3.5288696	-0.0009927
Н	-0.1389411	3.7331520	-0.8837032
Н	0.8473561	-4.2146915	-0.0011064
Н	1.7918135	-2.9839544	-0.8941513
Н	1.7920417	-2.9845797	0.8925586
Н	-4.3256367	-1.7280952	0.0013995
Н	-3.8587306	-0.2500024	0.8964461
Н	-3.8593237	-0.2512244	-0.8959759
Н	4.3330431	-0.4916676	0.0008168
Н	3.4615728	0.7891989	-0.8954479
Н	3.4611727	0.7889482	0.8970389

Calculated Quadrupole Moments of Toluene Derivatives **1-9** (cf. Figure 4) (in some cases, the y- or x-axis is perpendicular to the aromatic plane and has been used for the calculation of Q_{zz})

1 Me-Ph_tpss-d3.def2-TZVP

			quadrupole mome	nt	
	xx	433.246968	-461.974545	-28.727576	
	УΥ	5.642676	-39.623933	-33.981257	
	ΖZ	195.618074	-224.474397	-28.856323	
	ху	3.520237	-3.483531	0.036707	
	ХZ	0.00000	0.00000	0.00000	
	уz	0.00000	0.00000	0.00000	
		1/3 trace=	-30.521719		
		anisotropy=	5.190894		
_					
2	Me-	-C6F5_tpss-d3.de	Í2-TZVP		
			quadrupole mome	nt	
-		1041 202600	1000 000000	40 000000	
	XX	1041.283680	-1090.086600	-48.802920	
	УУ	5.083234	-52.319789	-40.030535	
	ΖZ	849./5//68	-903.256997	-53.499228	
	ху	-8.162603	8.181365	0.018762	
	ΧZ	0.000013	-0.000011	0.00002	
	уz	0.000477	-0.000473	0.00004	

1/3 trace=	-49.646228
anisotropy=	6.076480

3 Me-C6F3H2_tpss-d3.def2-TZVP

quadrupole moment

XX	800.484089	-842.151496	-41.667406
YY	5.638271	-47.214789	-41.576518
ZZ	519.053790	-561.331613	-42.277823
XY	-8.062614	8.071414	0.008800
XZ	0.000000	0.000000	0.000000
Уz	0.00000	0.00000	0.00000
УУ	5.638271	-47.214789	-41.5765
zz	519.053790	-561.331613	-42.27782
xy	-8.062614	8.071414	0.00886
xz	0.000000	0.000000	0.00000
yz	0.000000	0.000000	0.00000

1/3 1	trace=	-41.840582
aniso	cropy=	0.660743

4 Me-PhF_tpss-d3.def2-TZVP

quadrupole moment

XX	768.162598	-805.547806	-37.385208
УУ	5.674882	-42.171577	-36.496695
ΖZ	196.362822	-227.123694	-30.760872
ху	8.318732	-8.367093	-0.048361
XZ	-0.000000	0.00000	0.00000
уz	0.00000	0.00000	0.00000

1/3 trace=	-34.880925
anisotropy=	6.228361

5 Me-PhOH_tpss-d3.def2-TZVP

_ ÷	
	guadrupala memort

XX	207.088265	-237.813642	-30.725376
УУ	729.473386	-763.346511	-33.873125
ΖZ	5.572723	-43.433538	-37.860815
ху	-67.925935	64.134476	-3.791459
XZ	-0.038360	0.043759	0.005398
уz	-0.651011	0.659836	0.008825

1/3 trace=	-34.153105
anisotropy=	9.027072

6 Me-diOMePh_tpss-d3.def2-TZVP

quadrupole moment

XX	1358.753997	-1396.380023	-37.626026	
	COC 745000		10 700740	

УУ	626.745929	-676.515676	-49.769748
ΖZ	18.307726	-69.339131	-51.031405
ху	10.161769	-9.894614	0.267155
XZ	40.840424	-40.433195	0.407229
Уz	-3.165321	3.165982	0.000660

1/3	trace=	-46.142393
anis	otropy=	12.848914

7 Me-NMeIndole_tpss-d3.def2-TZVP

quadrupole moment

XX	842.208673	-886.930466	-44.721793	
УУ	704.029467	-746.879669	-42.850201	
ΖZ	11.239894	-63.183269	-51.943376	
хy	23.410024	-25.339496	-1.929472	
ХZ	0.00000	0.00000	0.00000	
уz	0.00000	0.00000	0.00000	
	1/3 trace=	-46.505123		
	anisotropy=	8.963178		

8 Me-NHIndole_tpss-d3.def2-TZVP

____ quadrupole moment

XX	732.928167	-772.142347	-39.214180	
YY	499.563306	-536.802622	-37.239316	
ZZ	5.565401	-52.975844	-47.410443	
XY	169.441863	-171.921033	-2.479170	
XZ	0.000000	-0.000000	-0.000000	
YZ	0.000000	0.000000	0.000000	
9 Me-	1/3 trace= anisotropy= -triOMePh_tpss-d	-41.287980 10.281253 3.def2-TZVP quadrupole mome	nt	
xx	1420.089633	-1466.040119	-45.950486	
yy	1149.632240	-1205.754992	-56.122752	
zz	22.744701	-82.302395	-59.557694	
xy	-40.971818	39.576093	-1.395725	
xz	-0.010501	0.010533	0.000032	
yz	0.005879	-0.005330	0.000549	

1/3	trace=	-53.876977
anis	sotropy=	12.492362

References

1. Li, J.; Luo, S.; Cheng, J.-P., Chiral Primary–Tertiary Diamine Catalysts Derived From Natural Amino Acids for syn-Aldol Reactions of Hydroxy Ketones. *J. Org. Chem.* **2009**, *74*, 1747-1750.

