Cation- π Interactions in MacMillan Organocatalysis

Supporting Information

Mareike C. Holland, Jan B. Metternich, Christian Mück-Lichtenfeld and Ryan Gilmour*

M. C. Holland, J. B. Metternich, Dr. C. Mück-Lichtenfeld, Prof. Dr. R. Gilmour
Organisch Chemisches Institut, and Excellence Cluster EXC 1003, Cells in Motion, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, Münster (Germany).
E-mail: ryan.gilmour@uni-muenster.de
Homepage: www.uni-muenster.de/Chemie.oc/gilmour/

- General Information S2
- Experimental Section S2
- Catalysis with HPLC Data S22
- NMR Spectra of Key Compounds S33
- DFT calculations S45
- References S47

General Information

All chemicals were purchased as reagent grade and used without further purification. Solvents for purification (extraction and chromatography) were purchased as technical grade and distilled on the rotary evaporator prior to use. For column chromatography $\mathrm{SiO}_{2}-60$ (230400 mesh ASTM; Fluka) was used as stationary phase. Analytical thin layer chromatography (TLC) was performed on glass plates pre-coated with $\mathrm{SiO}_{2}-60 \mathrm{~F}_{254}$ (Merck) and visualized with a UV-lamp (254 nm) and KMnO_{4} solution. Concentration in vacuo was performed at ~ 10 mbar and $40{ }^{\circ} \mathrm{C}$, drying at $\sim 10^{-2}$ mbar and rt. NMR spectra were measured by the NMR service of the Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster on a Bruker AV300 or an Agilent DD2 600 spectrometer at $\mathrm{rt} .{ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift δ in ppm (multiplicity, number of protons, coupling constant J in Hz , assignment of proton). The deuterated solvent residual peak was used as internal reference: $\mathrm{CHCl}_{3}\left(\delta_{\mathrm{H}} 7.26\right)$ and $\mathrm{CD}_{2} \mathrm{HCN}\left(\delta_{\mathrm{H}} 1.94\right) .{ }^{13} \mathrm{C}$ NMR spectra are reported as follows: chemical shift δ in ppm (multiplicity if different from s due to heteronuclear couplings to fluorine, number of carbons if different from 1 , coupling constant ${ }^{\mathrm{x}} J_{\mathrm{CF}}$ in Hz , assignment of carbon). The solvent peak was used as internal reference: $C \mathrm{DCl}_{3}\left(\delta_{\mathrm{C}} 77.16\right)$ and $C \mathrm{D}_{3} \mathrm{CN}\left(\delta_{\mathrm{C}} 1.32\right)$. ${ }^{19}$ F NMR spectra are reported as follows: chemical shift δ in ppm (multiplicity, number of fluorines, coupling constant ${ }^{\mathrm{x}} J_{\mathrm{YF}}$ in Hz , assignment of fluorine). The resonance multiplicity is abbreviated as: s (singlet), d (doublet), t (triplet), q (quadruplet), m (multiplet) and b (broad). Assignments of unknown compounds are based on DEFT, COSY (HH and FF), HMBC, HSQC and NOESY spectra. Melting points were measured on a Büchi B-545 melting-point apparatus in open capillaries and are uncorrected. IR spectra were recorded on a Perkin-Elmer 100 FT-IR spectrometer, selected adsorption bands are reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$ and intensities are reported as: w (weak), m (medium), s (strong) and br (broad). Optical rotations were measured on a JASCO P-2000 polarimeter or a Perkin-Elmer 341 polarimeter. HPLC spectra were recorded on an Agilent 1100 series (DAD, Agilent technologies 1200 series) using a Chiralcel OJ-H ($5 \mu \mathrm{~m}, 250 \cdot 4.6 \mathrm{~mm}$) and n-hexane/iso-propanol as eluent. Highresolution mass spectra (HR ESI) were measured by the MS service of the OrganischChemisches Institut, Westfälische Wilhelms-Universität Münster.

Experimental Section

Syntheses of (5S)-5-Benzyl-2,2,3-trimethyl-4-imidazolidinone (1) and (5S)-5-Benzyl-2,2,3-trimethyl-4-oxo-1-[(E)-3-phenylallylidene]-imidazolidin-1-ium salt (1a)

L-Phenylalanine methyl amide $13{ }^{1}$

To a suspension of L-phenylalanine ($6.98 \mathrm{~g}, 42.3 \mathrm{mmol}, 1.0$ equiv.) in MeOH ($17.1 \mathrm{~mL}, 423 \mathrm{mmol}, 10$ equiv.) was added thionyl chloride (3.70 mL , $50.7 \mathrm{mmol}, 1.2$ equiv.) over 15 min at $0^{\circ} \mathrm{C}$ and the resulting solution was allowed to come to RT before it was heated to reflux for 22 h . The solution was allowed to come to RT and evaporated in vacuo to give the L-phenylalanine methyl ester hydrochloride as a white solid. To the ester was added MeNH_{2} (8 N in $\mathrm{EtOH}, 21.0 \mathrm{~mL}, 169 \mathrm{mmol}, 4.0$ equiv.) at RT and the solution stirred for 23 h . The reaction was concentrated in vacuo and a saturated aqueous solution of $\mathrm{NaHCO}_{3}(45 \mathrm{~mL})$ was
added. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 55 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtrated and concentrated in vacuo to give the amide $\mathbf{1 3}$ as a yellowish solid ($6.44 \mathrm{~g}, 86 \%$).
$R_{\mathrm{f}}=0.37\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) ;$ M.p. $=58.5-59.6^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}{ }^{20}:-66.1 \quad\left(c=1.07, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.32$ ($2 \mathrm{H}, \mathrm{t}, J=7.2, \mathrm{H}-\mathrm{C} 4{ }^{\prime}$), $7.28-7.19(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{C} 3$ ', H$\left.\mathrm{C}^{\prime}, \mathrm{H}-\mathrm{N}^{\text {amide }}\right), 3.61(1 \mathrm{H}, \mathrm{dd}, J=9.4,3.9, \mathrm{H}-\mathrm{C} 2), 3.29\left(1 \mathrm{H}, \mathrm{dd}, J=13.7,3.9, \mathrm{H}-\mathrm{C} 1{ }^{\prime}\right), 2.82$ ($3 \mathrm{H}, \mathrm{d}, J=5.0, \mathrm{H}-\mathrm{C} 3), 2.68\left(1 \mathrm{H}, \mathrm{dd}, J=13.7,9.4, \mathrm{H}-\mathrm{C} 1\right.$ '), and $1.38\left(2 \mathrm{H}, \mathrm{b}, \mathrm{H}-\mathrm{N}^{\text {amine }}\right) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.9$ (C1), 138.2 (C2'), 129.4 (2C, C3'), 128.8 (2C, C4'), 126.9 (C5'), 56.6 (C2), 41.2 (C1'), and 26.0 (C3) ppm; IR (ATR): $\tilde{v}=3343 \mathrm{w}, 3291 \mathrm{w}$, 3033w, 2940w, 2915w, 2877w, 1644s, 1524s, 1455m, 1439m, 1399m, 1342w, 1322w, 1268w, 1229w, 1152w, 1109m, 978w, 927w, 913w, 877m, 858m, 834w, 745s, and $699 \mathrm{~s} \mathrm{~cm}{ }^{-1}$, HR-ESI-MS: $m / z: 179.1186\left([M+H]^{+}\right.$, calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}^{+}$: 179.1179); analytical data in agreement with the literature. ${ }^{1}$

(5S)-5-Benzyl-2,2,3-trimethyl-4-imidazolidinone (1) ${ }^{2}$

To a solution of amide $\mathbf{1 3}$ ($1.00 \mathrm{~g}, 5.6 \mathrm{mmol}, 1$ equiv.) in $\mathrm{MeOH}(12.0 \mathrm{~mL})$ was added acetone ($2.1 \mathrm{~mL}, 28.1 \mathrm{mmol}, 5.0$ equiv.) and $\mathrm{NEt}_{3}(0.6 \mathrm{~mL}$, $4.5 \mathrm{mmol}, 0.8$ equiv.) at RT under an atmosphere of argon and the yellow solution was heated to reflux overnight. The reaction was allowed to come to RT and concentrated in vacuo to give $\mathbf{1}$ as a yellow oil (1.22 g , quant.).
$R_{\mathrm{f}}=0.79\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) ;[\alpha]_{\mathrm{D}}{ }^{20}:-33.2\left(c=0.94, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}): $\delta=7.36-7.18\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{C} 2^{\prime}, \mathrm{H}-\mathrm{C} 3^{\prime}\right.$, and $\left.\mathrm{H}-\mathrm{C} 4 '\right), 3.80(1 \mathrm{H}, \mathrm{dd}, J=6.8,4.5, \mathrm{H}-\mathrm{C} 5)$, $3.15(1 \mathrm{H}, \mathrm{dd}, J=14.2,4.5, \mathrm{H}-\mathrm{C} 8), 3.01(1 \mathrm{H}, \mathrm{dd}, J=14.2,6.8, \mathrm{H}-\mathrm{C} 8), 2.76(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 7)$, $1.70\left(1 \mathrm{H}, \mathrm{b}, \mathrm{H}-\mathrm{N}^{\text {amine }}\right), 1.27(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 6)$, and $1.16(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 6) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.5$ (C4), 137.3 (C^{\prime} '), 129.7 (2C, C2'), 128.7 (2C, C3'), 126.9 (C4'), 75.7 (C2), 59.4 (C5), 37.4 (C8), 27.4 (C6), 25.5 (C6), and 25.4 (C7) ppm; IR (ATR): $\tilde{v}=3317 \mathrm{~b}, 2979 \mathrm{w}, 2931 \mathrm{w}, 1745 \mathrm{w}, 1680 \mathrm{~s}, 1602 \mathrm{w}, 1496 \mathrm{w}, 1424 \mathrm{~s}, 1398 \mathrm{~s}$, $1367 \mathrm{~m}, 1269 \mathrm{~m}$, $1148 \mathrm{~m}, 1089 \mathrm{w}, 1030 \mathrm{w}, 922 \mathrm{w}, 904 \mathrm{w}, 748 \mathrm{~s}$, 701s, and $673 \mathrm{w} \mathrm{cm}^{-1}$; HR-ESI-MS: $m / z: 219.1492$ $\left([M+H]^{+}\right.$, calcd for $\left.\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}^{+}: 219.1492\right)$; analytical data in agreement with the literature. ${ }^{2}$
(5S)-5-Benzyl-2,2,3-trimethyl-4-oxo-1-[(E)-3-phenylallylidene]-imidazolidin-1-ium perchlorate ($1 \mathrm{a} \cdot \mathrm{ClO}_{4}$): ${ }^{3}$

To imidazolidinone 1 ($34.9 \mathrm{mg}, 0.16 \mathrm{mmol}$, 1 equiv.) in $\mathrm{Et}_{2} \mathrm{O}(0.20 \mathrm{~mL})$ was added perchloric acid (60% in $\mathrm{H}_{2} \mathrm{O}, 26.80 \mathrm{mg}, 0.16 \mathrm{mmol}$, 1 equiv.) in $\mathrm{EtOH} / \mathrm{Et}_{2} \mathrm{O}(1: 1,0.40 \mathrm{~mL})$ at RT and the resulting mixture stirred for 15 min before it was evaporated in vacuo to give the imidazolidinone salt. The salt was redissolved in $\mathrm{MeOH}(0.40 \mathrm{~mL})$ and heated to $35^{\circ} \mathrm{C}$. (E)cinnamaldehyde ($40.2 \mu \mathrm{~L}, 0.32 \mathrm{mmol}, 2$ equiv.) was added and the yellow solution stirred for 1 h . The solvent was removed in vacuo and the residue dissolved in a minimum amount of MeOH . From this solution the iminium salt was crashed out with $\mathrm{Et}_{2} \mathrm{O}$ and the supernatant solution taken off. The washing procedure was repeated and the iminium salt isolated as a yellow solid ($31.9 \mathrm{mg}, 46 \%$).
M.p. $=189.9-191.9^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20.5}:+2.5\left(c=0.45, \mathrm{CH}_{3} \mathrm{CN}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$: $\delta_{\mathrm{H}}=8.73\left(1 \mathrm{H}, \mathrm{dd}, J=10.7,1.9, \mathrm{H}-\mathrm{C} 1^{\prime \prime}\right), 8.18\left(1 \mathrm{H}, \mathrm{d}, J=15.0, \mathrm{H}-\mathrm{C} 3^{\prime \prime}\right), 7.93(2 \mathrm{H}, \mathrm{d}, J=7.3$,

H-C5"), 7.77-7.68 (1H, m, H-C7"), 7.62 ($2 \mathrm{H}, \mathrm{t}, J=7.6, \mathrm{H}-\mathrm{C} 6 "), 7.38-7.20$ (4H, m, H-C3', H-C4', H-C2"), 7.09 ($2 \mathrm{H}, \mathrm{dd}, J=7.9,1.7, \mathrm{H}-\mathrm{C} 2$ '), $5.20(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 5), 3.57(1 \mathrm{H}$, dd, $J=14.7,5.7, \mathrm{H}-\mathrm{C} 8), 3.47(1 \mathrm{H}, \mathrm{dd}, J=14.7,3.7, \mathrm{H}-\mathrm{C} 8), 2.78(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 7), 1.70(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ C6anti), and 0.79 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 6 \mathrm{syn}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta_{\mathrm{C}}=168.2$ (C1"), 166.7 (C3"), 165.2 (C4), 136.1 (C7'), 134.8 (C1'), 134.4 (C4"), 132.5 (2C, C5"), 131.1 (2C, C2'), 130.7 (2C, C6"), 130.1 (2C, C3'), 129.2 (C4'), 118.4 (C2"), 86.5 (C2), 65.2 (C5), 37.2 (C8), 27.5 (C6anti), 26.1 (C7), and 24.8 (C6syn) ppm; IR (ATR): $\tilde{v}=2938 \mathrm{~b}, 1712 \mathrm{~s}, 1620 \mathrm{~s}$, $1601 \mathrm{~s}, 1587 \mathrm{~s}, 1455 \mathrm{~m}, 1438 \mathrm{~m}, 1420 \mathrm{~m}, 1043 \mathrm{~m}, 1335 \mathrm{w}, 1311 \mathrm{w}, 1281 \mathrm{~m}, 1235 \mathrm{w}, 1197 \mathrm{~m}$, $1179 \mathrm{~m}, ~ 1151 \mathrm{w}, 1115 \mathrm{~m}, 1081 \mathrm{~m}, 1051 \mathrm{w}, 1012 \mathrm{~m}, 999 \mathrm{~m}, 955 \mathrm{w}, 933 \mathrm{w}, 872 \mathrm{w}, 756 \mathrm{~m}, 750 \mathrm{~m}$, $705 \mathrm{~m}, 684 \mathrm{w}, 642 \mathrm{w}$, and $622 \mathrm{~s} \mathrm{~cm}^{-1}$; HR-ESI-MS: $m / z: 333.19602$ ($\left[M-\mathrm{ClO}_{4}^{-}\right]^{+}$, calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}^{+}: 333.19614$); analytical data in agreement with the literature. ${ }^{3,4}$

(2S)-1-Boc-2-(tert-butyl)-3-methyl-4-imidazolidinone (S-Boc-BMI) 14 ${ }^{5}$

To a solution of (R)-BMI trifluoroacetic acid ($2.00 \mathrm{~g}, 7.40 \mathrm{mmol}, 1.00$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.00 \mathrm{~mL})$ was added aqueous $\mathrm{NaOH}(2 \mathrm{~N}$, approx. 7 mL) to adjust the pH to approx. 8. The layers were separated and the aqueous phase extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The residue was dissolved in acetone (14.0 mL) and $\mathrm{Boc}_{2} \mathrm{O}(2.21 \mathrm{~mL}, 9.62 \mathrm{mmol}, 1.3$ equiv.) and DMAP ($90.4 \mathrm{mg}, 0.74 \mathrm{mmol}$, 0.1 equiv.) were added under Ar at $0^{\circ} \mathrm{C}$. The solution was allowed to come to RT and stirred for $19 \mathrm{~h} . \mathrm{Et}_{3} \mathrm{~N}(1.0 \mathrm{~mL}, 7.4 \mathrm{mmol}, 1.0$ equiv.) and after another $2 \mathrm{~h} \mathrm{H}_{2} \mathrm{O}(0.7 \mathrm{~mL})$ were added. After stirring for an additional 2 h , the organic solvent was evaporated in vacuo. $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and an aqueous solution of $\mathrm{HCl}(1 \mathrm{~N}, 10 \mathrm{~mL})$ were added to the residue, the layers were separated and the organic layer was washed with an aqueous solution of $\mathrm{HCl}(1 \mathrm{~N}, 10 \mathrm{~mL})$ and with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and concentrated in vacuo give (S)-Boc-BMI (14) as a white solid ($1.53 \mathrm{~g}, 81 \%$).
$R_{\mathrm{f}}=0.69\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) ;$ M.p. $=65.0-65.7^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}:-11.6\left(c=1.05, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.88$ (bd, $\left.1 \mathrm{H}, J=55.0, \mathrm{H}-\mathrm{C} 2\right), 4.08$ (bd, $1 \mathrm{H}, J=14.1, \mathrm{H}-$ C5), 3.73 (bd, 1H, J = 16.0, H-C5), 2.98 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-\mathrm{C} 8$), 1.46 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{H}-\mathrm{C} 4$ '), and 0.96 ($\mathrm{s}, 9 \mathrm{H}$, $\mathrm{H}-\mathrm{C} 7$) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.6$ (C4), 154.7 (b, C1'), 82.3 (b, C2), 81.0 (b, C3'), 59.5 (b, C5), 39.5 (C6), 31.5 (C8), 28.2 (3C, C4'), and 25.9 (3C, C7) ppm; IR (ATR): $\tilde{v}=2968 \mathrm{w}, 2951 \mathrm{w}, 1694 \mathrm{~s}, 1480 \mathrm{w}, 1450 \mathrm{w}, 1434 \mathrm{w}, 1400 \mathrm{~m}, 1362 \mathrm{~s}, 1301 \mathrm{~s}, 1288 \mathrm{~m}, 1252 \mathrm{~s}$, $1162 \mathrm{~s}, 1118 \mathrm{~m}, 1104 \mathrm{~s}, 1035 \mathrm{w}, 1007 \mathrm{w}, 939 \mathrm{~m}, 928 \mathrm{~m}, 877 \mathrm{~m}, 868 \mathrm{~m}, 776 \mathrm{~m}, 762 \mathrm{w}, 728 \mathrm{w}$, and 664w cm ${ }^{-1}$; HR-ESI-MS: m/z: $257.1861\left([M+H]^{+}\right.$, calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}: 257.1860$); analytical data in agreement with the literature. ${ }^{5}$

Syntheses of (5S)-2,2,3-Trimethyl-5-(pentafluorobenzyl)-4-imidazolidinone (2) and 5-Pentafluorobenzyl-2,2,3-trimethyl-4-oxo-1-[(E)-3-phenylallylidene]-imidazolidin-1-ium salt (2a)

(2S,5S)-1-Boc-2-(tert-butyl)-3-methyl-5-(pentafluorobenzyl)-4-imidazolidinone $\mathbf{1 5}^{6}$

A solution of (S)-Boc-BMI 14 ($128 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv.) in dry THF $(0.70 \mathrm{~mL})$ in a flame-dried Schlenck under an atmosphere of argon was cooled to $-78^{\circ} \mathrm{C}$. LDA ($0.28 \mathrm{~mL}, 0.55 \mathrm{mmol}, 1.1$ equiv.) was added resulting in a dark red solution. After 30 min , pentafluorobenzylbromide ($131 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv.) in dry THF $(0.25 \mathrm{~mL}$) was added slowly upon which the solution turned purple. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 5 h and then quenched by addition of saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \cdot 5 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated in vacuo. Purification by $\mathrm{CC}\left(\mathrm{SiO}_{2}\right.$; CH/EtOAc 8:1) gave 15 as an off-white solid ($179 \mathrm{mg}, 82 \%$).
$R_{\mathrm{f}}=0.66\left(\mathrm{SiO}_{2} ; \mathrm{CH} / \mathrm{EtOAc} 2: 1\right) ;$ M.p. $=65.9-69.6^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}:-0.7\left(c=0.95, \mathrm{CH}_{3} \mathrm{OH}\right)$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.99(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-\mathrm{C} 2), 4.22(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-\mathrm{C} 5), 3.89(1 \mathrm{H}, \mathrm{dd}$, $J=13.9,3.0, \mathrm{H}-\mathrm{C} 1$ '), $2.95(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 8), 2.91\left(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-\mathrm{C} 1{ }^{\prime}\right), 1.48\left(9 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 4{ }^{\prime \prime}\right)$, and 0.95 (9H, s, H-C7) ppm; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.8$ (C4), 152.8 (C1"), 145.6 $\left(2 \mathrm{C}, \mathrm{dm},{ }^{1} J_{\mathrm{CF}}=246.8, \mathrm{C}^{\mathrm{Ar}}\right), 137.2\left(\mathrm{dm},{ }^{1} J_{\mathrm{CF}}=268.6, \mathrm{C} 5\right.$) $137.0\left(2 \mathrm{C}, \mathrm{dm},{ }^{1} J_{\mathrm{CF}}=205.2, \mathrm{C}^{\mathrm{Ar}}\right)$, 111.1 (b, C2'), 81.8 (C2), 80.9 (C3'), 56.8 (C5), 41.1 (C6), 32.1 (C1'), 28.3 (3C, C4"), 26.6 (3C, C7), and 24.7 (b, C8) ppm; ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-141.7$ ($2 \mathrm{~F}, \mathrm{bs}, \mathrm{F}-\mathrm{C} 3$ '), -157.3 ($1 \mathrm{~F}, \mathrm{bs}, \mathrm{F}-\mathrm{C} 5^{\prime}$), and -163.2 (2F, bs, F-C4') ppm; IR (ATR): $\tilde{v}=2973 \mathrm{w}, 2932 \mathrm{w}$, $1695 \mathrm{~s}, 1658 \mathrm{w}, 1602 \mathrm{w}, 1511 \mathrm{~m}, 1506 \mathrm{~m}, 1478 \mathrm{w}, 1457 \mathrm{w}, 1400 \mathrm{~m}, 1376 \mathrm{~s}, 1364 \mathrm{~s}, 1302 \mathrm{~m}, 1257 \mathrm{~m}$, $1216 \mathrm{~m}, 1178 \mathrm{~m}, 1160 \mathrm{~m}, 1116 \mathrm{~s}, 1098 \mathrm{~m}, 1035 \mathrm{w}, 1010 \mathrm{w}, 980 \mathrm{~m}, 948 \mathrm{w}, 934 \mathrm{w}, 912 \mathrm{w}, 886 \mathrm{~m}$, $840 \mathrm{w}, 821 \mathrm{w}, 786 \mathrm{~m}, 771 \mathrm{~m}$, and $717 \mathrm{~m} \mathrm{~cm}^{-1}$; HR-ESI-MS: $m / z: 459.1662$ ([M+Na] ${ }^{+}$, calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}^{+}: 459.1678$). Analytical data in agreement with the literature. ${ }^{6}$

L-Pentafluorophenylalanine N-methyl amide (16)

To a solution of $\mathbf{1 5}(100 \mathrm{mg}, 0.23 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{MeOH}(3.0 \mathrm{~mL})$ was added an aqueous solution of $\mathrm{HCl}(1 \mathrm{~N}, 3.0 \mathrm{~mL})$ at RT and the mixture heated to reflux for 11 h . The reaction was allowed to come to RT and basified to a pH of 10 with an aqueous solution of $\mathrm{NaOH}(2 \mathrm{~N})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4} and concentrated in vacuo to give amide $\mathbf{1 6}$ as a white solid (62 mg , quant.).
M.p. $=98.4-99.3{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}=-0.263\left(c=0.039\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.21\left(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-\mathrm{N}^{\text {amide }}\right), 3.58(1 \mathrm{H}, \mathrm{dd}, J=9.1,4.9, \mathrm{H}-\mathrm{C} 2), 3.37(1 \mathrm{H}, \mathrm{dd}, J=14.1,4.4, \mathrm{H}-$ $\left.\mathrm{C}^{\prime}\right), 2.91-2.74\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{C} 3, \mathrm{H}-\mathrm{C} 1\right.$ '), and $1.50\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{N}^{\mathrm{amine}}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=173.5(\mathrm{C} 1), 145.6\left(\mathrm{dm},{ }^{1} J_{\mathrm{CF}}=247.3, \mathrm{C}^{\mathrm{Ar}}\right), 139.8\left(\mathrm{dm},{ }^{1} J_{\mathrm{CF}}=252.1, \mathrm{C}^{\mathrm{Ar}}\right), 137.3$ $\left(\mathrm{dm},{ }^{1} J_{\mathrm{CF}}=250.5, \mathrm{C}^{\mathrm{Ar}}\right), 111.9\left(\mathrm{td},{ }^{2} J_{\mathrm{CF}}=18.5,{ }^{3} J_{\mathrm{CF}}=3.7, \mathrm{C} 2 '\right), 54.8(\mathrm{C} 2), 28.5\left(\mathrm{C} 1^{\prime}\right)$, and 26.1 (C3) ppm; ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-142.4\left(2 \mathrm{~F}, \mathrm{dd}^{3} J_{\mathrm{FF}}=22.6,{ }^{4} J_{\mathrm{FF}}=8.4, \mathrm{~F}-\mathrm{C} 3^{\prime}\right),-$ $156.0 \quad\left(1 \mathrm{~F}, \quad \mathrm{t}, \quad{ }^{3} \mathrm{JF}_{\mathrm{FF}}=20.9, \quad \mathrm{~F}-\mathrm{C} 5 '\right), \quad$ and $-162.1 \quad\left(2 \mathrm{~F}, \quad \mathrm{dt}, \quad{ }^{3} J_{\mathrm{FF}}=22.5, \quad{ }^{4} J_{\mathrm{FF}}=8.4\right.$, F-C4') ppm; IR (ATR): $\tilde{v}=3379 \mathrm{w}, 3330 \mathrm{~m}, 3298 \mathrm{w}, 2953 \mathrm{w}, 2910 \mathrm{w}, 1649 \mathrm{~s}, 1540 \mathrm{~m}, 1520 \mathrm{~s}$, $1500 \mathrm{~s}, 1445 \mathrm{~m}, 1423 \mathrm{~m}, 1407 \mathrm{~m}, 1298 \mathrm{~m}, 1116 \mathrm{~s}, 1098 \mathrm{~s}, 1000 \mathrm{~s}, 972 \mathrm{~s}, 932 \mathrm{~s}, 914 \mathrm{~s}, 890 \mathrm{~m}, 849 \mathrm{~m}$,
$805 \mathrm{~s}, 735 \mathrm{~m}, 710 \mathrm{~s}$, and $664 \mathrm{~m} \mathrm{~cm}^{-1}$; HR-ESI-MS: $m / z: 269.0718\left([M+\mathrm{H}]^{+}\right.$, calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}^{+}: 269.0708$).