2. Macmillan, D.; Ahrendt, K. Acid Addition Salts of Imidazolidinones as Reaction Catalysts. WO0153269 (A1), 2001/07/26/, 2001.

3. Holland, M. C.; Paul, S.; Schweizer, W. B.; Bergander, K.; Mück-Lichtenfeld, C.; Lakhdar, S.; Mayr, H.; Gilmour, R., Noncovalent Interactions in Organocatalysis: Modulating Conformational Diversity and Reactivity in the MacMillan Catalyst. *Angew. Chem. Int. Ed.* **2013**, *52*, 7967-7971.

4. Brazier, J. B.; Evans, G.; Gibbs, T. J. K.; Coles, S. J.; Hursthouse, M. B.; Platts, J. A.; Tomkinson, N. C. O., Solution Phase, Solid State, and Theoretical Investigations on the MacMillan Imidazolidinone. *Org. Lett.* **2009**, *11*, 133-136.

5. Fitzi, R.; Seebach, D., Resolution and use in α -amino acid synthesis of imidazolidinone glycine derivatives. *Tetrahedron* **1988**, *44*, 5277-5292.

6. Seebach, D.; Dziadulewicz, E.; Behrendt, L.; Cantoreggi, S.; Fitzi, R., Synthesis of Nonproteinogenic (R)- or (S)-Amino Acids Analogues of Phenylalanine, Isotopically Labelled and Cyclic Amino Acids from tert-Butyl 2-(tert-Butyl)-3-methyl-4-oxo-1-imidazolidinecarboxylate (Boc-BMI). *Liebigs Ann. Chem.* **1989**, *1989*, 1215-1232.

7. Gang, s.; Shen, C.; Yang, X.; Tang, J.; Zhang, R.; Zou, G. Preparing method and application of chiral imidazolinone fungicide decorated by peptide loded with silica gel. CN101036894 (A), 2007/09/19/, 2007.

8. Zhang, Y.; Zhao, L.; Lee, S. S.; Ying, J. Y., Enantioselective Catalysis over Chiral Imidazolidin-4-one Immobilized on Siliceous and Polymer-Coated Mesocellular Foams. *Adv. Synth. Catal.* **2006**, *348*, 2027-2032.

9. Snyder, S. A.; Zografos, A. L.; Lin, Y., Total Synthesis of Resveratrol-Based Natural Products: A Chemoselective Solution. *Angew. Chem. Int. Ed.* **2007**, *46*, 8186-8191.

10. Zheng, H.; Comeforo, K.; Gao, J., Expanding the Fluorous Arsenal: Tetrafluorinated Phenylalanines for Protein Design. *J. Am. Chem. Soc.* **2009**, *131*, 18-19.

11. Crich, D.; Huang, X., On the Reaction of Tryptophan Derivatives with N-Phenylselenyl Phthalimide: The Nature of the Kinetic and Thermodynamic Hexahydropyrrolo[2,3-b]indole Products. Alkylation of Tryptophan with Inversion of Configuration. J. Org. Chem. **1999**, 64, 7218-7223.

12. Samulis, L.; Tomkinson, N. C. O., Preparation of the MacMillan imidazolidinones. *Tetrahedron* **2011**, *67*, 4263-4267.

13. Alonso, F.; Riente, P.; Yus, M., Wittig-Type Olefination of Alcohols Promoted by Nickel Nanoparticles: Synthesis of Polymethoxylated and Polyhydroxylated Stilbenes. *Eur. J. Org. Chem.* **2009**, 2009, 6034-6042.

14. Hubert, C.; Garrigues, B., Influence des ultrasons sur la diastéréosélectivité. Synthèse d'imidazolidine-4-one chirales. *Can. J. Chem.* **1998**, *76*, 234-237.

15. Paras, N. A.; MacMillan, D. W. C., New Strategies in Organic Catalysis: The First Enantioselective Organocatalytic Friedel–Crafts Alkylation. *J. Am. Chem. Soc.* **2001**, *123*, 4370-4371.

16. Austin, J. F.; MacMillan, D. W. C., Enantioselective Organocatalytic Indole Alkylations. Design of a New and Highly Effective Chiral Amine for Iminium Catalysis. *J. Am. Chem. Soc.* **2002**, *124*, 1172-1173.

17. Chen, Y. K.; Yoshida, M.; MacMillan, D. W. C., Enantioselective Organocatalytic Amine Conjugate Addition. *J. Am. Chem. Soc.* **2006**, *128*, 9328-9329.

18. Furche, F.; Ahlrichs, R.; Hättig, C.; Klopper, W.; Sierka, M.; Weigend, F., Turbomole: Turbomole. *Wiley Interdisciplinary Reviews: Computational Molecular Science* **2014**, *4*, 91-100; TURBOMOLE V6.5 2013, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.

19. Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E., Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids. *Phys. Rev. Lett.* **2003**, *91*.

20. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *The Journal of Chemical Physics* **2010**, *132*.

21. Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the damping function in dispersion corrected density functional theory. *J. Comput. Chem.* **2011**, *32*, 1456-1465.

22. Weigend, F.; Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297-3305.

23. Grimme, S., Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory. *Chem. Eur. J.* **2012**, *18*, 9955-9964.

24. Klamt, A.; Schüürmann, G., COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. *J. Chem. Soc.*, *Perkin Trans.* 2 1993, 799-805.