(5S)-2,2,3-Trimethyl-5-(pentafluorobenzyl)-4-imidazolidinone (2)

To a solution of amide $\mathbf{1 6}$ ($181 \mathrm{mg}, 0.68 \mathrm{mmol}, 1.0$ equiv.) in MeOH $(4.0 \mathrm{~mL})$ were added acetone ($0.37 \mathrm{~mL}, 5.06 \mathrm{mmol}, 7.5$ equiv.) and NEt_{3} ($0.08 \mathrm{~mL}, 0.54 \mathrm{mmol}, 0.8$ equiv.) at RT under an atmosphere argon and the solution heated to reflux for 9 h . The reaction was allowed to come to RT and concentrated in vacuo to give imidazolidinone 2 as an off-white solid ($194 \mathrm{mg}, 93 \%$).
M.p. $=73.0-75.3^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}{ }^{20}=-31.5\left(c=0.91\right.$ in $\left.\mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\left.\delta=3.78(1 \mathrm{H}, \mathrm{dd}, J=10.3,4.6, \mathrm{H}-\mathrm{C} 5), 3.31(1 \mathrm{H}, \mathrm{d}, J=14.1, \mathrm{H}-\mathrm{C} 1)^{\prime}\right), 2.86-2.75(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}^{-\mathrm{C} 1}{ }^{\prime}, \mathrm{H}-\mathrm{C} 7\right), 1.72(2 \mathrm{H}, \mathrm{b}, \mathrm{H}-\mathrm{N}), 1.40(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 6)$, and $1.30(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 6) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, racemic compound): $\delta=172.3$ (C4), 145.6 (2C, dm, $\left.{ }^{1} J_{\mathrm{CF}}=245.6, \mathrm{C}^{\mathrm{Ar}}\right), 139.6\left(\mathrm{dm},{ }^{1} J_{\mathrm{CF}}=245.0, \mathrm{C} 5{ }^{\prime}\right), 137.4\left(2 \mathrm{C}, \mathrm{dm},{ }^{1} J_{\mathrm{CF}}=251.8, \mathrm{C}^{\mathrm{Ar}}\right), 111.9(\mathrm{td}$, ${ }^{2} J_{\mathrm{CF}}=18.4{ }^{3} J_{\mathrm{CF}}=3.8, \mathrm{C} 2$) $) 76.0(\mathrm{C} 2), 57.7$ (C5), 28.0 (C6), 26.6 (C1'), 25.6 (C6), and 25.4 (C7) ppm; ${ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=(-142.3)-(-142.7)(2 \mathrm{~F}, \mathrm{~m}, \mathrm{~F}-\mathrm{C} 3$ '), $-157.2(1 \mathrm{~F}, \mathrm{t}$, ${ }^{3} J_{\mathrm{FF}}=20.8, \mathrm{~F}-\mathrm{C} 5$ '), and $-163.0\left(2 \mathrm{~F}, \mathrm{td},{ }^{3} J_{\mathrm{FF}}=22.6,{ }^{4} J_{\mathrm{FF}}=8.3, \mathrm{~F}-\mathrm{C} 4\right.$ ') ppm; IR (ATR): $\tilde{v}=3318 \mathrm{~m}, 2982 \mathrm{w}, 1676 \mathrm{~s}, 1519 \mathrm{~s}, 1499 \mathrm{~s}, 1441 \mathrm{~m}, 1404 \mathrm{~s}, 1384 \mathrm{~m}, 1371 \mathrm{~m}, 1303 \mathrm{w}, 1279 \mathrm{w}$, $1202 \mathrm{w}, ~ 1182 \mathrm{~m}, 1156 \mathrm{w}, 1119 \mathrm{~s}, 1099 \mathrm{~m}, 1042 \mathrm{~m}, 1012 \mathrm{~m}, ~ 977 \mathrm{~m}, ~ 964 \mathrm{~s}, 937 \mathrm{~s}, ~ 885 \mathrm{w}, 795 \mathrm{w}$, $768 \mathrm{w}, 736 \mathrm{w}$, and $681 \mathrm{w} \mathrm{cm}{ }^{-1}$; HR-EI-MS: $m / z: 309.1018\left([M+\mathrm{H}]^{+}\right.$, calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}^{+}$: 309.1021); elemental analysis (racemic compound) calcd (\%) for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}$ (308.2): C 50.65, H 4.25, N 9.09, F 30.82; found: C 50.74, H 4.43, N 8.87, F 31.06.

5-Pentafluorobenzyl-2,2,3-trimethyl-4-oxo-1-[(E)-3-phenylallylidene]-imidazolidin-1ium perchlorate ($\left.\mathbf{2 a} \cdot \mathrm{ClO}_{4}\right)^{-} \mathbf{:}^{3}$

To imidazolidinone 2 ($24.7 \mathrm{mg}, 0.08 \mathrm{mmol}$, 1.0 equiv.) in $\mathrm{Et}_{2} \mathrm{O}$ (0.10 mL) was added perchloric acid (60% in $\mathrm{H}_{2} \mathrm{O}, 11.5 \mathrm{mg}, 0.08 \mathrm{mmol}, 1$ equiv.) in $\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOH}(1: 1,0.2 \mathrm{~mL})$ at RT and the resulting mixture stirred for 10 min before it was evaporated in vacuo to give the imidazolidinone salt. The salt was redissolved in $\mathrm{MeOH}(0.20 \mathrm{~mL})$ and heated to $35^{\circ} \mathrm{C} .(E)$-cinnamaldehyde ($20.1 \mu \mathrm{~L}, 0.16 \mathrm{mmol}, 2$ equiv.) was added and the yellow solution stirred for 1 h . The solvent was removed in vacuo and the residue dissolved in a minimum amount of MeOH . From this solution the iminium salt $\mathbf{2 a} \cdot \mathbf{C l O}_{\mathbf{4}}$ was crashed out as a yellow solid with $\mathrm{Et}_{2} \mathrm{O}$ and the supernatant solution taken off. Crystals suitable for X-ray crystallographic analysis were obtained from a solution in $\mathrm{MeOH} / \mathrm{CH}_{3} \mathrm{CN}(2: 1)$ by vapour diffusion with $\mathrm{Et}_{2} \mathrm{O}$.
M.p. $=185.1-186.3^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta_{\mathrm{H}}=8.87(1 \mathrm{H}, \quad \mathrm{dd}, \quad J=10.7,1.8$, H-C1"), 8.24 ($\left.1 \mathrm{H}, \mathrm{d}, J=15.0, \mathrm{H}-\mathrm{C} 3^{\prime \prime}\right), 7.89$ ($2 \mathrm{H}, \mathrm{dd}, J=8.2,1.0, \mathrm{H}-\mathrm{C} 5{ }^{\prime \prime}$), $7.76-7.71$ ($1 \mathrm{H}, \mathrm{m}$, H-C7"), 7.63 ($2 \mathrm{H}, \mathrm{t}, J=7.9, \mathrm{H}-\mathrm{C} 6 "$), 7.22 ($1 \mathrm{H}, \mathrm{dd}, J=15.0,10.7, \mathrm{H}-\mathrm{C} 2 "$ "), $5.09-5.04(1 \mathrm{H}$, m, H-C5), 3.54 ($1 \mathrm{H}, \mathrm{dd}, J=15.0,5.2, \mathrm{H}-\mathrm{C} 8$), $3.49(1 \mathrm{H}, \mathrm{dd}, J=15.0,8.3, \mathrm{H}-\mathrm{C} 8), 2.90(3 \mathrm{H}$, $\mathrm{d}, J=0.5, \mathrm{H}-\mathrm{C} 7), 1.83(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 6 \mathrm{anti})$, and $1.70(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 6 \mathrm{syn}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \mathrm{C1}^{\prime}, \mathrm{C} 2^{\prime}, \mathrm{C} 3^{\prime}$ and $\mathrm{C} 4 '$ not visible): $\delta_{\mathrm{C}}=168.8\left(\mathrm{C} 1^{\prime \prime}\right)$, $167.2\left(\mathrm{C} 3^{\prime \prime}\right), 164.1$ (C4), 136.5 (C7"), 134.2 (C4"), 132.3 (2C, C5"), 130.9 (2C, C6"), 117.9 (C2"), 86.8 (C2), 61.1 (C5), 27.2 (C6syn), 26.8 (C6anti), 26.5 (C8), and 26.3 (C7) ppm; ${ }^{19}$ F NMR (564 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}\right): \delta_{\mathrm{F}}=(-141.1)-(-141.2)(2 \mathrm{~F}, \mathrm{~m}, \mathrm{~F}-\mathrm{C} 2 '),-155.6\left(1 \mathrm{~F}, \mathrm{t},{ }^{2} J_{\mathrm{FF}}=20.1, \mathrm{~F}-\mathrm{C} 4{ }^{\prime}\right)$, and
(-163.6)-(-163.7) (2F, m, F-C3') ppm; IR (ATR): $\tilde{v}=2997 \mathrm{~b}, 1712 \mathrm{~s}, 1661 \mathrm{w}, 1617 \mathrm{~m}$, $1603 \mathrm{~m}, 1588 \mathrm{~s}, 1523 \mathrm{~m}, 1506 \mathrm{~s}, 1455 \mathrm{~m}, 1434 \mathrm{~m}, 1405 \mathrm{~m}, 1396 \mathrm{~m}, 1334 \mathrm{w}, 1277 \mathrm{~m}, 1236 \mathrm{w}$, $1215 \mathrm{w}, 1181 \mathrm{~m}, 1161 \mathrm{~m}, 1125 \mathrm{~m}, 1093 \mathrm{~s}, 1074 \mathrm{~s}, 1039 \mathrm{~s}, 1012 \mathrm{~m}, 1004 \mathrm{~m}, ~ 976 \mathrm{~m}, ~ 964 \mathrm{~m}, ~ 935 \mathrm{~m}$, $865 \mathrm{~m}, 823 \mathrm{w}, 765 \mathrm{~s}, 700 \mathrm{w}, 685 \mathrm{w}$, and $621 \mathrm{~m} \mathrm{~cm}^{-1}$; HR-ESI-MS: $\mathrm{m} / \mathrm{z}: 423.1484\left(\left[M-\mathrm{ClO}_{4}\right]^{+}\right.$, calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}^{+}: 423.1496$).

Syntheses of (5S)-2,2,3-Trimethyl-5-(2,4,6-trifluorobenzyl)-4-imidazolidinone (3) and (S)-5-(2',4',6'-Trifluorobenzyl)-2,2,3-trimethyl-4-oxo-1-[(E)-3-phenylallylidene]-imidazolidin-1-ium salt (3a)

(2S,5S)-1-Boc-2-(tert-butyl)-3-methyl-5-(2,4,6-trifluorobenzyl)-4-imidazolidinone (17)

A solution of (S)-Boc-BMI (14) ($570 \mathrm{mg}, 2.22 \mathrm{mmol}, 1.0$ equiv.) in dry THF (3.00 mL) in a flame-dried Schlenck under an atmosphere of argon was cooled to $-78^{\circ} \mathrm{C}$. LDA (2.0 N in THF/ ${ }^{n}$ heptane/ethylbenzene, 1.22 mL , $2.44 \mathrm{mmol}, 1.1$ equiv.) was added dropwise and the solution stirred for 30 min before 2,4,6-trifluorobenzylbromide ($500 \mathrm{mg}, 2.22 \mathrm{mmol}, 1.0$ equiv.) in THF (1.00 mL) was added slowly. After 5 h , the reaction was quenched by addition of saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$, diluted with water (3 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \cdot 5 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} and concentrated in vacuo. Purification by CC ($\mathrm{SiO}_{2} ; \mathrm{CH} / \mathrm{EtOAc}$ $10: 1)$ gave 17 as an orange oil ($757 \mathrm{mg}, 85 \%$).
$R_{\mathrm{f}}=0.51\left(\mathrm{SiO}_{2} ; \mathrm{CH} / \mathrm{EtOAc} 2: 1\right) ;[\alpha]_{\mathrm{D}}{ }^{23}:-1.1\left(c=0.89, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=6.62(2 \mathrm{H}, \mathrm{t}, J=8.3, \mathrm{H}-\mathrm{C} 4 '), 4.99(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 2), 4.22(1 \mathrm{H}, \mathrm{d}, J=5.6, \mathrm{H}-\mathrm{C} 5)$, $3.79(1 \mathrm{H}, \mathrm{dd}, J=13.9,3.4, \mathrm{H}-\mathrm{C} 1 '), 2.93\left(4 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 8, \mathrm{H}-\mathrm{C} 1\right.$ '), 1.49 ($\left.9 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 4{ }^{\prime \prime}\right)$, and 0.95 ($9 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 7$) ppm; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.1$ (C4), 161.5 (2C, ddd, $\left.{ }^{1} J_{\mathrm{CF}}=248.4,{ }^{3} J_{\mathrm{CF}}=15.5,{ }^{3} J_{\mathrm{CF}}=14.7, \mathrm{C} 3 '\right), 161.4\left(\mathrm{dt},{ }^{1} J_{\mathrm{CF}}=247.4,{ }^{4} J_{\mathrm{CF}}=15.7, \mathrm{C} 5\right.$ '), $152.9(\mathrm{~b}$, C1"), 109.3 ($\mathrm{t},{ }^{2} J_{\mathrm{CF}}=21.3$, C2'), 99.7 (2C, ddd, ${ }^{2} J_{\mathrm{CF}}=28.4,{ }^{2} J_{\mathrm{CF}}=25.4,{ }^{4} J_{\mathrm{CF}}=2.6, \mathrm{C} 4$ '), 81.2 (C2), 80.6 (C3"), 57.1 (C5), 40.9 (C6), 31.8 (Cl^{\prime}), 28.2 (3C, C4"), 26.5 (3C, C7), and 23.9 (b, C8) ppm; ${ }^{19} \mathrm{~F}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-110.4$ ($2 \mathrm{~F}, \mathrm{~b}, \mathrm{~F}-\mathrm{C} 3$ '), and -110.8 (b, $\mathrm{F}-\mathrm{C} 5$ ') ppm; IR (ATR): $\tilde{v}=3331 \mathrm{w}, 2976 \mathrm{w}, 2928 \mathrm{w}, 1682 \mathrm{~s}, 1602 \mathrm{w}, 1508 \mathrm{~s}, 1425 \mathrm{~m}, 1398 \mathrm{~s}, 1368 \mathrm{w}, 1219 \mathrm{~s}$, $1158 \mathrm{~m}, 1098 \mathrm{~m}, 1016 \mathrm{w}, 922 \mathrm{w}, 823 \mathrm{~m}$, and $731 \mathrm{~m} \mathrm{~cm}^{-1}$; HR-EI-MS: $m / z: 423.1867\left([M-\mathrm{Na}]^{+}\right.$, calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}^{+}$: 423.1866).

L-2,4,6-Trifluorophenylalanine N-methyl amide (18)

To a solution of $\mathbf{1 7}$ ($680 \mathrm{mg}, 1.70 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{MeOH}(10.0 \mathrm{~mL})$ was added an aq. solution of $\mathrm{HCl}(1 \mathrm{~N}, 10.0 \mathrm{~mL})$ at RT and the mixture heated to reflux overnight. The reaction was allowed to come to RT and basified to a pH of 10 with an aqueous solution of $\mathrm{NaOH}(2 \mathrm{~N})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \cdot 35 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated in vacuo to give amide 18 as a white solid ($355 \mathrm{mg}, 90 \%$).
$R_{\mathrm{f}}=0.56\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) ;$ M.p. $=50.7-52.1^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}:+30.3\left(c=0.95, \mathrm{CH}_{3} \mathrm{OH}\right)$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.26\left(1 \mathrm{H}, \mathrm{b}, \mathrm{H}-\mathrm{N}^{\text {amide }}\right), 6.65(2 \mathrm{H}, \mathrm{dd}, J=8.7,7.8, \mathrm{H}-\mathrm{C} 4$) , 3.54 ($1 \mathrm{H}, \mathrm{dd}, J=9.6,4.3, \mathrm{H}-\mathrm{C} 2$), $3.29(1 \mathrm{H}, \mathrm{dd}, J=14.1,4.3, \mathrm{H}-\mathrm{C} 1$ '), 2.81 ($3 \mathrm{H}, \mathrm{d}, J=5.0$, $\mathrm{H}-\mathrm{C} 3), 2.74\left(1 \mathrm{H}\right.$, dd, $J=14.1,9.7, \mathrm{H}-\mathrm{C} 1$ '), and $1.42\left(2 \mathrm{H}, \mathrm{bs}, \mathrm{H}-\mathrm{N}^{\text {amine }}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.2(\mathrm{C} 1), 161.9\left(2 \mathrm{C}, \mathrm{ddd},{ }^{1} J_{\mathrm{CF}}=247.8,{ }^{3} J_{\mathrm{CF}}=14.7,{ }^{3} J_{\mathrm{CF}}=11.5, \mathrm{C} 3^{\prime}\right)$,
$161.6\left(\mathrm{dt},{ }^{1} J_{\mathrm{CF}}=248.4,{ }^{3} J_{\mathrm{CF}}=15.7\right.$, $\mathrm{H}-\mathrm{C} 5$ '), $110.4\left(\mathrm{td},{ }^{2} J_{\mathrm{CF}}=20.4,{ }^{4} J_{\mathrm{CF}}=4.6, \mathrm{C} 2{ }^{\prime}\right), 101.3-99.6$ (2C, m, C4'), $55.0(\mathrm{C} 2), 28.0(\mathrm{C} 1 ')$, and $26.0(\mathrm{C} 3) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-$ $109.84\left(1 \mathrm{~F}, \mathrm{tt},{ }^{3} J_{\mathrm{FH}}=22.6,{ }^{4} J_{\mathrm{FF}}=5.8, \mathrm{~F}-\mathrm{C} 5\right.$) , and $-111.26\left(2 \mathrm{~F}, \mathrm{dd},{ }^{3} J_{\mathrm{FH}}=7.4,{ }^{4} J_{\mathrm{FF}}=5.9, \mathrm{~F}-\right.$ C3') ppm; IR (ATR): $\tilde{v}=3302 \mathrm{w}, 3077 \mathrm{w}, 2941 \mathrm{w}, 1625 \mathrm{~s}, 1601 \mathrm{~s}, 1538 \mathrm{~m}, 1493 \mathrm{~m}, 1436 \mathrm{~m}$, $1412 \mathrm{w}, 1345 \mathrm{w}, 1305 \mathrm{w}, 1272 \mathrm{w}, 1224 \mathrm{w}, 1157 \mathrm{w}, 1138 \mathrm{w}, 1114 \mathrm{~s}, 1021 \mathrm{~m}, 993 \mathrm{~m}, 950 \mathrm{w}, 838 \mathrm{~m}$, $779 \mathrm{w}, 723 \mathrm{w}, 707 \mathrm{w}$, and $659 \mathrm{w} \mathrm{cm}^{-1}$; HR-ESI-MS: $m / z: 233.0902\left([M+\mathrm{H}]^{+}\right.$, calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}: 233.0896$).
(5S)-2,2,3-Trimethyl-5-(2,4,6-trifluorobenzyl)-4-imidazolidinone (3)

To a solution of amide $\mathbf{1 8}$ ($320 \mathrm{mg}, 1.38 \mathrm{mmol}, 1.0$ equiv.) in MeOH (8.00 mL) were added aceton ($0.76 \mathrm{~mL}, 10.3 \mathrm{mmol}, 7.5$ equiv.) and NEt_{3} ($0.15 \mathrm{~mL}, 1.10 \mathrm{mmol}, 0.8$ equiv.) at RT under an atmosphere argon and the solution heated to reflux overnight. The reaction was allowed to come to RT and concentrated in vacuo to give imidazolidinone $\mathbf{3}$ as yellow oil (682 mg , quant.).
$[\alpha]_{\mathrm{D}}{ }^{23}:-32.2\left(c=0.48, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.60(2 \mathrm{H}, \mathrm{dd}, J=8.8,7.7$, H-C4'), $3.69(1 \mathrm{H}, \mathrm{dd}, J=10.2,4.1, \mathrm{H}-\mathrm{C} 5), 3.22(1 \mathrm{H}, \mathrm{dd}, J=14.1,4.2, \mathrm{H}-\mathrm{C} 1 '), 2.75(3 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-\mathrm{C} 7), 2.68\left(1 \mathrm{H}, \mathrm{dd}, J=14.1,10.4, \mathrm{H}-\mathrm{Cl} 1^{\prime}\right), 1.74(1 \mathrm{H}, \mathrm{b}, \mathrm{H}-\mathrm{N}), 1.35(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 6)$, and 1.23 $(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 6) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.9$ (C4), 161.7 (2C, ddd, $\left.{ }^{1} J_{\mathrm{CF}}=247.7,{ }^{3} J_{\mathrm{CF}}=14.8,{ }^{3} J_{\mathrm{CF}}=11.6, \mathrm{C} 3^{\prime}\right), 161.4\left(\mathrm{dt},{ }^{1} J_{\mathrm{CF}}=248.0,{ }^{3} J_{\mathrm{CF}}=15.7, \mathrm{C}^{\prime}\right)$, 110.3 $\left(\mathrm{td},{ }^{2} J_{\mathrm{CF}}=20.5,{ }^{4} J_{\mathrm{CF}}=4.7, \mathrm{C} 2\right.$ '), $100.1\left(2 \mathrm{C}, \mathrm{ddd},{ }^{2} J_{\mathrm{CF}}=28.7,{ }^{2} J_{\mathrm{CF}}=25.5,{ }^{4} J_{\mathrm{CF}}=2.1, \mathrm{C} 4\right.$ '), 75.7 (C2), 58.0 (C5), 27.6 (C6), 25.8 (C8), 25.3 (C6), and 25.3 (C7) ppm; ${ }^{19}$ F NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=-110.35\left(1 \mathrm{~F}, \mathrm{t},{ }^{3} J_{\mathrm{FF}}=5.7, \mathrm{~F}-\mathrm{C} 5\right.$ '), and $-111.45\left(2 \mathrm{~F}, \mathrm{~d},{ }^{3} J_{\mathrm{FF}}=5.7\right.$, F-C3') ppm; IR (ATR): $\tilde{v}=3326 \mathrm{w}, 2976 \mathrm{w}, 1687 \mathrm{~s}, 1641 \mathrm{~m}, 1622 \mathrm{~m}, 1605 \mathrm{~s}, 1497 \mathrm{~m}, 1440 \mathrm{~s}$, $1400 \mathrm{~m}, 1268 \mathrm{w}, 1167 \mathrm{~m}, 1149 \mathrm{w}, 1116 \mathrm{~s}, 1058 \mathrm{~m}, 998 \mathrm{~m}, 940 \mathrm{w}, 839 \mathrm{~m}$, and $737 \mathrm{w} \mathrm{cm}{ }^{-1}$; HR-ESI-MS: $m / z: 273.1207\left([M+H]^{+}\right.$, calcd for $\left.\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}: 273.1209\right)$.

(S)-5-(2',4',6'-Trifluorobenzyl)-2,2,3-trimethyl-4-oxo-1-[(\boldsymbol{E})-3-phenylallylidene]-imidazolidin-1-ium perchlorate $\left(3 \mathrm{a} \mathrm{ClO} \mathrm{Cl}_{4}^{-}\right):{ }^{3}$

To imidazolidinone 3 ($43.6 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(0.2 \mathrm{~mL})$ was added $\mathrm{HClO}_{4}\left(60 \%\right.$ in $\mathrm{H}_{2} \mathrm{O}, 26.8 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{EtOH} / \mathrm{Et}_{2} \mathrm{O}(1: 1,0.4 \mathrm{~mL})$ at RT and stirred for 10 min , before the sovent was evaporated in vacuo to give the off-white HClO_{4} salt as a solid. The solid was dissolved in $\mathrm{MeOH}(0.4 \mathrm{~mL})$ and (E)-cinnamaldehyde ($40.2 \mu \mathrm{~L}, 0.32 \mathrm{mmol}, 2.0$ equiv.) was added at $35^{\circ} \mathrm{C}$ and the yellow solution stirred for 1 h . The solvent was evaporated in vacuo. The residue was dissolved in a minimum amount of MeOH , the iminium salt was crashed out with $\mathrm{Et}_{2} \mathrm{O}$ and the supernatant solution taken off. This purification procedure was repeated two additional times to give $\mathbf{3 a} \cdot \mathbf{C l O}_{4}{ }^{-}$as a yellow solid.
M.p. $=198.5^{\circ} \mathrm{C}$ decomp.; $\quad[\alpha]_{\mathrm{D}}{ }^{20}=+122.5 \quad\left(c=0.83\right.$ in $\left.\mathrm{CH}_{3} \mathrm{CN}\right) ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{CN}\right): \delta_{\mathrm{H}}=8.87\left(1 \mathrm{H}, \mathrm{dd}, J=10.7,1.7, \mathrm{H}-\mathrm{C} 1{ }^{\prime \prime}\right), 8.20(1 \mathrm{H}, \mathrm{d}, J=15.0, \mathrm{H}-\mathrm{C} 3 "), 7.83(2 \mathrm{H}$, dd, $\left.J=8.2,1.0, \mathrm{H}-\mathrm{C} 5{ }^{\prime \prime}\right), 7.73-7.69$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{C} 7{ }^{\prime}$), 7.60 ($2 \mathrm{H}, \mathrm{t}, J=7.9, \mathrm{H}-\mathrm{C} 6$ "), 7.16 (1 H , dd, $J=15.0,10.7, \mathrm{H}-\mathrm{C} 2 "), 6.87$ ($2 \mathrm{H}, \mathrm{dd}, J=8.9,7.9, \mathrm{H}-\mathrm{C} 3 '), 5.06$ ($1 \mathrm{H}, \mathrm{t}, J=6.0, \mathrm{H}-\mathrm{C} 5$), $3.48(1 \mathrm{H}, \mathrm{dd}, J=15.0,7.6, \mathrm{H}-\mathrm{C} 8), 3.42(1 \mathrm{H}, \mathrm{dd}, J=15.1,5.8, \mathrm{H}-\mathrm{C} 8), 2.89(3 \mathrm{H}, \mathrm{d}, J=0.5$, $\mathrm{H}-\mathrm{C} 7$), $1.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C}^{\mathrm{anti}}\right)$, and $1.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C}^{\mathrm{syn}}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$,

C1', C2' and C4' assigned in CFdec spectrum): $\delta_{\mathrm{C}}=168.7$ (C1"), 166.6 (C3"), 164.5 (C4), 163.6 (C4'), 162.9 (2C, C2'), 136.2 (C7"), 134.3 (C4"), 132.2 (2C, C5"), 130.8 (2C, C6"), 118.1 (C2'), 108.2 (C1'), 101.7 (2C, dd, ${ }^{2} J_{\mathrm{CF}}=31.2,{ }^{2} J_{\mathrm{CF}}=26.0, \mathrm{C} 3$ '), 86.8 (C2), 61.9 (C5), $26.9\left(\mathrm{C}^{\mathrm{syn}}\right), 26.9\left(\mathrm{C}^{\text {anti }}\right), 26.4(\mathrm{C} 8)$, and $26.3(\mathrm{C} 7) \mathrm{ppm} ; 19 \mathrm{~F} \mathrm{NMR}\left(564 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$: $\delta_{\mathrm{F}}=-108.7\left(1 \mathrm{~F}, \mathrm{tt},{ }^{2} J_{\mathrm{HF}}=9.0,{ }^{3} J_{\mathrm{FF}}=6.7, \mathrm{~F}-\mathrm{C} 4\right.$ ' $)$, and $-110.4\left(2 \mathrm{~F}, \mathrm{dd},{ }^{2} J_{\mathrm{HF}}=7.8,{ }^{3} J_{\mathrm{FF}}=6.6\right.$, F-C2') ppm; IR (ATR): $\tilde{v}=3376 \mathrm{br}, 3071 \mathrm{w}, 2985 \mathrm{w}, 1705 \mathrm{~s}, 1619 \mathrm{~s}, 1604 \mathrm{~s}, 1588 \mathrm{~s}, 1517 \mathrm{~m}$, $1442 \mathrm{~m}, 1403 \mathrm{~m}, 1392 \mathrm{~m}, 1325 \mathrm{w}, 1276 \mathrm{w}, 1233 \mathrm{w}, 1198 \mathrm{~m}, 1178 \mathrm{~m}, 1153 \mathrm{~m}, 1075 \mathrm{~s}, 998 \mathrm{~s}, 931 \mathrm{w}$, 852w, 813w, $756 \mathrm{~m}, 684 \mathrm{w}$, and $621 \mathrm{~s} \mathrm{~cm}^{-1}$; HR-ESI-MS: m/z: 387.16776 ($\left[M-\mathrm{ClO}_{4}{ }^{-}\right]^{+}$, calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}: 387.16787$).

Synthesis of (5S)-2,2,3-Trimethyl-5-(para-fluorobenzyl)-4-imidazolidinone (4)
(2S,5S)-1-Boc-2-(tert-butyl)-3-methyl-5-(para-fluoro)benzyl-4-imidazolidinone (19) ${ }^{6}$

A solution of (S)-Boc-BMI (14) ($570 \mathrm{mg}, 2.22 \mathrm{mmol}, 1.0$ equiv.) in dry THF $(3.00 \mathrm{~mL})$ in a flame-dried Schlenck under an atmosphere of argon was cooled to $-78{ }^{\circ} \mathrm{C}$. LDA (2.0 N in $\mathrm{THF} /{ }^{n}$ heptane/ethylbenzene, 1.22 mL , $2.44 \mathrm{mmol}, 1.1$ equiv.) was added dropwise and the solution stirred for 30 min before 4 -fluorobenzylbromide ($420 \mathrm{mg}, 2.22 \mathrm{mmol}, 1.0$ equiv.) in THF (1.00 mL) was added slowly. After 4 h , the reaction was quenched by addition of a sat. aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$, diluted with water (3 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 5 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} and concentrated in vacuo. Purification by $\mathrm{CC}\left(\mathrm{SiO}_{2} ; \mathrm{CH} / \mathrm{EtOAc} 8: 1\right)$ gave 19 as a white solid ($667 \mathrm{mg}, 82 \%$).
$R_{\mathrm{f}}=0.49\left(\mathrm{SiO}_{2}\right.$; hexane/EtOAc 2:1); M.p. $=126.8^{\circ} \mathrm{C}$ decomp.; $[\alpha]_{\mathrm{D}}{ }^{20}:+26.8(c=0.91$, $\left.\mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.12(2 \mathrm{H}, \mathrm{dd}, J=8.2,5.8, \mathrm{H}-\mathrm{C} 3$), $6.87(2 \mathrm{H}, \mathrm{t}$, $J=8.7, \mathrm{H}-\mathrm{C} 4$ '), $4.54(1 \mathrm{H}, \mathrm{b}, \mathrm{H}-\mathrm{C} 2), 4.29(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 5), 3.81\left(1 \mathrm{H}, \mathrm{b}, \mathrm{H}-\mathrm{C} 1{ }^{\prime}\right), 3.15(1 \mathrm{H}, \mathrm{dd}$, $J=14.1,2.2, \mathrm{H}-\mathrm{C} 1 '), 2.78(3 \mathrm{H}, \mathrm{b}, \mathrm{H}-\mathrm{C} 8), 1.49\left(9 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 4{ }^{\prime}\right)$, and $0.91(9 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-\mathrm{C} 7) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.4(\mathrm{C} 4), 162.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=252.4, \mathrm{C} 5\right.$) 152.7 ($\mathrm{C}^{\prime \prime}$), 131.8 (C^{\prime}), 131.6 ($\left.2 \mathrm{C}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=3.1, \mathrm{C} 3^{\prime}\right), 114.8$ (2C, d, ${ }^{2} J_{\mathrm{CF}}=20.9, \mathrm{C} 4$ '), 81.2 ($\mathrm{C}^{\prime \prime}$), 81.2 (C2), 60.8 (C5), 41.0 (C6), 32.8 (C1'), 31.9 (C8), 28.4 (C4"), and 26.7 (C7) ppm; ${ }^{19}$ F NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-116.55(1 \mathrm{~F}, \mathrm{~b}, \mathrm{~F}-\mathrm{C} 5 ') \mathrm{ppm} ;$ IR (ATR): $\tilde{v}=2975 \mathrm{w}$, 2933w, 1694s, 1602w, 1512w, 1478w, 1457w, 1440w, 1400m, 1377s, 1364s, 1302m, 1258m, 1236w, 1216m, 1179m, 1160m, 1116s, 1098w, 1934w, 1010w, 981w, 948w, 886m, 867w, 841w, 822w, 786m, 770m, 717m, and 705w cm ${ }^{-1}$; HR-ESI-MS: $\mathrm{m} / \mathrm{z}(\%): 387.2059\left([M-\mathrm{Na}]^{+}\right.$, calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{Na}^{+}: 387.2060$). Analytical data in agreement with the literature. ${ }^{6}$

L-(para-Fluoro)-phenylalanine N-methyl amide (20)

To a solution of 19 ($575 \mathrm{mg}, 1.58 \mathrm{mmol}, 1.0$ equiv.) in MeOH (15.0 mL) was added an aqueous solution of $\mathrm{HCl}(1 \mathrm{~N}, 15.0 \mathrm{~mL})$ at RT and the mixture heated to reflux for 10 h . The reaction was allowed to come to RT and basified to a pH of 10 with an aqueous solution of $\mathrm{NaOH}(2 \mathrm{~N})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \cdot 20.0 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated in vacuo to give amide 20 as a white solid ($290 \mathrm{mg}, 94 \%$).
M.p. $=133.7-134.5^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}:+28.1\left(c=1.04, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.23\left(1 \mathrm{H}, \mathrm{b}, \mathrm{H}-\mathrm{N}^{\text {amide }}\right), 7.16\left(2 \mathrm{H}, \mathrm{dd}, J=8.6,5.5, \mathrm{H}-\mathrm{C} 3^{\prime}\right), 6.98\left(2 \mathrm{H}, \mathrm{t}, J=8.7, \mathrm{H}-\mathrm{C} 4^{\prime}\right)$,
$3.56(1 \mathrm{H}, \mathrm{dd}, J=9.1,4.1, \mathrm{H}-\mathrm{C} 2), 3.20(1 \mathrm{H}, \mathrm{dd}, J=13.8,4.0, \mathrm{H}-\mathrm{C} 1 '), 2.79(3 \mathrm{H}, \mathrm{d}, J=5.0$, $\mathrm{H}-\mathrm{C} 3), 2.69\left(1 \mathrm{H}, \mathrm{dd}, J=13.8,9.1, \mathrm{H}-\mathrm{C} 1\right.$ '), and $1.32\left(2 \mathrm{H}, \mathrm{b}, \mathrm{H}-\mathrm{N}^{\text {amine }}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.7(\mathrm{C} 1), 161.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=244.9, \mathrm{C} 5\right.$ '), $133.7\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=3.3, \mathrm{C} 2^{\prime}\right)$, $130.8\left(2 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CF}}=7.9, \mathrm{C} 3^{\prime}\right), 115.6\left(2 \mathrm{C}, \mathrm{d},{ }^{2} J_{\mathrm{CF}}=21.2, \mathrm{C} 4{ }^{\prime}\right), 56.5\left(\mathrm{~d},{ }^{5} J_{\mathrm{CF}}=0.7, \mathrm{C} 1^{\prime}\right), 40.3$ (C2), and 25.9 (C3) ppm; ${ }^{19} \mathrm{~F}$ NMR ($382 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-116.20\left(1 \mathrm{~F}, \mathrm{tt}^{3} J_{\mathrm{HF}}=8.7\right.$, $\left.{ }^{4} J_{\mathrm{HF}}=5.4, \mathrm{~F}-\mathrm{C} 4{ }^{\prime}\right) \mathrm{ppm} ;$ IR (ATR): $\tilde{v}=3375 \mathrm{w}, 3300 \mathrm{~m}, 2943 \mathrm{w}, 1637 \mathrm{~s}, 1600 \mathrm{~m}, 1530 \mathrm{~m}$, $1507 \mathrm{~s}, 1443 \mathrm{w}, 1406 \mathrm{~m}, 1339 \mathrm{w}, 1311 \mathrm{w}, 1272 \mathrm{w}, 1222 \mathrm{~s}, 1154 \mathrm{~m}, 1110 \mathrm{~m}, 1093 \mathrm{~m}, 1016 \mathrm{w}, 983 \mathrm{w}$, $927 \mathrm{w}, 884 \mathrm{w}, 867 \mathrm{w}, 816 \mathrm{~s}, 797 \mathrm{~m}, 751 \mathrm{~m}, 710 \mathrm{w}, 693 \mathrm{~m}$, and $658 \mathrm{w} \mathrm{cm}^{-1}$; HR-ESI-MS: $m / \mathrm{z}:$ $197.1085\left([M+\mathrm{H}]^{+}\right.$, calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{FN}_{2} \mathrm{O}^{+}$: 197.1085).
(5S)-2,2,3-Trimethyl-5-(para-fluorobenzyl)-4-imidazolidinone (4)

To a solution of amide 20 ($141 \mathrm{mg}, 0.72 \mathrm{mmol}, 1.0$ equiv.) in MeOH $(4.00 \mathrm{~mL})$ were added aceton ($0.40 \mathrm{~mL}, 5.33 \mathrm{mmol}, 7.5$ equiv.) and NEt_{3} ($0.08 \mathrm{~mL}, 0.58 \mathrm{mmol}, 0.8$ equiv.) at RT under an atmosphere argon and the solution heated to reflux for 8 h . The reaction was allowed to come to RT and concentrated in vacuo to give imidazolidinone 4 as an orange sticky solid (172 mg , quant.).
$[\alpha]_{\mathrm{D}}{ }^{23}:-44.0\left(c=0.50, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.12(2 \mathrm{H}, \mathrm{dd}, J=8.6,5.5$, H-C3'), 6.89 ($2 \mathrm{H}, \mathrm{t}, J=8.7, \mathrm{H}-\mathrm{C} 4 '), 3.68(1 \mathrm{H}, \mathrm{dd}, J=6.7,4.6, \mathrm{H}-\mathrm{C} 5), 3.02(1 \mathrm{H}, \mathrm{dd}, J=14.2$, 4.4, H-C1'), 2.87 ($1 \mathrm{H}, \mathrm{dd}, J=14.2,6.8, \mathrm{H}-\mathrm{C} 1$ '), 2.66 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 7$), $1.71(1 \mathrm{H}, \mathrm{b}, \mathrm{H}-\mathrm{N}), 1.19$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 6$), and $1.10(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 6) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.1$ (C4), $161.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=244.7, \mathrm{C} 5\right.$ '), $132.9\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=3.2, \mathrm{C} 2 '\right), 130.9\left(2 \mathrm{C}, \mathrm{d},{ }^{3} J_{\mathrm{CF}}=7.8, \mathrm{C} 3^{\prime}\right), 115.2$ (2C, d, ${ }^{2} J_{\mathrm{CF}}=21.1, \mathrm{C} 4$ '), $75.5(\mathrm{C} 2), 59.2$ (C5), 36.4 (C1'), 27.2 (C6), 25.2 (C6), and 25.1 (C7) ppm; 19F NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-116.28$ ($1 \mathrm{~F}, \mathrm{~s}, \mathrm{~F}-\mathrm{C} 4$) $\mathrm{ppm} ; \mathrm{IR}$ (ATR): $\tilde{v}=3315 \mathrm{w}, 2978 \mathrm{w}, 2927 \mathrm{w}, 1683 \mathrm{~s}$, 1602w, 1509s, 1426m, 1399s, 1220s, 1158m, 1098w, $1017 \mathrm{w}, 824 \mathrm{~m}$, and $722 \mathrm{w} \mathrm{cm}^{-1}$; HR-ESI-MS: $m / z: 237.1398\left([M+\mathrm{H}]^{+}\right.$, calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{FN}_{2} \mathrm{O}^{+}$: 237.1398).

Syntheses of (5S)-5-para-Hydroxybenzyl-2,2,3-trimethyl-4-imidazolidinone (5) and 5-(4'-Hydroxybenzyl)-2,2,3-trimethyl-4-oxo-1-[(E)-3-phenylallylidene]-imidazolidin-1-ium salt (5a)

L-Tyrosine methyl amide (21)

To L-tyrosine $(1.00 \mathrm{~g}, 5.52 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{EtOH}(3.4 \mathrm{~mL}$, $82.8 \mathrm{mmol}, 15$ equiv.) was added thionyl chloride ($0.6 \mathrm{~mL}, 8.28 \mathrm{mmol}$, 1.5 equiv.) over 5 min at $0^{\circ} \mathrm{C}$ and the resulting solution was allowed to come to RT before it was heated to reflux for 8 h . The solution was allowed to come to RT and evaporated in vacuo to give the L-tyrosine ethyl ester hydrochloride as a white powder. To the ester was added MeNH_{2} (8 N in $\mathrm{EtOH}, 2.80 \mathrm{~mL}, 22.1 \mathrm{mmol}, 4.0$ equiv.) at RT and the solution stirred overnight. After evaporation in vacuo, THF was added and the remaining white solid filtered off $\left(\mathrm{MeNH}_{2} \cdot \mathrm{HCl}\right)$. The filtrate was concentrated in vacuo to give amide 21 as an orange oil (1.09 g, quant.).
$R_{\mathrm{f}}=0.21\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) ;[\alpha]_{\mathrm{D}}{ }^{20}:+23.2\left(c=1.02, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta=7.00\left(2 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{H}-\mathrm{C} 3^{\prime}\right), 6.71(2 \mathrm{H}, \mathrm{d}, J=8.6, \mathrm{H}-\mathrm{C} 4)^{\prime}\right), 3.44(1 \mathrm{H}, \mathrm{t}, J=6.8$, $\mathrm{H}-\mathrm{C} 2), 2.87(1 \mathrm{H}, \mathrm{dd}, J=13.4,6.5, \mathrm{H}-\mathrm{C} 1 '), 2.71(1 \mathrm{H}, \mathrm{dd}, J=13.4,7.1, \mathrm{H}-\mathrm{C} 1 ')$, and $2.67(3 \mathrm{H}$,
s, $\mathrm{H}-\mathrm{C} 3$) ppm; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=177.1$ (C1), 157.4 (C5'), 131.3 (2C, C3'), 129.3 (C2'), 116.3 (2C, C4'), 57.9 (C2), 41.6 (Cl^{\prime}), and 26.1 (C3) ppm; IR (ATR): $\tilde{v}=3275 \mathrm{~b}, 2939 \mathrm{w}, 1644 \mathrm{~s}, 1612 \mathrm{~s}, 1592 \mathrm{~s}, 1540 \mathrm{~m}, 1513 \mathrm{~s}, 1447 \mathrm{~m}, 1410 \mathrm{~m}, 1309 \mathrm{w}, 1234 \mathrm{~s}$, $1170 \mathrm{~m}, 1105 \mathrm{w}, 1022 \mathrm{w}, 942 \mathrm{w}, 821 \mathrm{~s}$, and $696 \mathrm{w} \mathrm{cm}^{-1}$; HR-ESI-MS: m/z: $195.1133\left([M+\mathrm{H}]^{+}\right.$, calculated for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$: 195.1128); analytical data in agreement with the literature. ${ }^{7}$
(5S)-5-para-hydroxybenzyl-2,2,3-trimethyl-4-imidazolidinone (5)

To a solution of amide 21 ($985 \mathrm{mg}, 5.07 \mathrm{mmol}, 1.0$ equiv.) in MeOH $(10.0 \mathrm{~mL})$ was added acetone ($1.9 \mathrm{~mL}, 25.4 \mathrm{mmol}, 5.0$ equiv.) at RT under an atmosphere of argon and the yellow solution was heated to reflux overnight. The reaction was allowed to come to RT and concentrated in vacuo to give imidazolidinone 5 as an off-white solid
($1.15 \mathrm{~g}, 97 \%$).
$R_{\mathrm{f}}=0.64\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) ;$ M.p. $=94.5-95.8^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20.5}:-57.0\left(c=1.00, \mathrm{CH}_{3} \mathrm{OH}\right)$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=7.06$ ($\left.2 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{H}-\mathrm{C} 2 '\right), 6.72\left(2 \mathrm{H}, \mathrm{d}, J=8.6, \mathrm{H}-\mathrm{C} 3^{\prime}\right)$, 3.73 (1 H , dd, $J=6.8,4.4, \mathrm{H}-\mathrm{C} 5), 3.00(1 \mathrm{H}, \mathrm{dd}, J=14.3,4.3, \mathrm{H}-\mathrm{C} 8), 2.85(1 \mathrm{H}, \mathrm{dd}, J=14.3$, 7.1, H-C8), $2.75(3 \mathrm{H}, \mathrm{d}, J=0.4, \mathrm{H}-\mathrm{C} 7), 1.26(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 6)$, and $1.20(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 6) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=175.5$ (C4), 157.4 (C4'), 131.5 (2C, C2'), 129.0 (C1'), 116.3 (2C, C3'), 77.4 (C2), 60.9 (C5), 37.0 (C8), 26.8 (C6), 25.6 (C7), and 24.8 (C6) ppm; IR (ATR): $\tilde{v}=3276 \mathrm{w}, 2974 \mathrm{w}, 2939 \mathrm{w}, 1661 \mathrm{~s}, 1479 \mathrm{w}, 1447 \mathrm{~m}, 1427 \mathrm{~m}, 1400 \mathrm{~s}, 1384 \mathrm{~s}, 1370 \mathrm{~s}$, 1331w, 1262m, 1243m, 1210w, 1147s, 1076m, 1037m, 1004w, 993w, 936s, 916m, 847s, and $757 \mathrm{~s} \mathrm{~cm}{ }^{-1}$; HR-ESI-MS: $m / z(\%): 235.1444\left([M+\mathrm{H}]^{+}\right.$, calculated for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}: 235.1441$); analytical data in agreement with the literature. ${ }^{8}$

5-(4'-Hydroxybenzyl)-2,2,3-trimethyl-4-oxo-1-[($\boldsymbol{E})$-3-phenylallylidene]-imidazolidin-1ium perchlorate $\left(5 \mathrm{a} \cdot \mathrm{ClO}_{4}\right)^{3}$

To imidazolidinone 5 ($37.5 \mathrm{mg}, 0.16 \mathrm{mmol}, 1$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(0.20 \mathrm{~mL}$) was added perchloric acid (60% in $\mathrm{H}_{2} \mathrm{O}, 26.80 \mathrm{mg}, 0.16 \mathrm{mmol}$, 1 equiv.) in $\mathrm{EtOH} / \mathrm{Et}_{2} \mathrm{O}(1: 1,0.40 \mathrm{~mL})$ at RT and the resulting mixture stirred for 10 min before it was evaporated in vacuo to give the imidazolidinone salt. The salt was dissolved in $\mathrm{MeOH}(0.40 \mathrm{~mL})$ and heated to $35^{\circ} \mathrm{C}$. (E)-cinnamaldehyde ($40.2 \mu \mathrm{~L}, 0.32 \mathrm{mmol}, 2$ equiv.) was added and the yellow solution stirred for 1 h . The solvent was removed in vacuo and the residue dissolved in a minimum amount of MeOH . From this solution the iminium salt was crashed out with $\mathrm{Et}_{2} \mathrm{O}$ and the supernatant solution taken off. The washing procedure was repeated and the iminium salt $\mathbf{5 a} \cdot \mathbf{C l O}_{\mathbf{4}}{ }^{-}$isolated as a yellow solid ($50.3 \mathrm{mg}, 70 \%$).
Crystals suitable for X-ray crystallographic analysis were obtained from a solution in $\mathrm{CH}_{3} \mathrm{CN}$ by vapor diffusion with $\mathrm{Et}_{2} \mathrm{O}$.
M.p. $=117.3{ }^{\circ} \mathrm{C}$ decomp.; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta_{\mathrm{H}}=8.71(1 \mathrm{H}, \mathrm{dd}, J=10.7,1.9, \mathrm{H}-$ C1"), 8.14 ($\left.1 \mathrm{H}, \mathrm{d}, J=15.0, \mathrm{H}-\mathrm{C} 3^{\prime \prime}\right), 7.90$ ($2 \mathrm{H}, \mathrm{dd}, J=8.4,1.1, \mathrm{H}-\mathrm{C} 5{ }^{\prime}$ '), $7.73-7.69$ ($1 \mathrm{H}, \mathrm{m}$, H-C7"), 7.63-7.59 (2H, m, H-C6"), 7.23 ($\left.1 \mathrm{H}, \mathrm{dd}, J=15.0,10.7, \mathrm{H}-\mathrm{C} 2^{\prime \prime}\right), 6.92$ ($2 \mathrm{H}, \mathrm{d}$, $J=8.5, \mathrm{H}-\mathrm{C} 2 '), 6.72\left(2 \mathrm{H}, \mathrm{d}, J=8.6, \mathrm{H}-\mathrm{C} 3^{\prime}\right), 5.13(1 \mathrm{H}, \mathrm{t}, J=4.8, \mathrm{H}-\mathrm{C} 5), 3.49(1 \mathrm{H}, \mathrm{dd}$, $J=14.9,5.6, \mathrm{H}-\mathrm{C} 8), 3.36(1 \mathrm{H}, \mathrm{dd}, J=14.9,4.0, \mathrm{H}-\mathrm{C} 8), 2.80(3 \mathrm{H}, \mathrm{d}, J=0.5, \mathrm{H}-\mathrm{C} 7), 1.71$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 6^{\text {anti }}\right)$, and $0.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 6{ }^{\mathrm{syn}}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta_{\mathrm{C}}=168.0$ (C1"), 166.3 (C3"), 165.4 (C4), 158.0 (C4'), 136.0 (C7"), 134.4 (C4"), 132.4 (2C, C5"), 132.4
(2C, C2'), 130.7 (2C, C6'), 125.6 (C1'), 118.5 (C2'), 116.8 (2C, C3'), 86.6 (C2), 65.4 (C5), 36.7 (C8), $27.5\left(\mathrm{C}^{\text {anti }}\right)$, $26.1(\mathrm{C} 7)$, and $25.1\left(\mathrm{C}^{\mathrm{syn}}\right) \mathrm{ppm}$; IR (ATR): $\tilde{v}=3370 \mathrm{br}, 3070 \mathrm{w}$, 2985w, 1704s, 1603s, 1588s, 1517m, 1441m, 1403m, 1392m, 1325w, 1276w, 1233w, 1199m, $1178 \mathrm{~m}, 1153 \mathrm{~m}, 1076 \mathrm{~s}, 999 \mathrm{~s}, 931 \mathrm{w}, 852 \mathrm{w}, 813 \mathrm{w}, 756 \mathrm{~m}, 726 \mathrm{~s}, 684 \mathrm{w}$, and $621 \mathrm{~s} \mathrm{~cm}^{-1}$; HR-ESIMS: $m / z: 349.19106\left(\left[M-\mathrm{ClO}_{4}\right]^{+}\right.$, calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}: 349.19105$).

Syntheses of (5S)-2,2,3-Trimethyl-5-(3,5-dimethoxybenzyl)imidazolidin-4-one (6) and 5(${ }^{\prime}$ ',3'-Dimethoxybenzyl)-2,2,3-trimethyl-4-0xo-1-[(E)-3-phenylallylidene]-imidazolidin-1ium salt (6a)

1-Bromomethyl-3,5-dimethoxybenzene 22^{9}

To a solution of 3,5-dimethoxybenzyl alcohol $(500 \mathrm{mg}, 2.97 \mathrm{mmol}$, 1.00 equiv.) in $\mathrm{Et}_{2} \mathrm{O}(14 \mathrm{~mL})$ were added successively $\mathrm{PBr}_{3}(0.28 \mathrm{~mL}$, $2.97 \mathrm{mmol}, 1.00$ equiv.) and pyridine ($12 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 0.05$ equiv.) slowly at RT. The mixture was heated to $40^{\circ} \mathrm{C}$ and after completion was detected by TLC (2 h), it was allowed to cool to RT. $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added slowly and the aqueous layer extracted $\mathrm{Et}_{2} \mathrm{O}(3.15 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over MgSO_{4}. Concentration in vacuo gave 1-bromomethyl-3,5dimethoxybenzene (22) as a white crystalline solid ($625 \mathrm{mg}, 91 \%$), which should be kept in the freezer (turns first orange then brown at RT).
$R_{\mathrm{f}}=0.88(\mathrm{CH} / \mathrm{EtOAc} 1: 1) ;$ M.p. $=71.2-71.8^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.55(2 \mathrm{H}$, $\mathrm{d}, J=2.3, \mathrm{H}-\mathrm{C} 3), 6.41(1 \mathrm{H}, \mathrm{d}, J=2.3, \mathrm{H}-\mathrm{C} 5), 4.42(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 1)$, and $3.79(6 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ C6) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=161.0$ (2C, C4), 139.8 (C2), 107.0 (2C, C3), 100.6 (C5), 55.4 (2C, C6), and 33.7 (C1) ppm; HR-EI-MS: m/z: 151.0758 ($\left[M-\mathrm{Br}^{-}\right]^{+}$, calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{2}{ }^{+}: 151.0759$); analytical data in agreement with the literature. ${ }^{9}$
(2S,5S)-1-Boc-2-(tert-butyl)-3-methyl-5-(3,5-dimethoxybenzyl)-4-imidazolidinone (23) ${ }^{5}$

A solution of HMDS ($0.3 \mathrm{~mL}, 1.42 \mathrm{mmol}, 1.2$ equiv.) in dry THF $(1.00 \mathrm{~mL})$ in a flame-dried Schlenck under an atmosphere of argon was cooled to $0^{\circ} \mathrm{C}$. ${ }^{n} \mathrm{BuLi}$ (1.6 N in ${ }^{n}$ hexane, $0.9 \mathrm{~mL}, 1.42 \mathrm{mmol}, 1.2$ equiv.) was added dropwise and the solution stirred for 15 min before it was cooled to $-78{ }^{\circ} \mathrm{C}$. DMPU ($0.43 \mathrm{~mL}, 3.54 \mathrm{mmol}, 3.0$ equiv.) and then (S) -Boc-BMI (14) ($300 \mathrm{~g}, 1.18 \mathrm{mmol}, 1.0$ equiv.) in THF (1.00 mL) was added dropwise, the solution turned yellow during the addition. After $30 \mathrm{~min}, 1-$ bromomethyl-3,5-dimethoxybenzene 22 ($273 \mathrm{~g}, 1.18 \mathrm{mmol}, 1.0$ equiv.) in THF (1.00 mL) was added slowly and the resulting mixture stirred for 5 h . The reaction was quenched by addition of a saturated aqueous solution of $\mathrm{NaHCO}_{3}(4 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3.5 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated in vacuo. Purification by $\mathrm{CC}\left(\mathrm{SiO}_{2} ; \mathrm{CH} / \mathrm{EtOAc} 3: 1\right)$ gave 23 as a colourless oil ($352 \mathrm{mg}, 73 \%$).
$R_{\mathrm{f}}=0.53\left(\mathrm{CH} /\right.$ EtOAc 1:1); $[\alpha]_{\mathrm{D}}{ }^{20}:+40.0\left(c=1.00, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=6.31\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 3^{\prime}\right), 6.27(1 \mathrm{H}, \mathrm{bt}, J=2.1, \mathrm{H}-\mathrm{C} 5 '), 4.63(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-\mathrm{C} 2), 4.27(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-$ C5), 3.71 ($6 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 6 '$ '), 3.66 (1 H , bs, $\mathrm{H}-\mathrm{C} 1$ '), 3.13 (1 H , dd, $J=14.2,1.2, \mathrm{H}-\mathrm{C} 1$ '), 2.81 (s, $3 \mathrm{H}, \mathrm{H}-\mathrm{C} 8), 1.47$ (s, 9H, H-C4'), and 0.91 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{H}-\mathrm{C} 7$) $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.5$ (C4), 160.3 (2C, C4'), 152.8 (C1"), 138.0 (C2'), 108.0 (b, 2C, C3'), 99.0 (b, C5'), 81.0 (C2), 81.0 (C3"), 60.5 (C5), 55.3 (2C, C6'), 40.9 (C6), 34.4 (b, C1'), 31.9 (C8), 28.3 (3C,

C4'), and 26.6 (3C, C7) ppm; IR (ATR): $\tilde{v}=2966 \mathrm{w}, 2838 \mathrm{w}, 1698 \mathrm{~s}, 1595 \mathrm{~s}, 1457 \mathrm{~m}, 1431 \mathrm{~m}$, $1407 \mathrm{~m}, 1397 \mathrm{~s}, 1366 \mathrm{~s}, 1312 \mathrm{w}, 1251 \mathrm{~m}, 1204 \mathrm{~m}, 1151 \mathrm{~s}, 1127 \mathrm{~s}, 1067 \mathrm{~m}, 1033 \mathrm{w}, 960 \mathrm{w}, 887 \mathrm{w}$, 862w, 774w, 755w, 736w, and 696w cm ${ }^{-1}$; HR-ESI-MS: $m / z: 407.2542\left([M+H]^{+}\right.$, calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}$: 407.2540).

L-3,5-Dimethoxyphenylalanine N-methyl amide (24) ${ }^{10}$

To a solution of 23 ($300 \mathrm{mg}, 0.74 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{MeOH}(7.0 \mathrm{~mL})$ was added an aqueous solution of $\mathrm{HCl}(1 \mathrm{~N}, 7.0 \mathrm{~mL})$ at RT and the mixture heated to reflux for 8 h . The reaction was allowed to come to RT and basified to a pH of 10 with an aqueous solution of $\mathrm{NaOH}(2 \mathrm{~N}$, circa 4 mL) and extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4} and concentrated in vacuo to give amide 24 as a white solid (175 mg, 99\%).
M.p. $=61.7-63.6^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}:+15.1\left(c=0.60, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.33$ $\left(1 \mathrm{H}, \mathrm{bd}, J=5.5, \mathrm{H}-\mathrm{N}^{\text {amide }}\right), 6.34\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 3^{\prime}\right), 6.31(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 5 '), 3.74(6 \mathrm{H}, \mathrm{d}, J=1.2, \mathrm{H}-$ C6'), $3.56(1 \mathrm{H}, \mathrm{dd}, J=9.7,3.9, \mathrm{H}-\mathrm{C} 2), 3.19(1 \mathrm{H}, \mathrm{dd}, J=13.6,3.9, \mathrm{H}-\mathrm{C} 1 '), 2.79(3 \mathrm{H}, \mathrm{d}$, $J=5.0, \mathrm{H}-\mathrm{C} 3), 2.56(1 \mathrm{H}, \mathrm{dd}, J=13.6,9.6, \mathrm{H}-\mathrm{C} 1 ')$, and $1.45\left(2 \mathrm{H}, \mathrm{bs}, \mathrm{H}-\mathrm{N}^{\mathrm{amine}}\right) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=174.9$ (C1), 161.0 (2C, C4'), 140.4 (C2'), 107.2 (2C, C3'), 98.8 (C5'), 56.4 (C2), 55.4 (2C, C6'), 41.4 (C1'), and $25.9(\mathrm{C} 3) \mathrm{ppm}$; IR (ATR): $\tilde{v}=3379 \mathrm{w}$, $3314 \mathrm{w}, 2958 \mathrm{w}, 2935 \mathrm{w}, 2865 \mathrm{w}, 1636 \mathrm{~m}, 1595 \mathrm{~s}, 1524 \mathrm{~m}, 1463 \mathrm{~m}, 1446 \mathrm{~m}, 1428 \mathrm{~m}, 1400 \mathrm{~m}$, $1346 \mathrm{~m}, 1332 \mathrm{w}, 1291 \mathrm{~m}, 1205 \mathrm{~s}, 1147 \mathrm{~s}, 1147 \mathrm{~s}, 1097 \mathrm{w}, 1081 \mathrm{w}, 1057 \mathrm{~s}, 994 \mathrm{w}, 955 \mathrm{w}, 907 \mathrm{w}$, $877 \mathrm{w}, ~ 838 \mathrm{w}, ~ 822 \mathrm{~m}, 786 \mathrm{w}, 742 \mathrm{~m}, ~ 690 \mathrm{~m}$, and $657 \mathrm{w} \mathrm{cm}^{-1}$; HR-ESI-MS: $m / z: 239.1397$ $\left([M+H]^{+}\right.$, calcd for $\left.\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}: 239.1390\right)$.

(5S)-2,2,3-Trimethyl-5-(3,4,5-trimethoxybenzyl)imidazolidin-4-one (6)

To a solution of amide 24 ($100 \mathrm{mg}, 0.42 \mathrm{mmol}, 1.0$ equiv.) in MeOH (2.0 mL) were added aceton ($0.23 \mathrm{~mL}, 3.15 \mathrm{mmol}, 7.5$ equiv.) and NEt_{3} ($47 \mu \mathrm{~L}, 0.34 \mathrm{mmol}, 0.8$ equiv.) at RT under an atmosphere argon and the solution heated to reflux for 6 h . The reaction was allowed to come to RT and concentrated in vacuo to give imidazolidinone 6 as a yellow oil (122 mg , quant.).
$[\alpha]_{\mathrm{D}}{ }^{23}:-39.3\left(c=1.02, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.37(2 \mathrm{H}, \mathrm{d}, J=2.3, \mathrm{H}-$ C3'), 6.31 ($1 \mathrm{H}, \mathrm{d}, J=2.3, \mathrm{H}-\mathrm{C} 5 '), 3.73$ ($7 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{C} 5, \mathrm{H}-\mathrm{C} 6$ '), 3.06 ($1 \mathrm{H}, \mathrm{dd}, J=14.1,4.5$, $\left.\mathrm{H}-\mathrm{C} 1^{\prime}\right), 2.91$ ($1 \mathrm{H}, \mathrm{dd}, J=14.0,6.9, \mathrm{H}-\mathrm{C} 1$ '), 2.74 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 7$), 1.24 (3H, s, H-C6), and 1.18 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 6$) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.5$ (C4), 160.9 (2C, C4'), 139.6 (C2'), 107.4 (2C, C3'), 99.0 (C5'), 75.6 (C2), 59.2 (C5), 55.4 (2C, C6'), 37.7 (C1'), 27.4 (C6), 25.4 (C6), and 25.3 (C7) ppm; IR (ATR): $\tilde{v}=2933 \mathrm{w}, 2839 \mathrm{w}, 1684 \mathrm{~s}, 1595 \mathrm{~s}, 1461 \mathrm{~m}, 1429 \mathrm{~s}$, $1398 \mathrm{~m}, 1368 \mathrm{w}, 1315 \mathrm{w}, 1294 \mathrm{w}, 1205 \mathrm{~s}, 1151 \mathrm{~s}, 1066 \mathrm{~m}, 931 \mathrm{w}, 832 \mathrm{w}$, and $698 \mathrm{w} \mathrm{cm}^{-1}$; HR-ESIMS: $m / z: 279.1708\left([M+H]^{+}\right.$, calcd for $\left.\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}: 279.1703\right)$.

5-(3',3'-Dimethoxybenzyl)-2,2,3-trimethyl-4-oxo-1-[(E)-3-phenylallylidene]-imidazolidin-

 1-ium perchlorate ($\mathbf{6} \cdot \mathrm{ClO}_{4}$):

To racemic imidazolidinone $6\left(3.3 \mathrm{mg}, 12 \mu \mathrm{~mol}, 1.0\right.$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}$ ($20 \mu \mathrm{~L}$) was added HClO_{4} (70% in $\mathrm{H}_{2} \mathrm{O}, 1.7 \mathrm{mg}, 12 \mu \mathrm{~mol}$, 1.0 equiv.) in $\mathrm{EtOH} / \mathrm{Et}_{2} \mathrm{O}(1: 1,40 \mu \mathrm{~L})$ at RT and stirred for 10 min , before the yellow solution was evaporated in vacuo to give the off-white HClO_{4} salt as a solid. The solid was dissolved in $\mathrm{MeOH}(20 \mu \mathrm{~L})$ and (E) cinnamaldehyde ($3.0 \mu \mathrm{~L}, 24 \mu \mathrm{~mol}, 2.0$ equiv.) was added at $35^{\circ} \mathrm{C}$ and the yellow solution stirred for 1 h . The solvent was evaporated in vacuo. The residue was dissolved in a minimum amount of MeOH , the iminium salt was crashed out with $\mathrm{Et}_{2} \mathrm{O}$ and the supernatant solution taken off. The iminium salt $\mathbf{6 a} \cdot \mathbf{C l O}_{4}{ }^{-}$was isolated as a yellowish solid contaminated with (E)cinnamaldehyde ($\mathrm{P} /(E)$-cinnamaldehyde 1:1.3).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta_{\mathrm{H}}=8.73(1 \mathrm{H}, \mathrm{dd}, J=10.7,1.7, \mathrm{H}-\mathrm{C} 1 "), 8.10(1 \mathrm{H}, \mathrm{d}, J=14.8$, H-C3"), 7.88-7.82 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{C} 5 "$ "), 7.72-7.58 (3H, m, H-C7", H-C6"), 7.11 ($1 \mathrm{H}, \mathrm{dd}$, $\left.J=15.1,10.6, \mathrm{H}-\mathrm{C} 2{ }^{\prime \prime}\right), 6.34-6.27$ (3H, m, H-C2', H-C4'), 5.16 (1H, b, H-C5), 3.67 ($6 \mathrm{H}, \mathrm{s}$, H-C5'), 3.50 ($1 \mathrm{H}, \mathrm{dd}, J=14.5,5.3, \mathrm{H}-\mathrm{C} 8$), $3.30(1 \mathrm{H}, \mathrm{dd}, J=14.5,5.1, \mathrm{H}-\mathrm{C} 8), 2.84$ ($3 \mathrm{H}, \mathrm{d}$, $J=0.7, \mathrm{H}-\mathrm{C} 7), 1.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C}^{\text {anti }}\right)$, and $1.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C}^{\text {syn }}\right) \mathrm{ppm}$; HR-ESI-MS: m/z: $393.2170\left(\left[M-\mathrm{ClO}_{4}\right]^{+}\right.$, calcd for $\left.\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}: 393.2173\right)$.

Syntheses of (S)-5-(1-Methylindol-3-ylmethyl)-2,2,3-trimethylimidazolidin-4-one (7) and (S)-5-(1-Methylindol-3-ylmethyl)-2,2,3-trimethyl-4-oxo-1-[(E)-3-phenylallylidene]-imidazolidin-1-ium salt (7a.ClO${ }_{4}$)

1-Methyl-L-tryptophan methyl ester (25)

To 1-methyl-L-tryptophan ($500 \mathrm{mg}, 2.29 \mathrm{mmol}, 1.0$ equiv.) in MeOH $(1.86 \mathrm{~mL}, 45.8 \mathrm{mmol}, 20$ equiv.) was added thionyl chloride $(0.20 \mathrm{~mL}$, $2.75 \mathrm{mmol}, 1.2$ equiv.) over 10 min at $0^{\circ} \mathrm{C}$ and the resulting mixture was allowed to come to RT before it was heated to reflux overnight. The solution was allowed to come to RT and evaporated in vacuo to give 1-methyl-L-tryptophan methyl ester hydrochloride (25) as an off-white solid (615 mg , quant.).
M.p. $=197.6-198.4^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}:+14.5\left(c=0.89, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$: $\delta=7.54(1 \mathrm{H}, \mathrm{dt}, J=7.9,1.0, \mathrm{H}-\mathrm{C} 5 '), 7.39(1 \mathrm{H}, \mathrm{dt}, J=8.3,0.8, \mathrm{H}-\mathrm{C} 8$ '), 7.21 (1 H , ddd, $J=8.2,7.1,1.1, \mathrm{H}-\mathrm{C} 7$ '), $7.14-7.07$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{C} 6 ', \mathrm{H}-\mathrm{C} 2 '), 4.32$ ($1 \mathrm{H}, \mathrm{dd}, J=7.3,5.5, \mathrm{H}-\mathrm{C} 2$), $3.80\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 3, \mathrm{H}-\mathrm{C} 10^{\prime}\right), 3.45(1 \mathrm{H}, \mathrm{ddd}, J=15.1,5.5,0.6, \mathrm{H}-\mathrm{C} 4)$, and $3.36(1 \mathrm{H}$, dd, $J=9.6,5.6, \mathrm{H}-\mathrm{C} 4) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=170.8$ (C1), 138.8 (C9'), 129.9 (C2'), 128.7 (C4'), 123.1 (C7'), 120.4 (C6'), 119.1 (C5'), 110.7 (C8'), 106.8 (C3'), 54.6 (C2), 53.7 (C3), 32.9 (C10'), and 27.4 (C4) ppm; IR (ATR): $\tilde{v}=3009 \mathrm{w}, 2837 \mathrm{~m}, 2637 \mathrm{w}, 2010 \mathrm{w}$, 1746 s , $1613 \mathrm{w}, 1575 \mathrm{w}, 1542 \mathrm{w}, 1505 \mathrm{~m}, 1474 \mathrm{~m}, 1445 \mathrm{~m}, 1377 \mathrm{w}, 1359 \mathrm{w}, 1327 \mathrm{w}, 1284 \mathrm{w}$, 1251w, 1228s, 1186w, 1159w, 1123w, 1074m, 1047w, 1011w, 9909w, 945w, 919w, 890w, 864w, 833w, 739m, 727s, and $657 \mathrm{w} \mathrm{cm}^{-1}$; HR-ESI-MS: $m / z: 233.1283$ ([M-Cl] $]^{+}$, calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}^{+}$: 233.1285); analytical data in agreement with the literature. ${ }^{11}$

1-Methyl-L-tryptophan methyl amide (26)

To 1-methyl-L-tryptophan methyl ester $\mathbf{2 5}$ ($584 \mathrm{mg}, \quad 2.17 \mathrm{mmol}$, 1.0 equiv.) was added MeNH_{2} (8 N in $\mathrm{EtOH}, 1.10 \mathrm{~mL}, 8.70 \mathrm{mmol}$, 4.0 equiv.) at RT and the solution stirred overnight. After evaporation in vacuo, the crude product was dissolved in a saturated aqueous solution of $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$, the aqueous layer was extracted twice with $\mathrm{CHCl}_{3}(2 \cdot 15 \mathrm{~mL})$, the combined organic layers were dried over MgSO_{4} and concentrated in vacuo to give amide 26 as a sticky oil (502 mg , quant.).
$[\alpha]_{\mathrm{D}}{ }^{23}:+6.7\left(\mathrm{c}=0.95, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}, \mathrm{CDCl} 3): \delta=7.67(1 \mathrm{H}, \mathrm{dt}, J=7.9,1.1$, H-C5'), 7.31 ($1 \mathrm{H}, \mathrm{dt}, J=8.2,1.2, \mathrm{H}-\mathrm{C} 8$ '), 7.23 ($1 \mathrm{H}, \mathrm{dd}, J=8.2,1.1, \mathrm{H}-\mathrm{C} 7$ '), 7.12 (1 H , ddd, $\left.J=8.0,6.8,1.2, \mathrm{H}^{-C} 6^{\prime}\right), 6.92(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 2 '), 3.76$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 10^{\prime}$), $3.70(1 \mathrm{H}, \mathrm{dd}, J=8.9,4.1$, $\mathrm{H}-\mathrm{C} 2), 3.38$ (1 H , ddd, $J=14.4,4.1,0.6, \mathrm{H}-\mathrm{C} 4), 2.90(1 \mathrm{H}, \mathrm{dd}, J=14.4,9.0, \mathrm{H}-\mathrm{C} 4), 2.81$ ($3 \mathrm{H}, \mathrm{d}, J=5.0, \mathrm{H}-\mathrm{C} 3$), and $1.46\left(2 \mathrm{H}, \mathrm{bs}, \mathrm{H}-\mathrm{N}^{\text {amine }}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=175.4$ (C1), 137.2 (C9'), 128.1 (C4'), 127.9 (C2'), 121.9 (C7'), 119.2 (2C, C5', C6'), 110.3 (C3'), 109.4 (C8'), 55.8 (C2), 32.8 (C10'), 30.7 (C3), and 25.9 (C4) ppm; IR (ATR): $\tilde{v}=3300 \mathrm{w}, 3052 \mathrm{w}, 2934 \mathrm{w}, 1652 \mathrm{~s}, 1532 \mathrm{~m}, 1471 \mathrm{~m}, 1409 \mathrm{w}, 1375 \mathrm{w}, 1326 \mathrm{~m}, 1250 \mathrm{w}, 1156 \mathrm{w}$, 1130w, 1012w, 909w, 846w, and 735s cm ${ }^{-1}$; HR-ESI-MS: m/z: $232.1445\left([M+H]^{+}\right.$, calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}^{+}: 232.1444$).

(S)-5-(1-Methylindol-3-ylmethyl)-2,2,3-trimethylimidazolidin-4-one (7):

To a solution of amide 26 ($502 \mathrm{mg}, 2.17 \mathrm{mmol}, 1.0$ equiv.) in MeOH $(10.0 \mathrm{~mL})$ was added acetone ($1.20 \mathrm{~mL}, 16.3 \mathrm{mmol}, 7.5$ equiv.) and NEt_{3} ($0.24 \mathrm{~mL}, 1.74 \mathrm{mmol}, 0.8$ equiv.) at RT under an atmosphere of argon and the yellow solution was heated to reflux overnight. The reaction was allowed to come to RT and concentrated in vacuo. Purification by CC $\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}\left(25 \%\right.\right.$ in $\left.\left.\mathrm{H}_{2} \mathrm{O}\right) 20: 1: 0.2\right)$ gave imidazolidinone 7 as a yellow oil ($484 \mathrm{mg}, 82 \%$).
$R_{\mathrm{f}}=0.46\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) ;[\alpha]_{\mathrm{D}}{ }^{23}:-37.8\left(c=0.31, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.64(1 \mathrm{H}, \mathrm{dt}, J=7.8,0.9, \mathrm{H}-\mathrm{C} 4 '), 7.27\left(1 \mathrm{H}, \mathrm{dt}, J=8.2,0.9, \mathrm{H}-\mathrm{C} 7{ }^{\prime}\right), 7.21(1 \mathrm{H}$, ddd, $\left.J=8.2,7.0,1.1, \mathrm{H}-\mathrm{C}^{\prime}\right), 7.10$ (1 H , ddd, $\left.J=8.0,7.0,1.0, \mathrm{H}-\mathrm{C} 5 '\right), 6.95\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C}^{\prime}\right)$, 3.82 (1 H, ddd, $J=5.9,4.7,0.5, \mathrm{H}-\mathrm{C} 5$), 3.73 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 10^{\prime}$), 3.32 (1 H , ddd, $J=15.1,4.6$, $0.7, \mathrm{H}-\mathrm{C} 8), 3.17$ ($1 \mathrm{H}, \mathrm{ddd}, J=15.1,6.1,0.7, \mathrm{H}-\mathrm{C} 8), 2.73(3 \mathrm{H}, \mathrm{d}, J=0.6, \mathrm{H}-\mathrm{C} 7), 1.25(3 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-\mathrm{C} 6)$, and 1.09 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 6$) ppm; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.1$ (C4), 136.9 (C9'), 128.4 (C8'), 128.0 (C2'), 121.6 (C6'), 119.1 (C5'), 119.0 (C4'), 109.1 (C7'), 109.0 (C3'), 75.4 (C2), 59.1 (C5), 32.7 (b, C10'), 27.0 (C6), 26.3 (C8), 25.2 (C7), and 25.1 (C6) ppm; IR (ATR): $\tilde{v}=3295 b, 2921 \mathrm{w}, 2239 \mathrm{w}, 1682 \mathrm{~s}, 1615 \mathrm{w}, 1526 \mathrm{w}, 1472 \mathrm{~m}, 1425 \mathrm{~m}, 1397 \mathrm{~m}$, 1379m, 1327w, 1253w, 1205w, 1150w, 1086w, 1013w, 921w, 799w, and 738s cm ${ }^{-1}$; HR-ESIMS: $m / z: 272.1763\left([M+H]^{+}\right.$, calcd for $\left.\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}^{+}: 272.1757\right)$.
(S)-5-(1-Methylindol-3-ylmethyl)-2,2,3-trimethyl-4-oxo-1-[(E)-3-phenylallylidene]-imidazolidin-1-ium perchlorate $\left(7 \mathrm{a} \cdot \mathrm{ClO}_{4}\right)$: 3

To imidazolidinone $7\left(43.4 \mathrm{mg}, \quad 0.16 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}$ $(0.2 \mathrm{~mL})$ was added $\mathrm{HClO}_{4}\left(60 \%\right.$ in $\mathrm{H}_{2} \mathrm{O}, 26.8 \mathrm{mg}, 0.16 \mathrm{mmol}$, 1.0 equiv.) in $\mathrm{EtOH} / \mathrm{Et}_{2} \mathrm{O}(1: 1,0.4 \mathrm{~mL})$ at RT and stirred for 10 min , before the solution was evaporated in vacuo to give the HClO_{4} salt as a solid. The solid was dissolved in $\mathrm{MeOH}(0.4 \mathrm{~mL})$ and (E) cinnamaldehyde ($40.2 \mu \mathrm{~L}, 0.32 \mathrm{mmol}, 2.0$ equiv.) was added at $35^{\circ} \mathrm{C}$ and the solution stirred for 1 h . The solvent was evaporated in vacuo. The residue was dissolved in a minimum amount of MeOH , the iminium salt was crashed out with $\mathrm{Et}_{2} \mathrm{O}$ and the supernatant solution taken off. This purification procedure was repeated two additional times to give iminium salt $\mathbf{7 a} \cdot \mathbf{C l O}_{4}{ }^{-}$as a red solid.
M.p. $=137.8^{\circ} \mathrm{C}$ decomp.; $[\alpha]_{\mathrm{D}}{ }^{20}=+195.3 \quad\left(c=0.43\right.$ in $\left.\mathrm{CD}_{3} \mathrm{CN}\right) ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{CN}\right)$: $\delta_{\mathrm{H}}=8.67\left(1 \mathrm{H}, \mathrm{d}, J=10.7, \mathrm{H}-\mathrm{C} 1^{\prime \prime}\right), 7.94\left(1 \mathrm{H}, \mathrm{d}, J=15.1, \mathrm{H}-\mathrm{C} 3{ }^{\prime \prime}\right)$, $7.66-7.62(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}-\mathrm{C} 7{ }^{\prime}\right), 7.59\left(1 \mathrm{H}, \mathrm{dt}, J=8.0,0.9, \mathrm{H}-\mathrm{C} 4\right.$ '), 7.50 ($2 \mathrm{H}, \mathrm{t}, J=7.8, \mathrm{H}-\mathrm{C} 6{ }^{\prime \prime}$), 7.40 (2 H , dd, $J=8.2,1.0, \mathrm{H}-\mathrm{C} 5{ }^{\prime}$), $7.24-7.18$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{C}^{\prime}, \mathrm{H}-\mathrm{C} 7$ '), 7.14 ($1 \mathrm{H}, \mathrm{ddd}, J=8.0,6.5,1.5, \mathrm{H}-$ $\left.5^{\prime}\right), 6.93(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 2 '), 6.68\left(1 \mathrm{H}, \mathrm{dd}, J=15.0,10.6, \mathrm{H}-\mathrm{C} 2{ }^{\prime}\right), 5.08(1 \mathrm{H}, \mathrm{t}, J=5.0, \mathrm{H}-\mathrm{C} 5)$, 3.81 ($1 \mathrm{H}, \mathrm{dd}, J=15.5,5.0, \mathrm{H}-\mathrm{C} 8), 3.59\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 10^{\prime}\right), 3.43(1 \mathrm{H}, \mathrm{dd}, J=17.8,6.6, \mathrm{H}-\mathrm{C} 8)$, $2.78(3 \mathrm{H}, \mathrm{d}, J=0.4, \mathrm{H}-\mathrm{C} 7), 1.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C}^{\text {anti }}\right)$, and $1.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 6^{\text {syn }}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta_{\mathrm{C}}=167.7$ (C1"), 166.0 (C4), 164.6 (C3"), 138.1 (C9'), 135.5 (C7"), 134.2 (C4"), 131.9 (2C, C5"), 130.8 (C2'), 130.6 (2C, C6"), 128.3 (C3'), 123.4 (C8'), 120.6 (C5'), 119.6 (C4'), 118.5 (C2'), 111.0 (C7'), 107.0 (C3'), 86.5 (C2), 64.7 (C5), 33.1 (C10'), $29.3(\mathrm{C} 8), 27.3\left(\mathrm{C}^{\text {anti }}\right)$, $26.1(\mathrm{C} 7)$, and $25.6\left(\mathrm{C}^{\mathrm{syn}}\right) \mathrm{ppm}$; IR (ATR): $\tilde{v}=3058 \mathrm{w}, 2939 \mathrm{w}$, $1712 \mathrm{~s}, 1621 \mathrm{~m}, 1604 \mathrm{~m}, 1589 \mathrm{~s}, 1474 \mathrm{~m}, 1455 \mathrm{~m}, 1429 \mathrm{~m}, 1390 \mathrm{~m}, 1324 \mathrm{w}, 1282 \mathrm{w}, 1197 \mathrm{~m}$, $1180 \mathrm{~m}, ~ 1073 \mathrm{~s}, 1011 \mathrm{~m}, ~ 999 \mathrm{~m}, ~ 932 \mathrm{w}, 743 \mathrm{~s}, 686 \mathrm{~m}$, and $621 \mathrm{~s} \mathrm{~cm}^{-1}$; HR-ESI-MS: $\mathrm{m} / \mathrm{z}:$ $386.22284\left(\left[M-\mathrm{ClO}_{4}^{-}\right]^{+}\right.$, calcd for $\left.\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}^{+}: 386.22324\right)$.

Syntheses of (5S)-5-(Indol-3-ylmethyl)-2,2,3-trimethyl-4-imidazolidinone (8) and (S)-5-(Indol-3-ylmethyl)-2,2,3-trimethyl-4-oxo-1-[(E)-3-phenylallylidene]-imidazolidin-1-ium salt (8a)

L-Tryptophan methyl amide (27)

To L-tryptophan ($1.00 \mathrm{~g}, 4.90 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{MeOH}(5.00 \mathrm{~mL}, 123$ mmol, 25 equiv.) was added thionyl chloride ($0.43 \mathrm{~mL}, 5.88 \mathrm{mmol}, 1.2$ equiv.) over 10 min at $0^{\circ} \mathrm{C}$ and the resulting mixture was allowed to come to RT before it was heated to reflux for 19 h . The solution was allowed to come to RT and evaporated in vacuo to give the tryptophan methyl ester hydrochloride as an off-white solid. To the ester was added $\mathrm{MeNH}_{2}(8 \mathrm{~N}$ in $\mathrm{EtOH}, 2.50 \mathrm{~mL}, 19.6 \mathrm{mmol}, 4.0$ equiv.) at RT and the solution stirred for 42.5 h . After evaporation in vacuo, the crude product was dissolved in sat. aq. solution of $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and CHCl_{3}, the aqueous layer was extracted with $\mathrm{CHCl}_{3}(3 \cdot 30 \mathrm{~mL})$, the combined organic layers were dried over MgSO_{4} and concentrated in vacuo to give amide 27 as an orange sticky solid ($868 \mathrm{mg}, 82 \%$).
M.p. $=96.2-99.1^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}:+11.0\left(\mathrm{c}=0.75, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3$)$: $\left.\delta=8.31\left(1 \mathrm{H}, \mathrm{b}, \mathrm{H}-\mathrm{N}^{\mathrm{Ar}}\right), 7.67(1 \mathrm{H}, \mathrm{d}, J=7.6, \mathrm{H}-\mathrm{C} 5)^{\prime}\right), 7.38\left(1 \mathrm{H}, \mathrm{d}, J=7.9, \mathrm{H}-\mathrm{C} 8^{\prime}\right), 7.26(1 \mathrm{H}$,
b, H-N $\left.{ }^{\text {amide }}\right), 7.20(1 \mathrm{H}, \mathrm{t}, J=7.4, \mathrm{H}-\mathrm{C} 7$ ' $), 7.12\left(1 \mathrm{H}, \mathrm{t}, J=7.2, \mathrm{H}-\mathrm{C} 6{ }^{\prime}\right), 7.06\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 2^{\prime}\right)$, 3.72 ($1 \mathrm{H}, \mathrm{dd}, J=8.4,3.4, \mathrm{H}-\mathrm{C} 2), 3.40(1 \mathrm{H}, \mathrm{dd}, J=14.4,3.2, \mathrm{H}-\mathrm{C} 4), 2.92(1 \mathrm{H}, \mathrm{dd}, J=14.3$, 9.1, $\mathrm{H}-\mathrm{C} 4), 2.81(3 \mathrm{H}, \mathrm{d}, J=4.4, \mathrm{H}-\mathrm{C} 3)$, and $1.45\left(2 \mathrm{H}, \mathrm{b}, \mathrm{H}-\mathrm{N}^{\text {amine }}\right) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.59$ (C1), 136.56 (C9'), 127.67 (C4'), 123.18 (C2'), 122.38 (C7'), 119.72 (C6'), 119.12 (C5'), 112.03 (C3'), 111.38 (C8'), 55.78 (C2), 30.95 (C4), and 25.97 (C3) ppm; IR (ATR): $\tilde{v}=3274 \mathrm{~m}, 2922 \mathrm{w}, 1643 \mathrm{~s}, 1533 \mathrm{~s}, 1456 \mathrm{~m}, 1436 \mathrm{~m}, 1409 \mathrm{~m}$, 1232w, 1158w, 1101w, 1010w, 908w, 848, and 739 cm ${ }^{-1}$; HR-EI-MS: m/z: 218.1278 $\left([M+H]^{+}\right.$, calcd for $\left.\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}^{+}: 218.1288\right)$; analytical data in agreement with the literature. ${ }^{12}$

(5S)-5-(Indol-3-ylmethyl)-2,2,3-trimethyl-4-imidazolidinone (8)

To a solution of amide 27 ($432 \mathrm{mg}, 2.0 \mathrm{mmol}, 1.0$ equiv.) in MeOH (8.0 mL) was added acetone ($1.1 \mathrm{~mL}, 14.9 \mathrm{mmol}, 7.5$ equiv.) and $\mathrm{NEt}_{3}(0.22$ $\mathrm{mL}, 1.59 \mathrm{mmol}, 0.8$ equiv.) at RT under an atmosphere of argon and the yellow solution was heated to reflux overnight. The reaction was allowed to come to RT and concentrated in vacuo to give imidazolidinone $\mathbf{8}$ as a yellow sticky solid (516 mg , quant.).
M.p. $=109.6-110.8{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}:-66.3\left(\mathrm{c}=0.98, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.07\left(1 \mathrm{H}, \mathrm{b}, \mathrm{H}-\mathrm{N}^{\mathrm{Ar}}\right), 7.67(1 \mathrm{H}, \mathrm{d}, J=7.8, \mathrm{H}-\mathrm{C} 4 '), 7.36(1 \mathrm{H}, \mathrm{d}, J=8.1, \mathrm{H}-\mathrm{C} 7$ '), $7.19(1 \mathrm{H}$, dd, $J=7.5,0.9$, H-C6'), 7.16-7.09 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{C} 5 ', \mathrm{H}-\mathrm{C} 2 '$), $3.85(1 \mathrm{H}, \mathrm{t}, J=5.2, \mathrm{H}-\mathrm{C} 5), 3.33$ ($1 \mathrm{H}, \mathrm{dd}, J=15.1,4.6, \mathrm{H}-\mathrm{C} 8), 3.21(1 \mathrm{H}, \mathrm{dd}, J=15.0,5.8, \mathrm{H}-\mathrm{C} 8), 2.73(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 7), 1.25$ (3H, s, H-C6), and $1.07(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 6) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.2$ (C4), 136.3 (C9'), 128.1 (C8'), 123.4 (C2'), 122.3 (C6'), 119.8 (C5'), 119.1 (C4'), 111.2 (C7'), 110.9 (C3'), 75.6 (C2), 59.1 (C5), 27.1 (C6), 26.5 (C8), 25.4 (C7), and 25.3 (C6); IR (ATR): $\tilde{v}=$ 3262bw, 2976w, 2926w, 1668s, 1429m, 1400m, 1367w, 1339w, 1257w, 1208w, 1185w, 1148w, 1090w, 1010w, 923w, 878w, 796w, and 739s cm ${ }^{-1}$; HR-ESI-MS: m/z: 258.1597 $\left([M+H]^{+}\right.$, calcd for $\left.\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}^{+}: 258.1601\right)$.
(S)-5-(Indol-3-ylmethyl)-2,2,3-trimethyl-4-oxo-1-[(\boldsymbol{E})-3-phenylallylidene]-imidazolidin-1ium perchlorate $\left(8 a \cdot \mathrm{ClO}_{4}{ }^{-}\right)$

To imidazolidinone 8 ($20.3 \mathrm{mg}, 0.08 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}$ (0.1 mL) was added HClO_{4} (70% in $\mathrm{H}_{2} \mathrm{O}, 11.5 \mathrm{mg}, 0.08 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{EtOH} / \mathrm{Et}_{2} \mathrm{O}(1: 1,0.2 \mathrm{~mL})$ at RT and stirred for 10 min , before the solution was evaporated in vacuo to give the HClO_{4} salt as a solid. The solid was dissolved in $\mathrm{MeOH}(0.2 \mathrm{~mL})$ and (E)-cinnamaldehyde (20.1 $\mu \mathrm{L}, 0.16 \mathrm{mmol}, 2.0$ equiv.) was added at $35^{\circ} \mathrm{C}$ and the solution stirred for 1 h . The solvent was evaporated in vacuo. The residue was dissolved in a minimum amount of MeOH , the iminium salt was crashed out with $\mathrm{Et}_{2} \mathrm{O}$ and the supernatant solution taken off. This purification procedure was repeated two additional times to give iminium salt $\mathbf{8 a} \cdot \mathbf{C l O}_{4}{ }^{-}$as a red solid.
M.p. $=135.1{ }^{\circ} \mathrm{C}$ decomp.; $[\alpha]_{\mathrm{D}}{ }^{23}=+522.9\left(c=0.77\right.$ in $\left.\mathrm{CH}_{3} \mathrm{CN}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}\right): \delta=9.30\left(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-\mathrm{N}^{\mathrm{Ar}}\right), 8.65\left(1 \mathrm{H}, \mathrm{dd}, J=10.7,1.8, \mathrm{H}-\mathrm{C} 1{ }^{\prime}\right), 7.95(1 \mathrm{H}, \mathrm{d}, J=15.1$, H-C3'), 7.67-7.57 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{C} 7{ }^{\prime}$ ', H-C4'), 7.50 ($2 \mathrm{H}, \mathrm{t}, J=7.8, \mathrm{H}-\mathrm{C} 6{ }^{\prime}$), 7.43 ($2 \mathrm{H}, \mathrm{d}, J=$ $7.4, \mathrm{H}-\mathrm{C} 5 "), 7.29\left(1 \mathrm{H}, \mathrm{d}, J=8.0, \mathrm{H}-7{ }^{\prime}\right), 7.21-7.10(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{C} 6 ', \mathrm{H}-\mathrm{C} 5 '), 7.00(1 \mathrm{H}, \mathrm{d}, J=$ $2.5, \mathrm{H}-2^{\prime}$), 6.78 ($1 \mathrm{H}, \mathrm{dd}, J=15.0,10.7, \mathrm{H}-\mathrm{C} 2$ '), 5.11 ($1 \mathrm{H}, \mathrm{t}, J=5.0, \mathrm{H}-\mathrm{C} 5$), 3.83 ($1 \mathrm{H}, \mathrm{dd}, J$ $\left.=15.4,5.1, \mathrm{H}^{\mathrm{si}}-\mathrm{C} 8\right), 3.47\left(1 \mathrm{H}, \mathrm{dd}, J=15.4,6.0, \mathrm{H}^{\mathrm{re}}-\mathrm{C} 8\right), 2.78(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 7), 1.71(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-$
$\mathrm{C}^{\text {anti }}$), and $1.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C}^{\text {sym }}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=167.7\left(\mathrm{C} 1^{\prime \prime}\right)$, 166.0 (C4), 164.9 (C3"), 137.5 (C9'), 135.6 (C7"), 134.2 (C4"), 132.0 (2C, C5"), 130.6 (2C, C6"), 127.9 (C8'), 126.7 (C2'), 123.5 (C7'), 120.8 (C5'), 119.4 (C4'), 118.3 (C2'), 112.9 (C7'), 108.0 (C3'), 86.5 (C2), 64.6 (C5), $29.3(\mathrm{C} 8), 27.3$ (C6 $\left.{ }^{\text {anti }}\right), 26.1(\mathrm{C} 7)$, and $25.5\left(\mathrm{C} 6^{\mathrm{syn}}\right) \mathrm{ppm}$; IR (ATR): $\tilde{v}=3359 \mathrm{w}, 3059 \mathrm{w}, 1709 \mathrm{~m}, 1621 \mathrm{~m}, 1603 \mathrm{~m}, 1588 \mathrm{~s}, 1456 \mathrm{w}, 1429 \mathrm{w}, 1390 \mathrm{~m}, 1341 \mathrm{w}$, $1312 \mathrm{w}, 1281 \mathrm{w}, 1233 \mathrm{w}, 1155 \mathrm{w}, 1197 \mathrm{~m}, 1179 \mathrm{~m}, 1071 \mathrm{~s}, 999 \mathrm{~m}, ~ 931 \mathrm{w}, 866 \mathrm{w}, 745 \mathrm{~s}$, and $684 \mathrm{w} \mathrm{cm}{ }^{-1}$; HR-ESI-MS: $m / z: 372.2073$ ($\left[M-\mathrm{ClO}_{4}{ }^{-}\right]^{+}$, calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}^{+}: 372.2070$).

Syntheses of (5S)-2,2,3-Trimethyl-5-(3,4,5-trimethoxybenzyl)imidazolidin-4-one (9) and 5-(3',3',4'-Trimethoxybenzyl)-2,2,3-trimethyl-4-oxo-1-[(E)-3-phenylallylidene]-imidazolidin-1-ium salt (9a)

1-Bromomethyl-3,4,5-trimethoxybenzene (28) ${ }^{9}$

To a solution of 3,4,5-trimethoxybenzyl alcohol $(4.00 \mathrm{~g}, 20.2 \mathrm{mmol}$, 1.00 equiv.) in $\mathrm{Et}_{2} \mathrm{O}(1.00 \mathrm{~L})$ were added successively $\mathrm{PBr}_{3}(5.46 \mathrm{~g}$, $20.2 \mathrm{mmol}, 1.00$ equiv.) and pyridine ($79.8 \mathrm{mg}, 1.01 \mathrm{mmol}, 0.05$ equiv.) slowly at RT. The mixture was heated to $40^{\circ} \mathrm{C}$ and after completion was detected by TLC (3 h), it was allowed to cool to RT. $\mathrm{H}_{2} \mathrm{O}$ was added and the aqueous layer extracted twice with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over MgSO_{4} and concentrated in vacuo to give 1-bromomethyl-3,4,5-trimethoxybenzene (28) as a white solid (5.27 g , quant.), which should be kept in the freezer (turns first orange then brown at RT).
$R_{\mathrm{f}}=0.76\left(\mathrm{CH} /\right.$ EtOAc 1:1); M.p. $=72.3-73.4^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.74-75^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=6.62(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 3), 4.47(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 1), 3.88(6 \mathrm{H}, \mathrm{d}, J=0.7, \mathrm{H}-\mathrm{C} 6)$, and 3.85 (3H, d, $J=0.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{C} 7$) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=153.5$ (2C, C4), 138.3 (C5), 133.3 (C2), 106.3 (2C, C3), 61.0 (C7), 56.3 (2C, C6), and 34.4 (C1) ppm; HR-EI-MS: m/z: $181.0866\left(\left[M-\mathrm{Br}^{-}\right]^{+}\right.$, calcd for $\left.\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{3}{ }^{+}: 181.0859\right)$; analytical data in agreement with the literature. ${ }^{13}$
(2S,5S)-1-Boc-2-(tert-butyl)-3-methyl-5-(3,4,5-trimethoxybenzyl)-4-imidazolidinone (29) ${ }^{5}$

A solution of HMDS ($1.28 \mathrm{~mL}, 6.16 \mathrm{mmol}, 1.2$ equiv.) in dry THF $(4.00 \mathrm{~mL})$ in a flame-dried Schlenck under an atmosphere of argon was cooled to $0{ }^{\circ} \mathrm{C}$. ${ }^{n} \mathrm{BuLi}$ (1.6 N in ${ }^{n}$ hexane, $3.85 \mathrm{~mL}, 6.16 \mathrm{mmol}, 1.2$ equiv.) was added dropwise and the solution stirred for 15 min before it was cooled to $-78{ }^{\circ} \mathrm{C}$. DMPU ($1.86 \mathrm{~mL}, 15.4 \mathrm{mmol}, 3.0$ equiv.) and then (S) -Boc-BMI (14) ($1.30 \mathrm{~g}, 5.13 \mathrm{mmol}, 1.0$ equiv.) in THF (4.00 mL) was added dropwise to the orange solution that turned darker upon addition. After 30 min , 1-bromomethyl-3,4,5-trimethoxybenzene (28) (1.34 g , $5.13 \mathrm{mmol}, 1.0$ equiv.) in THF (4.00 mL) was added slowly and the resulting mixture stirred for 3 h during which time a brown solid formed. The reaction was quenched by addition of a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4} and concentrated in vacuo. Purification by $\mathrm{CC}\left(\mathrm{SiO}_{2}\right.$; CH/EtOAc 3:1) gave 29 as a white solid ($1.93 \mathrm{~g}, 86 \%$).
$R_{\mathrm{f}}=0.40(\mathrm{CH} / \mathrm{EtOAc} 1: 1) ;$ M.p. $=69.6-71.2^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}:+34.4\left(c=0.83, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.38$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 3$ '), $4.65(1 \mathrm{H}, \mathrm{d}, J=1.5, \mathrm{H}-\mathrm{C} 2), 4.28$ ($1 \mathrm{H}, \mathrm{dd}$,
$J=4.4,2.2, \mathrm{H}-\mathrm{C} 5), 3.80(6 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 6 '), 3.79$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 7$ '), 3.65 ($\left.1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-\mathrm{C} 1^{\prime}\right), 3.13(1 \mathrm{H}$, bd, $J=12.8, \mathrm{H}-\mathrm{C} 1$ '), $2.80(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-\mathrm{C} 8), 1.47$ (s, 9H, H-C4'), and 0.93 (s, 9H, H-C7) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, racemic compound, C 4 and $\mathrm{C} 1 "$ not visible): $\delta=152.8$ ($\mathrm{C} 4{ }^{\prime}$), 136.9 (C2'), 131.7 (b, C5'), 107.4 (2C, C3'), 81.1 (C2), 77.4 (C3'), 61.0 (C7'), 60.9 (C5), 56.4 (2C, C6'), 41.1 (C6), 32.0 (C1'), 28.4 (3C, C4'), 26.8 (3C, C7), and 25.9 (C8) ppm; IR (ATR): $\tilde{v}=2966 \mathrm{w}, 2931 \mathrm{w}, 2840 \mathrm{w}, 1693 \mathrm{~s}, 1588 \mathrm{w}, 1509 \mathrm{w}, 1456 \mathrm{w}, 1433 \mathrm{w}, 1407 \mathrm{w}, 1380 \mathrm{~m}, 1363 \mathrm{~m}$, $1339 \mathrm{w}, 1325 \mathrm{w}, 1302 \mathrm{w}, 1254 \mathrm{~m}, 1239 \mathrm{~m}, 1165 \mathrm{~m}, 1126 \mathrm{~s}, 1112 \mathrm{~s}, 1050 \mathrm{w}, 1019 \mathrm{~m}, 966 \mathrm{w}, 956 \mathrm{w}$, 930w, $889 \mathrm{w}, 859 \mathrm{w}, 835 \mathrm{w}, 787 \mathrm{w}, 764 \mathrm{~m}, 713 \mathrm{w}$, and $668 \mathrm{w} \mathrm{cm}^{-1}$; HR-ESI-MS: $m / z: 459.2464$ $\left([M+\mathrm{Na}]^{+}\right.$, calcd for $\left.\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}^{+}: 459.2466\right)$.

L-3,4,5-Trimethoxyphenylalanine N-methyl amide (30) ${ }^{10}$

To a solution of 29 ($1.75 \mathrm{~g}, 4.01 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{MeOH}(45.0 \mathrm{~mL})$ was added an aqueous solution of $\mathrm{HCl}(1 \mathrm{~N}, 45.0 \mathrm{~mL})$ at RT and the mixture heated to reflux for 11 h . The reaction was allowed to come to RT and basified to a pH of 10 with an aqueous solution of $\mathrm{NaOH}(2 \mathrm{~N})$ and extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4} and concentrated in vacuo to give amide $\mathbf{3 0}$ as an offwhite solid ($812 \mathrm{mg}, 75 \%$).
$R_{\mathrm{f}}=0.26\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) ;$ M.p. $=127.8-128.6^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}:+16.6\left(c=0.98, \mathrm{CH}_{3} \mathrm{OH}\right)$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.30\left(1 \mathrm{H}, \mathrm{b}, \mathrm{H}-\mathrm{N}^{\text {amide }}\right), 6.43(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 3$ '), $3.83(6 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ C6'), 3.81 (3H, s, H-C7'), 3.59 (1 H , dd, $J=9.4,3.9, \mathrm{H}-\mathrm{C} 2$), 3.19 ($1 \mathrm{H}, \mathrm{dd}, J=13.6,3.9, \mathrm{H}-$ $\left.\mathrm{C}^{\prime}\right), 2.82(3 \mathrm{H}, \mathrm{d}, J=5.0, \mathrm{H}-\mathrm{C} 3), 2.61(1 \mathrm{H}, \mathrm{dd}, J=13.6,9.4, \mathrm{H}-\mathrm{C} 1 ')$, and $1.48(2 \mathrm{H}, \mathrm{bs}, \mathrm{H}-$ $\left.\mathrm{N}^{\text {amine }}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.8$ (C1), 153.3 (2C, C4'), 136.7 (C2'), 133.6 (C5'), 106.0 (2C, C3'), 60.8 (C7'), 56.6 (C2), 56.1 (2C, C6'), 41.4 (C1'), and 25.9 (C3) ppm; IR (ATR): $\tilde{v}=3390 \mathrm{w}, 3311 \mathrm{w}, 2998 \mathrm{w}, 2945 \mathrm{w}, 2841 \mathrm{w}, 1648 \mathrm{~m}, 1589 \mathrm{~m}, 1507 \mathrm{~m}$, $1454 \mathrm{~m}, 1420 \mathrm{w}, 1402 \mathrm{w}, 1328 \mathrm{~m}, 1232 \mathrm{~s}, 1185 \mathrm{w}, 1149 \mathrm{w}, 1123 \mathrm{~s}, 1040 \mathrm{w}, 1002 \mathrm{~m}, 972 \mathrm{w}, 920 \mathrm{w}$, 857w, 812s, 783w, 760m, 739m, and 686w cm ${ }^{-1}$; HR-ESI-MS: m/z: $269.1497\left([M+\mathrm{H}]^{+}\right.$, calculated for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}: 269.1496$).
(5S)-2,2,3-Trimethyl-5-(3,4,5-trimethoxybenzyl)imidazolidin-4-one (9)

To a solution of amide 30 ($300 \mathrm{mg}, 1.12 \mathrm{mmol}, 1.0$ equiv.) in MeOH (5.0 mL) were added aceton ($0.62 \mathrm{~mL}, 8.40 \mathrm{mmol}, 7.5$ equiv.) and NEt_{3} ($0.12 \mathrm{~mL}, 0.90 \mathrm{mmol}, 0.8$ equiv.) at RT under an atmosphere argon and the solution heated to reflux for 7 h . The reaction was allowed to come to RT and concentrated in vacuo to give imidazolidinone 9 as an off-white solid (345 mg , quant.).
$R_{\mathrm{f}}=0.73\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) ;$ M.p. $=116.8-118.2{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}:-37.2\left(c=0.94, \mathrm{CH}_{3} \mathrm{OH}\right)$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.44$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 3$ '), 3.81 ($6 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 6$) , $3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ C7'), 3.75 ($1 \mathrm{H}, \mathrm{t}, J=5.3, \mathrm{H}-\mathrm{C} 5$), 3.02 ($2 \mathrm{H}, \mathrm{d}, J=5.3, \mathrm{H}-\mathrm{C} 1$ '), 2.74 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 7$), 1.26 (3 H , $\mathrm{s}, \mathrm{H}-\mathrm{C} 6)$, and 1.16 (3H, s, H-C6) ppm; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.5$ (C4), 153.3 (2C, C4'), 136.9 (C2'), 132.8 (C5'), 106.5 (2C, C3'), 75.7 (C2), 61.0 (C7'), 59.4 (C5), 56.2 (2C, C6'), 37.4 (C1'), 27.3 (C6), 25.4 (C6), and 25.4 (C7) ppm; IR (ATR): $\tilde{v}=3291 \mathrm{w}$, 2920w, 2686w, 2565w, 2432w, 1702s, 1673w, 1590m, 1508w, 1459m, 1424s, 1396s, 1385m, $1328 \mathrm{~m}, 1315 \mathrm{w}, 1234 \mathrm{~m}, 1154 \mathrm{w}, 1113 \mathrm{~s}, 1064 \mathrm{w}, 1000 \mathrm{~m}, 967 \mathrm{w}, 875 \mathrm{w}, 831 \mathrm{w}, 789 \mathrm{w}$, and 771w cm ${ }^{-1}$; HR-ESI-MS: m/z: $309.1814\left([M+\mathrm{H}]^{+}\right.$, calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}: 309.1809$);
elemental analysis calcd (\%, racemic compound) for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$ (308.2): C 62.32, H 7.84, N 9.08, O 20.75; found: C 62.02, H 7.68, N 8.96, O 20.82.

5-(3',3',4'-Trimethoxybenzyl)-2,2,3-trimethyl-4-oxo-1-[(E)-3-phenylallylidene]-imidazolidin-1-ium perchlorate $\left(9 \mathrm{a} \cdot \mathrm{ClO}_{4}\right)$: $^{\mathbf{3}}$

To racemic imidazolidinone 9 ($49.6 \mathrm{mg}, 0.16 \mathrm{mmol}$, 1.0 equiv.) in $\mathrm{Et}_{2} \mathrm{O}$ $(0.2 \mathrm{~mL})$ was added $\mathrm{HClO}_{4}\left(60 \%\right.$ in $\mathrm{H}_{2} \mathrm{O}, 26.8 \mathrm{mg}, 0.16 \mathrm{mmol}$, 1.0 equiv.) in $\mathrm{EtOH} / \mathrm{Et}_{2} \mathrm{O}(1: 1,0.4 \mathrm{~mL})$ at RT and stirred for 10 min , before the yellow solution was evaporated in vacuo to give the offwhite HClO_{4} salt as a solid. The solid was dissolved in $\mathrm{MeOH}(0.4 \mathrm{~mL})$ and E-cinnamaldehyde ($40.2 \mu \mathrm{~L}, 0.32 \mathrm{mmol}, 2.0$ equiv.) was added at $35^{\circ} \mathrm{C}$ and the yellow solution stirred for 1 h . The solvent was evaporated in vacuo. The residue was dissolved in a minimum amount of MeOH , the iminium salt was crashed out with $\mathrm{Et}_{2} \mathrm{O}$ and the supernatant solution taken off. This purification procedure was repeated two additional times to give iminium salt $\mathbf{9} \cdot \mathbf{\cdot} \mathbf{C l O}_{4}{ }^{-}$as a yellow solid.
M.p. $=116.1^{\circ} \mathrm{C}$ decomp.; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta_{\mathrm{H}}=8.77(1 \mathrm{H}, \mathrm{dd}, J=10.7,1.9, \mathrm{H}-$ C1"), 8.13 ($1 \mathrm{H}, \mathrm{d}, J=15.0, \mathrm{H}-\mathrm{C} 3 "), 7.87-7.83$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{C} 5 "), 7.71-7.67$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{C} 7$ "), 7.59 ($2 \mathrm{H}, \mathrm{t}, J=7.9, \mathrm{H}-\mathrm{C} 6 "$), 7.11 ($1 \mathrm{H}, \mathrm{dd}, J=15.0,10.7, \mathrm{H}-\mathrm{C} 2$ "), 6.38 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 2$ '), 5.17 ($1 \mathrm{H}, \mathrm{td}, J=5.3,1.6, \mathrm{H}-\mathrm{C} 5$), 3.73 ($6 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 5 '), 3.52$ ($1 \mathrm{H}, \mathrm{dd}, J=14.7,5.4, \mathrm{H}-\mathrm{C} 8$), 3.47 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 6$ '), 3.31 ($1 \mathrm{H}, \mathrm{dd}, J=14.7,5.2, \mathrm{H}-\mathrm{C} 8$), 2.86 ($3 \mathrm{H}, \mathrm{d}, J=0.5, \mathrm{H}-\mathrm{C} 7$), 1.75 ($3 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-\mathrm{C}^{\text {anti }}$), and 1.13 ($\left.3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 6^{\text {syn }}\right) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta_{\mathrm{C}}=168.2$ (C1"), 165.9 (C4), 165.4 (C3'), 154.8 (2C, C3'), 139.0 (C4'), 136.0 (C7"), 134.4 (C4"), 132.4 (2C, C5'), 130.6 (2C, C6'), 130.3 (C1'), 118.6 (C2'), 108.2 (2C, C2'), 86.6 (C2), 65.1 (C5), 60.7 (C6'), 56.8 (2C, C5'), 38.2 (C8), 27.3 ($\mathrm{C}^{\text {anti }}$), 26.2 (C7), and 25.5 ($\mathrm{C}^{\mathrm{syn})}$) ppm; IR (ATR): $\tilde{v}=3382 \mathrm{br}, 3068 \mathrm{w}, 2984 \mathrm{w}, 1704 \mathrm{~s}$, 1622s, 1588s, $1517 \mathrm{~m}, 1441 \mathrm{~m}, 1403 \mathrm{~m}, 1392 \mathrm{~m}, 1325 \mathrm{w}$, $1277 \mathrm{w}, 1233 \mathrm{w}, 1198 \mathrm{~m}, 1178 \mathrm{~m}, 1153 \mathrm{w}, 1073 \mathrm{~s}, 999 \mathrm{~s}, 931 \mathrm{~m}, 852 \mathrm{w}, 813 \mathrm{w}, 756 \mathrm{~m}, 726 \mathrm{w}, 684 \mathrm{~m}$, and 621s cm ${ }^{-1}$; HR-ESI-MS: $m / z: 423.22755\left(\left[M-\mathrm{ClO}_{4}\right]^{+}\right.$, calcd for $\left.\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}: 423.22838\right)$.

Catalysis with HPLC Data

General Procedure for the Friedel-Crafts Reaction of 1-Methyl-1H-pyrrole (11) and (E)Cinnamaldehyde to give 3-(1-Methyl-1H-pyrrol-2-yl)-3-phenylpropan-1-ol (31) ${ }^{3}$

To the corresponding imidazolidinone catalyst ($33.0 \mu \mathrm{~mol}$, 0.2 equiv.) was added TFA ($3.76 \mathrm{mg}, 33.0 \mu \mathrm{~mol}, 0.2$ equiv.) in THF (0.33 mL) and $\mathrm{H}_{2} \mathrm{O}$ $(0.05 \mathrm{~mL})$ and the solution was stirred for 5 min at the given temperature before (E)-cinnamaldehyde was added ($63 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 3.0$ equiv.). After an additional 30 min , 1 -methyl- 1 H -pyrrole (11) $(15 \mu \mathrm{~L}, \quad 0.17 \mathrm{mmol}$, 1.0 equiv.) was added and the yellow solution stirred for the given time, after which complete conversion of the starting material was observed by TLC. EtOH (0.5 mL) and NaBH_{4} ($19.0 \mathrm{mg}, 0.50 \mathrm{mmol}, 3.0$ equiv.) were added (and the mixture warmed to RT). The reduction was quenched with aqueous saturated NaHCO_{3} after 30 min and extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4} and evaporated in vacuo. The crude product 31 was purified by column chromatography (CH/EtOAc 4:1). The enantioselectivities were determined by chiral HPLC on a Chiracel OJ-H column, using n-hexane $/ i$ - $\mathrm{PrOH} 85: 15$ as eluent $(1.0 \mathrm{~mL} / \mathrm{min})$. Retention times of the two enantiomers are: $11 \mathrm{~min}(R)$ and $18 \mathrm{~min}(S)$.
$R_{\mathrm{f}}=0.58(\mathrm{CH} / \mathrm{EtOAc} 1: 1) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.33-7.23(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{C} 6), 7.23-$ 7.09 (3H, m, H-C5, H-C7), 6.53 ($1 \mathrm{H}, \mathrm{t}, J=2.3, \mathrm{H}-\mathrm{C} 5 '), 6.19-6.14$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{C} 3$ '), $6.14-$ $6.07(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{C} 4$ '), $4.12(1 \mathrm{H}, \mathrm{t}, J=7.5, \mathrm{H}-\mathrm{C} 3), 3.75-3.56(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{C} 1), 3.30(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ $\left.\mathrm{C}^{\prime}\right)$, $2.34(1 \mathrm{H}, \mathrm{dq}, J=13.4,7.1, \mathrm{H}-\mathrm{C} 2), 2.10(1 \mathrm{H}, \mathrm{ddt}, J=14.0,8.5,5.7, \mathrm{H}-\mathrm{C} 2)$, and 1.45 ($1 \mathrm{H}, \mathrm{b}, \mathrm{H}-\mathrm{O}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=143.6$ (C4), 135.0 (C2'), 128.7 (2C, C6), 128.0 (2C, C5), 126.5 (C7), 122.0 (C5'), 106.4 (C4'), 105.8 (C3'), 60.8 (C1), 39.6 (C2), 39.1 (C6'), and 34.0 (C3) ppm; HR-ESI-MS: $m / z: 238.1208\left([M+N a]^{+}\right.$, calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NONa}^{+}$: 238.1202); analytical data in agreement with the literature. ${ }^{15}$

General Procedure for the Friedel-Crafts Reaction of 1-Methyl-1H-indole (10) and (E)-

 Cinnamaldehyde to give 3-(1-Methyl-1H-indole-3-yl)-3-phenylpropan-1-ol (32)

To the corresponding imidazolidinone catalyst ($33.0 \mu \mathrm{~mol}$, 0.2 equiv.) was added TFA ($3.76 \mathrm{mg}, 33.0 \mu \mathrm{~mol}$, 0.2 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.28 \mathrm{~mL}$) and $i-\mathrm{PrOH}(0.05 \mathrm{~mL})$ and the solution was stirred for 5 min at the given temperature before (E)-cinnamaldehyde was added $(63 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$, 3.0 equiv.). After an additional 30 min , 1 -methyl- 1 H -indole (10) ($15 \mu \mathrm{~L}$,
$0.17 \mathrm{mmol}, 1.0$ equiv.) was added and the yellow solution stirred for the given time, after which complete conversion of the starting material was observed by TLC. $\mathrm{EtOH}(0.5 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(19.0 \mathrm{mg}, 0.50 \mathrm{mmol}, 3.0$ equiv.) were added (and the mixture warmed to RT). The reduction was quenched with aqueous saturated NaHCO_{3} after 30 min and extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4} and evaporated in vacuo. The crude product 32 was purified by column chromatography $(\mathrm{CH} / \mathrm{EtOAc} 5: 1)$. The enantioselectivities were determined by chiral HPLC on a Reprosil Chiral-OM column, using n-hexane $/ i$ - $\mathrm{PrOH} 85: 15$ as eluent $(1.0 \mathrm{~mL} / \mathrm{min})$. Retention times of the two enantiomers are: $15 \mathrm{~min}(R)$ and $21 \mathrm{~min}(S)$.
$R_{\mathrm{f}}=0.17(\mathrm{CH} / \mathrm{EtOAc} 3: 1) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.39(1 \mathrm{H}, \mathrm{d}, J=7.8, \mathrm{H}-\mathrm{C} 5$ '), 7.28-7.16 (5H, m, H-C5, H-C6, H-C7), 7.14-7.05 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{C} 7$ ', H-C8'), 6.94 ($1 \mathrm{H}, \mathrm{t}$,
$J=7.8, \mathrm{H}-\mathrm{C} 6 '), 6.82(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 2 '), 4.31(1 \mathrm{H}, \mathrm{t}, J=7.8, \mathrm{H}-\mathrm{C} 3), 3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 10^{\prime}\right), 3.59$ ($2 \mathrm{H}, \mathrm{td}, J=6.4,2.2, \mathrm{H}-\mathrm{C} 1), 2.48-2.30(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{C} 2), 2.27-2.13(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{C} 2)$, and 1.46 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{O}$) ppm; HR-ESI-MS: $\mathrm{m} / \mathrm{z}: 288.1361\left([M+\mathrm{Na}]^{+}\right.$, calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NONa}^{+}$: 288.1359); analytical data in agreement with the literature. ${ }^{16}$

General Procedure for the Conjugate Addition of Benzyl-(tertbutyldimethylsilyloxy)carbamate (12) and (E)-Crotonaldehyde to give N-tert-Butyldimethylsilyloxy[benzyl-(S)-1-formylpropan-2-ylcarbamate] (33) ${ }^{17}$

The corresponding imidazolidinone ($0.05 \mathrm{mmol}, 0.2$ equiv.) and $p \mathrm{TSA} \cdot \mathrm{H}_{2} \mathrm{O}\left(0.05 \mathrm{mmol}, 0.2\right.$ equiv.) were dissolved in $\mathrm{CHCl}_{3}(1.0 \mathrm{~mL})$, stirred for 10 min and the solvent was removed to yield an off-white solid. After dissolving the solid in $\mathrm{CHCl}_{3}(0.75 \mathrm{~mL})$ and cooling to $-20^{\circ} \mathrm{C}$, crotonaldehyde ($0.75 \mathrm{mmol}, 3.0$ equiv.) and benzyl-(tertbutyldimethylsilyloxy)carbamate (12) (0.25 mmol , 1.0 equiv., in $0.25 \mathrm{~mL} \mathrm{CHCl}_{3}$) were added. The reaction occurred within 5 days at $-20^{\circ} \mathrm{C}$. The crude reaction mixture was filtered through a silica plug, eluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 95: 5 \rightarrow 90: 10$) to give the product 33 . Determination of the enantiomeric excess was accomplished by HPLC analysis (Reprosil Chiral OM $5 \mu \mathrm{~m} 250.4 .6 \mathrm{~mm}$ column, n-hexane $/ i$ - $\mathrm{PrOH} 95: 5,1.0 \mathrm{~mL} / \mathrm{min}$) of the corresponding alcohol after reduction with NaBH_{4} with the minor enantiomer at 6 min and the major enantiomer between 7 min .
$R_{\mathrm{f}}=0.60\left(n\right.$-pentane $\left./ \mathrm{Et}_{2} \mathrm{O} 7: 3\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.64(1 \mathrm{H}, \mathrm{t}, J=1.8, \mathrm{H}-\mathrm{C} 5)$, $7.26\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{C}^{\mathrm{Ar}}\right), 5.05\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{Cl}^{\prime}\right), 4.41(1 \mathrm{H}, \mathrm{h}, J=6.8, \mathrm{H}-\mathrm{C} 3), 2.71(1 \mathrm{H}, \mathrm{ddd}, J=$ $16.8,6.8,1.8, \mathrm{H}-\mathrm{C} 9)$, $2.51(1 \mathrm{H}, \mathrm{ddd}, J=16.8,6.8,1.8, \mathrm{H}-\mathrm{C} 9), 1.17$ (3H, d, $J=6.8,3 \mathrm{H}, \mathrm{H}-$ C6), 0.81 ($9 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 3 "), 0.00$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 1$ "), and -0.01 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 1$ ") ppm; HR-ESI-MS: $m / z: 352.1939\left([M+H]^{+}\right.$, calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{Si}^{+}$: 352.1944); analytical data in agreement with the literature. ${ }^{17}$

Preparation of Benzyl-(tert-butyldimethylsilyloxy)carbamate (12) ${ }^{17}$

N -(Benzyloxycarbonyl)hydroxylamine ($5 \mathrm{mmol}, 1.0$ eq.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL) and triethylamine ($5.5 \mathrm{mmol}, 1.1 \mathrm{eq}$. .), cooled to $0^{\circ} \mathrm{C}$ and tert-butylchlorodimethylsilane ($5.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min , gradually warmed to RT and stirred for 12 h . The crude solution was washed with $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$, brine (25 mL) and was dried over MgSO_{4}. Purification by $\mathrm{CC}\left(\mathrm{SiO}_{2}\right.$; pentane/ $\left.\mathrm{Et}_{2} \mathrm{O} 9: 1\right)$ yielded a clear oily product which crystallized to a white solid at $-4^{\circ} \mathrm{C}(70 \%)$.
$R_{\mathrm{f}}=0.67$ (n-pentane/Et $\mathrm{E}_{2} \mathrm{O} 7: 3$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.31-7.20\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{C}^{\mathrm{Ar}}\right.$), $6.88\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{N}^{\text {amide }}\right), 5.08(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 2), 0.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 3\right.$ '), and $0.06\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C} 1^{\prime}\right) \mathrm{ppm}$; HR-ESI-MS: m/z: $304.1350\left([M+\mathrm{H}]^{+}\right.$, calcd for $\left.\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{SiNa}^{+}: 304.1344\right)$; analytical data in agreement with the literature. ${ }^{17}$

HPLC data for the Friedel-Crafts reaction of 1-methyl-1H-pyrrole (11) and (E)cinnamaldehyde to give 3-(1-methyl-1H-pyrrole-3-yl)-3-phenylpropan-1-ol (31)

Catalyst:

Column: Chiracel OJ-H PrOH : "Hexane: 15:85
$1.0 \mathrm{mLmin}^{-1}$ $e e:-1 \%$

Catalyst:

Column: Chiracel OJ-H PrOH : "Hexane: 15:85 $1.0 \mathrm{mLmin}^{-1}$ ee: 84%

Catalyst:

Column: Chiracel OJ-H
PrOH : "Hexane: 15:85
$1.0 \mathrm{mLmin}^{-1}$
$e e: 85 \%$

Catalyst:

Column: Chiracel OJ-H PrOH : "Hexane: 15:85
$1.0 \mathrm{mLmin}^{-1}$
ee: 65%

Signal 2: DAD1 D, Sig=230,16 $\operatorname{Ref}=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	11.304		0.2978	159.65663	8.39855	49.2776
2	18.311	MM	0.6349	164.33765	4.31425	50.7224

Signal 2: DAD1 D, Sig=230,16 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~A} \text { s }} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \frac{\%}{8} \end{gathered}$
1	11.374		0.3197	37.02241	1.93008	8.1713
2	18.497	MM	0.6534	416.05359	10.61296	91.8287

Signal 2: DAD1 D, Sig=230,16 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area $\%$
1	11.410	MM	0.3221	66.44230	3.43754	7.5928
2	18.450	MM	0.6536	808.62244	20.61821	92.4072

Signal 2: DAD1 D, Sig=230,16 $\operatorname{Ref}=360,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{U}^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	11.345	MM	0.3154	74.91003	3.95791	17.2754
2	18.400	MM	0.6400	358.71158	9.34160	82.7246

Catalyst:

Column: Chiracel OJ-H
PrOH : "Hexane: 15:85
$1.0 \mathrm{mLmin}^{-1}$
ee: 70\%

Catalyst:

Column: Chiracel OJ-H
PrOH : "Hexane: 15:85
$1.0 \mathrm{mLmin}^{-1}$
ee: 87%

Catalyst:

Column: Chiracel OJ-H
PrOH : "Hexane: 15:85
$1.0 \mathrm{mLmin}^{-1}$
ee: 90%

Catalyst:

Column: Chiracel OJ-H
PrOH : "Hexane: 15:85
$1.0 \mathrm{mLmin}^{-1}$
$e e: 88 \%$

Signal 2: DAD1 D, Sig=230,16 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	11.213		0.3169	74.36226	3.91120	15.1011
2	18.135	MM	0.6144	418.06561	11.34137	84.8989

Signal 3: DAD1 D, Sig=230,16 $\operatorname{Ref}=360,100$

Signal 2: DAD1 D, Sig=230,16 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{O}^{*}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	11.343	MM	0.3343	46.27386	2.30669	5.1036
2	18.329	MM	0.6373	860.41650	22.50143	94.8964

Signal 3: DAD1 D, Sig=230,16 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	11.406	MM	0.3320	15.04963	$7.55398 \mathrm{e}-1$	5.9233
2	18.676	MM	0.6640	239.02528	5.99975	94.0767

Catalyst:

Column: Chiracel OJ-H
PrOH : "Hexane: 15:85
$1.0 \mathrm{mLmin}^{-1}$
$e e: 80 \%$

Signal 2: DAD1 D, Sig=230,16 Ref $=360,100$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	11.486	MM	0.3410	25.36401	1.23985	9.9230
2	18.684	MM	0.6797	230.24394	5.64561	90.0770

Signal 2: DAD1 D, Sig=230,16 Ref=360,100

Peak \#	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} S\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	11.489	MM	0.3506	16.80299	$7.98853 \mathrm{e}-1$	8.6029
2	18.748	MM	0.7081	178.51518	4.20154	91.3971

Signal 2: DAD1 D, Sig $=230,16$ Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	11.456		0.2922	7.57390	$4.32039 \mathrm{e}-1$	2.8617
2	18.569	MM	0.6513	257.09509	6.57883	97.1383

HPLC data for the Friedel-Crafts reaction of 1-methyl-1H-indole (10) and (E)cinnamaldehyde to give 3-(1-methyl-1 H -indole-3-yl)-3-phenylpropan-1-ol (32)

Catalyst:

Column: Reprosil Chiral OM
PrOH : "Hexane: 15:85
$1.0 \mathrm{mLmin}^{-1}$
ee: 31%

Catalyst:

Column: Reprosil Chiral OM PrOH : "Hexane: 15:85
$1.0 \mathrm{mLmin}^{-1}$
ee: 76\%

Catalyst:

Column: Reprosil Chiral OM
PrOH : "Hexane: 15:85
$1.0 \mathrm{mLmin}^{-1}$
$e e:-14 \%$

Signal 3: DAD1 D, Sig=230,16 $\operatorname{Ref}=360,100$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	15.591		0.5127	1350.40784	40.95087	65.7272
2	21.300	BB	0.7040	704.15778	15.26964	34.2728

Signal 3: DAD1 D, Sig=230,16 $\operatorname{Ref}=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU}]} \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	15.631	MM	0.5583	5259.48438	157.01529	88.0622
2	21.458	MM	0.8030	712.97803	14.79892	11.9378

Signal 3: DAD1 D, Sig=230,16 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	17.568		0.6245	2127.17017	56.76834	42.9006
2	23.364	MM	0.8567	2831.20044	55.07951	57.099

Catalyst:

Column: Reprosil Chiral OM PrOH : "Hexane: 15:85
$1.0 \mathrm{mLmin}^{-1}$
$e e:-20 \%$

Catalyst:

Column: Reprosil Chiral OM PrOH : "Hexane: 15:85
$1.0 \mathrm{mLmin}^{-1}$
ee: 37\%

Catalyst:

Column: Reprosil Chiral OM PrOH : "Hexane: 15:85
$1.0 \mathrm{mLmin}^{-1}$
ee: 30\%

Catalyst:

Column: Reprosil Chiral OM PrOH : "Hexane: 15:85
$1.0 \mathrm{mLmin}^{-1}$
ee: 32%

Signal 1: DAD1 A, Sig $=254,4$ Ref $=360,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	15.217	BB	0.4909	435.55875	13.92667	68.9456
2	20.712	BB	0.6092	196.18393	4.66004	31.0544

Signal 3: DAD1 D, Sig=230,16 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	16.700		0.5718	3155.68799	86.05006	65.9419
2	22.721		0.7818	1629.86987	32.13181	34.0581

Catalyst:

Column: Reprosil Chiral OM PrOH : "Hexane: 15:85
$1.0 \mathrm{mLmin}^{-1}$
$e e: 41 \%$

Catalyst:

Column: Reprosil Chiral OM
PrOH : "Hexane: 15:85
$1.0 \mathrm{mLmin}^{-1}$
$e e: 36 \%$

Catalyst:

Column: Reprosil Chiral OM PrOH : "Hexane: 15:85
$1.0 \mathrm{mLmin}^{-1}$
$e e: 44 \%$

Signal 3: DAD1 D, Sig=230,16 $\operatorname{Ref}=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~S}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	17.886		0.6447	3160.37720	81.69723	70.4896
2	23.821	MM	0.8485	1323.08850	25.98728	29.5104

Signal 3: DAD1 D, Sig=230,16 $\operatorname{Ref}=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	17.688	MM	0.6512	3052.19995	78.11877	67.92
2	23.496	MM	0.8946	1440.97632	26.84441	32.0703

Signal 3: DAD1 D, Sig=230,16 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAu]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	17.394		0.6195	2424.97070	65.24243	72.1644
2	23.166	MM	0.8157	935.36932	19.11241	27.8356

HPLC data for the conjugate addition of benzyl-(tertbutyldimethylsilyloxy)carbamate (12) and (E)-crotonaldehyde to give N-tert-butyldimethylsilyloxy[benzyl-(S)-1-formylpropan-2-ylcarbamate] (33)

Catalyst:

Column: Reprosil Chiral OM
PrOH : "Hexane: 5:95
$1.0 \mathrm{mLmin}^{-1}$
$e e: 0 \%$

Catalyst:

Column: Reprosil Chiral OM PrOH : "Hexane: 5:95
$1.0 \mathrm{mLmin}^{-1}$
ee: 40%

Catalyst:

Column: Reprosil Chiral OM
PrOH : "Hexane: 5:95
$1.0 \mathrm{mLmin}^{-1}$
$e e: 91 \%$

Signal 2: DAD1 C, Sig=210,8 Ref=360,100

Peak \#	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} S\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	6.369		0.1644	145.51826	13.64414	30.0197
2	6.773		0.181	339	29.	69.9803

Signal 2: DAD1 C, Sig=210,8 $\operatorname{Ref}=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	6.276		0.1508	68.67981	7.10323	4.68
2	6.601	vB	0.1722	1396.02209	126.9947	95.31

Catalyst:

Column: Reprosil Chiral OM PrOH : "Hexane: 55:95
$1.0 \mathrm{mLmin}^{-1}$
$e e:-19 \%$

Catalyst:

Column: Reprosil Chiral OM
PrOH : "Hexane: 5:95
$1.0 \mathrm{mLmin}^{-1}$
$e e: 1 \%$

Catalyst:

Column: Reprosil Chiral OM PrOH : "Hexane: 5:95
$1.0 \mathrm{mLmin}^{-1}$
$e e: 24 \%$

Catalyst:

Column: Reprosil Chiral OM PrOH : "Hexane: 5:95
$1.0 \mathrm{mLmin}^{-1}$
$e e: 15 \%$

Signal 2: DAD1 C, Sig $=210,8$ Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	$\begin{aligned} & \text { Width } \\ & {[\mathrm{min}]} \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{O}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU]] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	6.421		0.1663	498.05579	46.73677	59.4626
2	6.881	vB	0.1822	339.53918	29.08496	40.5374

Signal 2: DAD1 C, Sig=210,8 Ref=360,100

Peak \#	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	e	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~S}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	6.347		0.1633	678.10547	65.20390	49.805
2	6.79	VB	0.180	683.3944	59.317	50.1942

Signal 2: DAD1 C, Sig=210,8 $\operatorname{Ref}=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} S\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	6.376		0.1623	108.75533	10.37627	38.0745
2	6.790	vB	0.1820	176.88301	15.17692	61.9255

Signal 2: DAD1 C, Sig=210,8 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{U}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	6.343		0.1597	99.64043	9.71378	42.5490
2	6.749		0.1922	134.53789	10.88380	57.45

Catalyst:

Column: Reprosil Chiral OM
PrOH : "Hexane: 5:95
$1.0 \mathrm{mLmin}^{-1}$
$e e: 26 \%$

Catalyst:

Column: Reprosil Chiral OM PrOH : "Hexane: 5:95
$1.0 \mathrm{mLmin}^{-1}$
ee: 40%

Signal 2: DAD1 C, $\operatorname{Sig}=210,8$ Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	6.389		0.1605	161.93213	15.67273	36.8641
2	6.879	VB	0.1841	277.33594	23.77788	63.1359

Signal 2: DAD1 C, Sig=210, 8 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{U}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	6.364	BV	0.1651	170.19603	16.13466	29.7590
2	6.817	vB	0.1812	401.71808	34.66341	70.2410

NMR-Spectra of Key Compounds

${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$,

mhg355_291112_299k_1h_1
mhg355_291112_299k_1h_1
dir: /mdata/gilmour/mhg355
600 MHz , probe: hfx
(
${ }^{13} \mathrm{C}$ NMR (151 MHz ,

${ }^{19} \mathrm{~F}$ NMR (564 MHz ,

${ }^{1} \mathrm{H}$ NMR (600 MHz ,

mhg615_070213_299k_1h_1
mhg615_070213_299k_1h_1
dir: /mdata/gilmour/mhg615

${ }^{13} \mathrm{C}$ NMR (151 MHz ,

${ }^{19} \mathrm{~F}$ NMR (564 MHz ,

${ }^{1} \mathrm{H}$ NMR (600 MHz ,

mhg553_061212_299k_1h_1
mhg553_061212_299k_1h_1
dir: /mdata/gilmour/mhg553
600 MHz , probe: hfx

${ }^{13} \mathrm{C}$ NMR (151 MHz ,

${ }^{1} \mathrm{H}$ NMR (600 MHz ,

${ }^{13} \mathrm{C}$ NMR (151 MHz ,

${ }^{1} \mathrm{H}$ NMR (600 MHz ,

${ }^{13} \mathrm{C}$ NMR (151 MHz ,

${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$,

${ }^{13} \mathrm{C}$ NMR (151 MHz ,

${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$,

mhg548_041212_299k_1h_1
mhg548_041212_299k_1h_1
dir: /mdata/gilmour/mhg548
600 MHz , probe: autoX_DB

${ }^{13} \mathrm{C}$ NMR (151 MHz ,

${ }^{1} \mathrm{H}$ NMR (300 MHz ,

${ }^{1} \mathrm{H}$ NMR (300 MHz,

Apr02-2013
gil holland mhg 626
gil holland mhg 626
proton CDCI3 /opt/topspin av1 46

${ }^{1}$ H NMR (300 MHz,

-

DFT Calculations

All calculations were performed with the TURBOMOLE 6.5 program. ${ }^{18}$ The structures were optimized without any geometry constraints using the TPSS functional ${ }^{19}$, which has been successfully applied to supramolecular thermochemistry, ${ }^{23}$ and an atom-pairwise dispersion correction (D3). ${ }^{20,}{ }^{21} \mathrm{~A}$ flexible triple zeta basis set (def2-TZVP) ${ }^{22}$ was used in all calculations. For the calculation of zero point vibrational energies and free enthalpy contributions, a rotor approximation was applied for vibrational modes with wave numbers below $100 \mathrm{~cm}^{-1} .{ }^{23}$ Solution energies were obtained with the COSMO model ${ }^{24}$ as implemented in Turbomole with $\varepsilon=37.5$.

Structures of conformers of iminium cations 1 and 2. The Ar-C-C-N ${ }^{+}$torsional angle is printed with each conformer.

1 (I)

1 (II)

2 (I)

2 (II)

2 (III)

Calculated electronic energies, COSMO single point energies, zero point vibrational energies (ZPVE) and free enthalpy corrections (G298K) of the conformers of iminium cations $\mathbf{1}$ and $\mathbf{2}$.

	$\begin{gathered} \mathrm{E} \\ {\left[\mathrm{E}_{\mathrm{h}}\right]} \end{gathered}$	$\begin{gathered} \text { ZPVE } \\ {\left[\mathrm{kcal} \mathrm{~mol}^{-1}\right]} \end{gathered}$	$\begin{gathered} \mathrm{G}(298 \mathrm{~K}) \\ {\left[\mathrm{kcal} \mathrm{~mol}^{-1}\right.} \end{gathered}$	$\begin{gathered} \mathrm{E}(\mathrm{COSMO}, \varepsilon=37.5) \\ {\left[\mathrm{E}_{\mathrm{h}}\right]} \\ \hline \end{gathered}$
1 (I)	-1038,5608195	262,273	231,150	-1038,6352690
1 (II)	-1038,5599768	262,194	230,933	-1038,6347469
1 (III)	${ }^{\text {[a] }}$			
2 (I)	-1534,9658731	236,590	202,274	-1535,0444704
2 (II)	-1534,9697294	236,671	202,503	-1535,0466940

$\mathbf{2}$ (III)	$-1534,9667378$	236,541	201,985	$-1535,0433049$

${ }^{[a]}$ no local minimum for III found, optimization converges to conformer II
Calculated relative energies (vacuum and solution), ZPVE-corrected relative energies and relative free enthalpies ($\mathrm{T}=\mathbf{2 9 8 K}$) of the conformers of iminium cations $\mathbf{1}$ and $\mathbf{2}$.

	$\begin{gathered} \Delta \mathrm{E}_{\text {rel }} \\ {\left[\mathrm{kcal} \mathrm{~mol}^{-1}\right]} \end{gathered}$	$\begin{gathered} \Delta(\mathrm{E}+\mathrm{ZPVE})_{\mathrm{rel}} \\ {\left[\mathrm{kcal} \mathrm{~mol}^{-1}\right]} \end{gathered}$	$\begin{gathered} \Delta \mathrm{G}_{\mathrm{rel}(298 \mathrm{~K})} \\ {\left[\mathrm{kcal} \mathrm{~mol}^{-1}\right]} \end{gathered}$	$\begin{gathered} \Delta \mathrm{E}_{\mathrm{rel}} \text { (COSMO, } \\ \varepsilon=37.5) \\ {\left[\mathrm{kcal} \mathrm{~mol}^{-1}\right]} \\ \hline \end{gathered}$
1 (I)	0,0	0,0	0,0	0,0
1 (II)	0,53	0,45	0,31	0,33
1 (III)	${ }^{[1]}$	[a]	[1]	- ${ }^{\text {a] }}$
2 (I)	2,42	2,34	2,19	1,40
2 (II)	0,0	0,0	0,0	0,0
2 (III)	1,88	1,75	1,36	2,13

${ }^{[a]}$ no local minimum for III found, optimization converges to conformer II
The values of $Q_{z z}$ for the aromatic substituents reported in the manuscript were obtained by orienting the molecule such that the center of the methyl-substituted ring was located at the origin of the coordinate system. The component of the quadrupole moment tensor perpendicular to the aromatic plane $\left(q_{z z}\right)$ was then used to obtain the traceless quadrupole moment $Q_{z z}=q_{z z}-(1 / 3 \operatorname{tr}(\mathbf{q}))$.

Cartesian Coordinates (in Å) of DFT-optimized Structures (TPSS-D3/def2-TZVP)
1 (Conformer I)

C	1.9141343	1.2246182	-2.1636464
O	2.0594090	2.0829943	-3.0159083
N	2.8928565	0.6102706	-1.4392791
C	2.4401998	-0.3836142	-0.4697891
N	0.9474527	-0.3307079	-0.7069165
C	0.5626880	0.6945414	-1.6916393
C	0.1246380	-1.1475861	-0.0960103
C	4.2981931	0.9678429	-1.5926991
C	2.7704872	0.0151468	0.9716687
C	2.9676064	-1.7816804	-0.8162314
C	-0.2963123	1.8538122	-1.1151090
C	-1.2656161	-1.2371158	-0.3068974
C	-2.0040896	-2.1353125	0.4221992
C	-3.4167060	-2.3745754	0.3432909
C	-4.2684743	-1.6751612	-0.5438799
C	-5.6246725	-1.9519557	-0.5725779
C	-6.1612825	-2.9279908	0.2786695
C	-5.3361173	-3.6287844	1.1618709
C	-3.9761100	-3.3552015	1.1946568
C	-0.2207643	2.0127994	1.4003875
C	0.3421891	2.4874678	2.5852923
C	1.4106437	3.3834897	2.5382434
C	1.9015353	3.8128144	1.3033994
C	1.3360915	3.3397600	0.1195995
C	0.2738803	2.4262213	0.1576257
H	0.0403497	0.2191923	-2.5291666
H	0.5801643	-1.8207700	0.6270640
H	4.3419352	1.7244001	-2.3771695
H	4.6943045	1.3833833	-0.6615070
H	4.8923757	0.0995159	-1.8911202
H	2.3940701	1.0144815	1.1954807
H	2.3342597	-0.7016989	1.6736019
H	3.8542356	-0.0050177	1.1121890
H	2.6882585	-2.0585672	-1.8358644

H	4.0571661	-1.7883638	-0.7326197
H	2.5827378	-2.5295053	-0.1169399
H	-1.3198749	1.5073121	-0.9485704
H	-0.3228313	2.6029589	-1.9132493
H	-1.7331094	-0.6020550	-1.0504603
H	-1.4674764	-2.7413872	1.1534359
H	-3.8640692	-0.9177068	-1.2081831
H	-6.2742847	-1.4132587	-1.2548139
H	-7.2257281	-3.1399509	0.2499990
H	-5.7564904	-4.3831725	1.8187551
H	-3.3262266	-3.8949691	1.8784068
H	1.7128391	3.6860329	-0.8391267
H	2.7185526	4.5269603	1.2619754
H	1.8477336	3.7587253	3.4584642
H	-0.0578529	2.1664485	3.5425179
H	-1.0628986	1.3249193	1.4405810

1 (Conformer II)

C	3.1803798
O	3.6310967
N	3.8846185
C	3.0773159
N	1.6946568
C	1.7013345
C	0.6664287
C	5.3436303
C	3.2060981
C	3.3999562
C	1.2310918
C	-0.6324498
C	-1.5794545
C	-2.9424183
C	-3.4904676
C	-4.8134495
C	-5.6181202
C	-5.0931946
C	-3.7667181
C	-1.2190670
C	-2.5641178
C	-2.9242319
C	-1.9335270
C	-0.5877935
C	-0.2162454
H	1.1011210
H	0.8708488
H	5.6703327
H	5.7311780
H	5.7213159
H	3.0081977
H	2.5042239
H	4.2170687
H	3.2227844
H	4.4528035
H	2.8167784
H	1.4268567
H	1.8750706
H	-0.8735815
H	-1.2780658
H	-2.8766695
H	-5.2297946
H	-6.6551142
H	-5.7182857
H	-3.3497306
H	0.1817949
H	-2.2080129
H	-3.9719947
H	-3.3318565
H	-0.9426212

$$
\begin{aligned}
& 0.9852721-1.3717347 \\
& 1.6407158-2.2920546 \\
& 0.2658268-0.4457501 \\
& -0.4158324 \quad 0.5670049 \\
& -0.1718659 \quad 0.0095033 \\
& 0.8943890-1.0020401 \\
& -0.9271224 \quad 0.3312613 \\
& 0.2401139-0.4394508 \\
& 0.2316298 \quad 1.9531517 \\
& -1.9116746 \quad 0.6138264 \\
& 2.2821999-0.4810674 \\
& -0.8623301-0.2053938 \\
& -1.7505091 \quad 0.2390988 \\
& -1.8621666-0.1972124 \\
& -1.0492626 \quad-1.2160684 \\
& -1.2021641 \quad-1.5938095 \\
& -2.1642171 \quad-0.9674685 \\
& \text {-2.9781074 } 0.0392160 \\
& -2.8298351 \quad 0.4205030 \\
& 2.5063350-1.0334319 \\
& 2.4634053-0.6701407 \\
& 2.2170968 \quad 0.6566944 \\
& 2.0378853 \quad 1.6215933 \\
& 2.0883348 \quad 1.2574979 \\
& 2.3087410-0.0735649 \\
& 0.5877757-1.8622380 \\
& -1.6949146 \quad 1.0734454 \\
& 0.9293412-1.2192667 \\
& 0.5721987 \quad 0.5281665 \\
& -0.7619540 \quad-0.6623579 \\
& 1.3042658 \quad 1.9038603 \\
& -0.2319363 \quad 2.6526882 \\
& 0.0787169 \quad 2.3397601 \\
& -2.3787439 \quad-0.3582437 \\
& -2.0359507 \quad 0.8786487 \\
& -2.4253083 \quad 1.3825954 \\
& 2.9737961-1.3068315 \\
& 2.5783129 \quad 0.3526820 \\
& -0.1052677 \quad-0.9424305 \\
& -2.4551599 \quad 1.0154827 \\
& -0.2976560-1.7007833 \\
& -0.5771395-2.3774614 \\
& -2.2775662-1.2685952 \\
& -3.7241276 \quad 0.5189231 \\
& -3.4586669 \quad 1.2028626 \\
& 1.9642533 \quad 2.0161477 \\
& 1.8703619 \quad 2.6587808 \\
& 2.1839796 \quad 0.9388989 \\
& 2.6352002-1.4190011 \\
& 2.7093314-2.0658965
\end{aligned}
$$

2 (Conformer I)

C	1.8839219	1.1251716	-2.2264726
0	2.0207506	1.8603309	-3.1845380
N	2.8678811	0.5754023	-1.4531375
C	2.4217744	-0.3828299	-0.4442308
N	0.9230796	-0.3133759	-0.6502864
C	0.5371989	0.6980430	-1. 6462637
C	0.1029538	-1.1697793	-0.0826520
C	4.2793491	0.8460023	-1.7075234
C	2.7921309	0.0484427	0.9779224
C	2.9268540	-1.7970901	-0.7578743
C	-0.2421892	1.9204121	-1.0827964
C	-1.2824889	-1.2590596	-0.3017190
C	-2.0138180	-2.2021932	0.3785259
C	-3.4248852	-2.4393779	0.2976738
C	-4.2860655	-1.6903892	-0.5392043
C	-5.6422793	-1.9651992	-0.5686237
C	-6.1697294	-2.9881773	0.2321193
C	-5.3355451	-3.7386033	1.0649534
C	-3.9753772	-3.4676960	1.0979968
C	-0.1342377	2.0974141	1.4386768
C	0.3800007	2.5966497	2.6310173
C	1.4031880	3.5440683	2.5862111
C	1.8868999	3.9819472	1.3527103
C	1.3472837	3.4605361	0.1778482
C	0.3326846	2.4987099	0.1854931
H	-0.0612653	0.2269118	-2.4326534
H	0.5616946	-1.8706684	0.6110763
H	4.3133069	1.6249933	-2.4701313
H	4.7694085	1.2016332	-0.7971433
H	4.7936551	-0.0453133	-2.0792543
H	2.4602210	1.0693742	1.1712770
H	2.3376364	-0.6243585	1.7111958
H	3.8761981	-0.0057728	1.1053365
H	2.6109497	-2.1078468	-1.7569544
H	4.0185566	-1.8074977	-0.7124369
H	2.5657011	-2.5184592	-0.0195942
H	-1.2823739	1.6394332	-0.9055457
H	-0.2229737	2.6671629	-1.8821610
H	-1.7592994	-0.5770821	-0.9965021
H	-1.4696471	-2.8480861	1.0687024
H	-3.8884965	-0.8958025	-1.1628532
H	-6.2995369	-1.3885835	-1.2113498
H	-7.2347390	-3.1974331	0.2040094
H	-5.7495767	-4.5285122	1.6828816
H	-3.3182385	-4.0448292	1.7431102
F	-1.1293663	1.1817395	1.5148808
F	-0.0929819	2.1714214	3.8085236
F	1.9138516	4.0306262	3.7171964
F	2.8604439	4.8954695	1.3045652
F	1.8275362	3.9121209	-0.9920017

2 (Conformer II)

C	2.5977273
O	2.6963242
N	3.6114236
C	3.1977249
N	1.7031278
C	1.2783622
C	0.9269050
C	5.0132463
C	3.5127019
C	3.7919764
C	0.6476334
C	-0.4407078
C	-1.1549399

$$
\begin{array}{rr}
1.8464996 & -1.7437509 \\
2.7455538 & -2.5567247 \\
1.1652829 & -1.1308568 \\
0.1455796 & -0.1652451 \\
0.1546716 & -0.3985538 \\
1.3321180 & -1.1673070 \\
-0.8385255 & -0.0211862 \\
1.4875057 & -1.3812683 \\
0.5467766 & 1.2815800 \\
-1.2212835 & -0.5159941 \\
2.4660313 & -0.3093902 \\
-0.9843154 & -0.3140839 \\
-2.0174262 & 0.2409987
\end{array}
$$

C	-2.5537207	-2.2864804	0.0725009
C	-3.3756792	-1.5518303	-0.8147508
C	-4.7284775	-1.8288298	-0.9042766
C	-5.2912400	-2.8437487	-0.1171969
C	-4.4936779	-3.5881979	0.7555049
C	-3.1360352	-3.3156730	0.8476585
C	-1.8604206	2.1353640	-0.3148502
C	-3.0570394	1.7323124	0.2699144
C	-3.0486236	1.2469973	1.5784225
C	-1.8505661	1.1894283	2.2902001
C	-0.6743223	1.6107900	1.6767014
C	-0.6403348	2.0825411	0.3643367
H	0.5974629	1.0330957	-1.9678517
H	1.4144724	-1.6158660	0.5619209
H	5.0198452	2.3458483	-2.0542966
H	5.5210440	1.7497559	-0.4486171
H	5.5290067	0.6495170	-1.8584220
H	3.1097970	1.5342202	1.5128624
H	3.0875601	-0.1815119	1.9779702
H	4.5955470	0.5615748	1.4291748
H	3.4994197	-1.5257807	-1.5240234
H	4.8816710	-1.1562380	-0.4682824
H	3.4870348	-1.9858616	0.2034099
H	0.4857070	3.2959250	-1.0026627
H	1.3735372	2.7917782	0.4385002
H	-0.9269928	-0.2576437	-0.9532336
H	-0.6217084	-2.6926511	0.9112568
H	-2.9497366	-0.7705970	-1.4361586
H	-5.3542502	-1.2604806	-1.5844871
H	-6.3539556	-3.0535796	-0.1900507
H	-4.9336162	-4.3752237	1.3590609
H	-2.5084078	-3.8865023	1.5268748
F	-1.8804623	2.5551782	-1.5963491
F	-4.2035655	1.7777912	-0.4184132
F	-4.1819219	0.8236035	2.1396780
F	-1.8357891	0.7133926	3.5400858
F	0.4769330	1.5191139	2.3796709

2 (Conformer III)

C	2.2968079
O	2.3699708
N	3.3356803
C	2.9614629
N	1.4608876
C	1.0027131
C	0.6649921
C	4.7255288
C	3.3499449
C	3.5162176
C	0.3227737
C	-0.7323351
C	-1.4619339
C	-2.8802683
C	-3.7420713
C	-5.1047432
C	-5.6378316
C	-4.8029108
C	-3.4364830
C	0.2782048
C	-0.2888410
C	-1.4670635
C	-2.0701354
C	-1.4740029
C	-0.2984404
H	0.3148226
H	1.1498602
H	4.7031214
H	5.2712214

1.2035072	-1.1064831
2.1559538	-1.8600717
0.4835417	-0.5827181
-0.6263581	0.2935301
-0.5842212	0.1459505
0.6315549	-0.5364091
-1.5472732	0.5579666
0.8271799	-0.8663394
-0.3688321	1.7557018
-1.9582518	-0.2197206
1.6323674	0.4416247
-1.5668901	0.3969272
-2.6340065	0.8649998
-2.8176335	0.7755855
-1.8711286	0.1697617
-2.1077664	0.1137722
-3.2854744	0.6566260
-4.2307899	1.2588947
-3.9999158	1.3184725
4.0535005	-0.3120413
5.1117678	-1.0171459
4.9048040	-1.7360347
3.6453443	-1.7414977
2.6153942	-1.0260816
2.7834101	-0.2974047
0.3635152	-1.3426420
-2.3880655	1.0483324
1.7306892	-1.4770812
1.0262741	0.0604919

H	5.2222817	0.0265840	-1.4217436
H	2.9519865	0.5881472	2.1009259
H	2.9699775	-1.1694897	2.3971562
H	4.4386277	-0.3522583	1.8506229
H	3.1880715	-2.1442434	-1.2453555
H	4.6081471	-1.9244899	-0.1969304
H	3.2069994	-2.7888199	0.4206167
H	1.0652312	2.0046684	1.1501773
H	-0.4442959	1.0940359	1.0071250
H	-1.2208142	-0.7403714	-0.1072917
H	-0.9139895	-3.4357638	1.3617541
H	-3.3417715	-0.9557434	-0.2540553
H	-5.7623897	-1.3807235	-0.3515117
H	-6.7078490	-3.4632992	0.6080842
H	-5.2214603	-5.1401439	1.6773504
H	-2.7783112	-4.7287313	1.7841309
F	1.4142056	4.2734918	0.3743368
F	0.2860732	6.3171375	-1.0129201
F	-2.0209242	5.9096091	-2.4149843
F	-3.2030695	3.4413181	-2.4240605
F	-2.0638761	1.3868887	-1.0403936

Fragmented Iminium Cation, derived from $1(\mathrm{Ar}=\mathrm{Ph})$

C	2.3698390	1.5978570	-2.1537469
0	2.6310789	2.5411506	-2.8791492
N	3.2404215	0.8905881	-1.3779331
C	2.6583876	-0.1945631	-0.5928873
N	1.2111376	-0.0890145	-1.0190865
C	0.9654761	1.0441949	-1.9270200
C	0.3110074	-0.9524626	-0.6169146
C	4.6548531	1.2371260	-1.3027328
C	2.7936781	0.0387855	0.9148074
C	3.2227026	-1.5559457	-1.0182716
C	-1.0386867	-0.9931992	-1.0193585
C	-1.8713722	-1.9518728	-0.4985324
C	-3.2614447	-2.1553911	-0.7904789
C	-3.9840910	-1.3481579	-1.7003771
C	-5.3251204	-1.5954736	-1.9395091
C	-5.9744238	-2.6484788	-1.2801206
C	-5.2776119	-3.4561702	-0.3778208
C	-3.9333689	-3.2125609	-0.1345120
C	3.3214380	3.1971042	2.6961682
C	2.6570954	3.8481576	1.6564644
C	1.2831141	3.6717929	1.4900012
C	0.5766204	2.8553637	2.3756796
C	1.2413843	2.2073023	3.4163359
C	2.6242901	2.3651733	3.5804189
H	0.5585908	0.6724533	-2.8738564
H	0.6630996	-1.7085529	0.0815647
H	4.8060374	2.0736877	-1.9861031
H	4.9238830	1.5415203	-0.2870256
H	5.2807177	0.3958017	-1.6134857
H	2.3940695	1.0144816	1.1954808
H	2.2647688	-0.7421841	1.4690775
H	3.8487011	-0.0162637	1.1950850
H	3.0817208	-1.7150263	-2.0902642
H	4.2911661	-1.5915053	-0.7917854
H	2.7449372	-2.3683520	-0.4631934
H	-1.4000194	-0.2725500	-1.7438157
H	-1.4397924	-2.6436278	0.2261729
H	-3.4916251	-0.5303476	-2.2173328
H	-5.8754825	-0.9739668	-2.6384107
H	-7.0261188	-2.8366679	-1.4732781
H	-5.7848964	-4.2698403	0.1300400
H	-3.3829432	-3.8353055	0.5658009
H	0.6857817	1.5828638	4.1108654
H	-0.4964633	2.7325597	2.2632517
H	0.7621938	4.1809867	0.6850118
H	3.2082820	4.4986787	0.9839000

S48

H	4.3905138	3.3477725	2.8316137
H	0.4201026	1.8229621	-1.3737675
H	3.1533756	1.8380785	4.3880219

Fragmented Iminium Cation, derived from $2\left(\mathrm{Ar}=\mathrm{C}_{6} \mathrm{~F}_{5}\right)$

C	1.8839217	1.1251717	-2.2264728
0	2.0207504	1.8603310	-3.1845378
N	2.8678809	0.5754023	-1.4531377
C	2.4217746	-0.3828300	-0.4442309
N	0.9230795	-0.3133760	-0.6502866
C	0.5371989	0.6980433	-1.6462635
C	0.1029540	-1.1697792	-0.0826522
C	4.2793496	0.8460022	-1.7075237
C	2.7921308	0.0484425	0.9779224
C	2.9268540	-1.7970901	-0.7578742
C	-1.2824887	-1.2590593	-0.3017188
C	-2.0138182	-2.2021931	0.3785256
C	-3.4248853	-2.4393777	0.2976737
C	-4.2860654	-1.6903894	-0.5392044
C	-5.6422795	-1.9651990	-0.5686235
C	-6.1697293	-2.9881771	0.2321193
C	-5.3355452	-3.7386036	1.0649535
C	-3.9753770	-3.4676962	1.0979969
C	2.7017812	2.6315647	3.4866244
C	3.2652040	3.5410280	2.5973619
C	2.4725481	4.0814744	1.5843736
C	1.1308498	3.7112881	1.4840628
C	0.5994851	2.7978565	2.3932720
C	1.3683153	2.2246101	3.4105567
H	-0.0612655	0.2269117	-2.4326534
H	0.5616945	-1.8706684	0.6110762
H	4.3133069	1.6249932	-2.4701313
H	4.7694083	1.2016330	-0.7971433
H	4.7936552	-0.0453134	-2.0792541
H	2.4602209	1.0693742	1.1712768
H	2.3376365	-0.6243586	1.7111956
H	3.8761982	-0.0057728	1.1053366
H	2.6109496	-2.1078472	-1.7569546
H	4.0185563	-1.8074979	-0.7124369
H	2.5657012	-2.5184595	-0.0195944
H	-1.7592994	-0.5770824	-0.9965023
H	-1.4696469	-2.8480860	1.0687022
H	-3.8884968	-0.8958026	-1.1628534
H	-6.2995370	-1.3885834	-1.2113498
H	-7.2347389	-3.1974328	0.2040094
H	-5.7495770	-4.5285126	1.6828815
H	-3.3182386	-4.0448294	1.7431103
F	3.4956971	2.1273473	4.4613129
F	4.5525515	3.8908664	2.7042011
F	2.9945632	4.9499302	0.7183854
F	0.3655693	4.2327492	0.5212166
F	-0.6979179	2.4722470	2.2755714
H	0.9439450	1.4897424	4.1104744
H	0.1421587	1.5853171	-1.1298449

Cartesian Coordinates (in \AA) of DFT-optimized Toluene Derivatives 1-9 (cf. Figure 4) (TPSS-D3/def2-TZVP)

1 (Me-Ph)

C	-0.7258839
C	-0.0071598
C	1.3873556
C	2.0906122
C	1.3873556
C	-0.0071598
C	-2.2355186

-0.0320580	0.0000000
-0.0230995	-1.2018661
0.0005608	-1.2048560
0.0136559	-0.0000000
0.0005608	1.2048560
-0.0230995	1.2018661
-0.0265516	-0.0000000

	-0.5475805	-0.0378004	-2.1459965
H	-0.9251214	0.0046215	-2.1492049
H	3.1768108	0.0290879	-0.0000000
H	1.9251214	0.0046215	2.1492049
H	-0.5475805	-0.0378004	2.1459965
H	-2.6337660	-0.5277290	0.8876717
H	-2.6221455	1.0007222	-0.0000000
H	-2.6337660	-0.5277290	-0.8876717

$2\left(\mathrm{Me}-\mathrm{C}_{6} \mathrm{~F}_{5}\right)$

C	-0.7550270
C	-0.0189840
C	1.3733425
C	2.0735925
C	1.3733427
C	-0.0189842
C	-2.2608919
F	-0.6687350
F	2.0426972
F	3.4144915
F	2.0426979
F	-0.6687356
H	-2.6381936
H	-2.6565449
H	-2.6381935

0.0256081	0.0000000
0.0146870	-1.1853584
-0.0003970	-1.2045158
-0.0087399	0.0000000
-0.0003811	1.2045158
0.0146747	1.1853584
0.0373949	0.0000000
0.0213680	-2.3699625
-0.0076219	-2.3687546
-0.0245794	-0.0000000
-0.0075603	2.3687546
0.0213114	2.3699625
0.5437646	0.8905380
-0.9849160	-0.0000054
0.5437739	-0.8905327

$3\left(\mathrm{Me}-\mathrm{C}_{6} \mathrm{~F}_{3} \mathrm{H}_{2}\right)$

C	-0.7413205
C	0.0133739
C	1.4017957
C	2.0667029
C	1.4017957
C	0.0133739
C	-2.2460467
F	-0.6544658
F	3.4220369
F	-0.6544658
H	-2.6244494
H	-2.6466698
H	-2.6244494
H	1.9363950
H	1.9363950

0.0120249	0.0000000
0.0010227	-1.1747142
-0.0132502	-1.2186362
-0.0203394	0.0000000
-0.0132502	1.2186362
0.0010227	1.1747142
0.0248277	0.0000000
0.0070441	-2.3576197
-0.0351946	0.0000000
0.0070441	2.3576197
0.5315475	0.8901786
-0.9959207	0.0000000
0.5315475	-0.8901786
-0.0190225	2.1603171
-0.0190225	-2.1603171

$4\left(\mathrm{Me}-\mathrm{C}_{6} \mathrm{FH}_{4}\right)$

C	-0.7397549
C	-0.0197824
C	1.3748535
C	2.0465957
C	1.3748535
C	-0.0197824
C	-2.2495103
H	-0.5563941
H	1.9355132
H	1.9355132
H	-0.5563941
H	-2.6479683
H	-2.6380799
H	-2.6479683
F	3.4083054

-0.0204227	0.0000000
-0.0113613	-1.2011032
0.0122877	-1.2144149
0.0253101	0.0000000
0.0122877	1.2144149
-0.0113613	1.2011032
-0.0137252	0.0000000
-0.0255312	-2.1467143
0.0161529	-2.1433701
0.0161529	2.1433701
-0.0255312	2.1467143
-0.5160437	0.8868185
1.0126772	0.0000000
-0.5160437	-0.8868185
0.0451516	0.0000000

$5\left(\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})\right)$

$\begin{array}{lr}\mathrm{C} & -0.1685501 \\ \mathrm{C} & -1.2672311 \\ \mathrm{C} & -1.1055188 \\ \mathrm{C} & 0.1816030 \\ \mathrm{C} & 1.2913905 \\ \mathrm{C} & 1.1083019\end{array}$
0.9697370
0.0981335
-1.2832152
-1.8276208
-0.9814347
0.4021411
-0.0078386
-0.0057661
-0.0000649
0.0030026
-0.0016923
-0.0075071

C	-0.3621507	2.4669162	0.0040893
O	0.2913883	-3.1998352	0.0072390
H	-2.2745484	0.5089527	-0.0101911
H	-1.9623980	-1.9497669	-0.0005924
H	2.2966486	-1.3996168	-0.0036936
H	1.9819732	1.0498977	-0.0131485
H	0.5816947	2.9863995	-0.1862880
H	-0.7430248	2.8114239	0.9737630
H	-1.0829142	2.7819761	-0.7587880
H	1.2333360	-3.4340883	0.0074766

$6\left(\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OMe})_{2}\right)$

C	0.0033148
C	-1.1960063
C	-1.1683425
C	0.0435973
C	1.2368672
C	1.2257381
C	-0.0144100
O	-2.2920484
O	2.3806972
C	-3.5555179
C	3.6258911
H	-2.1352866
H	2.1502485
H	0.4706707
H	-1.0385401
H	0.5244737
H	-4.3024598
H	-3.7027270
H	-3.6481001
H	4.3938783
H	3.7561633
H	3.7015411
H	0.0604310

1.4001237	-0.0080557
0.6847308	-0.0405313
-0.7179107	-0.0316808
-1.4038475	0.0091791
-0.6804137	0.0414240
0.7194707	0.0330931
2.9106659	-0.0172194
-1.5042260	-0.0614465
-1.4368591	0.0806101
-0.8392245	-0.1037568
-0.7380718	0.1145785
1.2251491	-0.0722485
1.2857262	0.0580428
3.3159187	0.8786001
3.2927974	-0.0506195
3.3058448	-0.8863943
-1.6337585	-0.1219907
-0.2124958	0.7850151
-0.2227259	-1.0069350
-1.5119853	0.1424074
-0.1183489	-0.7817538
-0.1081215	1.0100535
-2.4880196	0.0158811

7 (Me-N-Methyl-Indole)

C	-1.3415212
C	-2.4775356
C	-2.3789301
C	-1.1424513
C	-0.0026753
C	-0.0763898
N	1.3363366
C	1.2728701
C	2.0961443
C	1.6887559
H	-1.4304286
H	-3.4608995
H	-3.2856689
H	-1.0700728
H	3.1762110
H	2.7788486
H	1.3055410
H	1.3055410
H	1.7063245

0.8556560	0.0000000
0.0558335	0.0000000
-1.3498761	0.0000000
-1.9866727	0.0000000
-1.1788151	0.0000000
0.2442077	0.0000000
-1.5123508	0.0000000
0.7484169	0.0000000
-0.3520900	0.0000000
2.1869677	0.0000000
1.9388942	0.0000000
0.5172967	0.0000000
-1.9478870	0.0000000
-3.0711160	0.0000000
-0.4074195	0.0000000
2.2810677	0.0000000
2.7140894	0.8827429
2.7140894	-0.8827429
-2.4502918	0.0000000

8 (Me-Indole)

C	-2.5120739
C	-3.3677066
C	-2.8677481
C	-1.5014600
C	-0.6445493
C	-1.1256988
N	0.7322842
C	0.0191816

$$
\begin{array}{rr}
0.5404681 & 0.1323922 \\
-0.5527138 & 0.1880531 \\
-1.8702049 & 0.1849151 \\
-2.1235754 & 0.1260621 \\
-1.0216123 & 0.0702107 \\
0.3196298 & 0.0721289 \\
-0.9550725 & 0.0060686 \\
1.1912300 & 0.0065311
\end{array}
$$

C	1.1241102	0.3747992	-0.0318776
C	0.0017844	2.6884375	-0.0151609
H	-2.9096991	1.5520054	0.1354328
H	-4.4413249	-0.3942771	0.2349102
H	-3.5623475	-2.7040927	0.2292961
H	-1.1192963	-3.1410257	0.1238195
H	2.1730116	0.6330873	-0.0838608
H	1.0171540	3.0926875	-0.0677992
H	-0.4763858	3.0959425	0.8844189
H	-0.5572584	3.0694513	-0.8790192
H	1.3567930	-1.7464833	-0.0106841

$9\left(\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{2}(\mathrm{OMe})_{3}\right)$

C	-0.4040767	1.7741607	-0.0001303
C	-1.5016886	0.9125034	-0.0001204
C	-1.3172256	-0.4723279	0.0001397
C	-0.0242078	-1.0398876	-0.0000152
C	1.0771690	-0.1606026	0.0001735
C	0.8786836	1.2253190	0.0001623
C	-0.5972762	3.2718173	-0.0005535
O	-0.0169235	-2.4078097	-0.0004118
O	-2.3437084	-1.3794411	0.0005147
O	2.3350616	-0.7272695	0.0003398
C	1.1927312	-3.1787447	-0.0007826
C	-3.6704557	-0.8560521	0.0005850
C	3.4548280	0.1556464	0.0007063
H	-2.5038446	1.3262482	-0.0002843
H	1.7372383	1.8876953	0.0001010
H	-0.1395657	3.7335948	0.8826935
H	-1.6605637	3.5288696	-0.0009927
H	-0.1389411	3.7331520	-0.8837032
H	0.8473561	-4.2146915	-0.0011064
H	1.7918135	-2.9839544	-0.8941513
H	1.7920417	-2.9845797	0.8925586
H	-4.3256367	-1.7280952	0.0013995
H	-3.8587306	-0.2500024	0.8964461
H	-3.8593237	-0.2512244	-0.8959759
H	4.3330431	-0.4916676	0.0008168
H	3.4615728	0.7891989	-0.8954479
H	3.4611727	0.7889482	0.8970389

Calculated Quadrupole Moments of Toluene Derivatives 1-9 (cf. Figure 4) (in some cases, the y - or x -axis is perpendicular to the aromatic plane and has been used for the calculation of $\mathrm{Q}_{z z}$)

1 Me-Ph_tpss-d3.def2-TZVP
quadrupole moment

xx	433.246968	-461.974545	-28.727576
YY	5.642676	-39.623933	-33.981257
zz	195.618074	-224.474397	-28.856323
xy	3.520237	-3.483531	0.036707
xz	0.000000	0.000000	0.000000
yz	0.000000	0.000000	0.000000
	$\begin{aligned} & 3 \text { trace }= \\ & \text { isotropy }= \end{aligned}$	$\begin{array}{r} -30.521719 \\ 5.190894 \end{array}$	
2 Me-C6F5_tpss-d3.def $2-\mathrm{T}$ (ZVP			
xx	1041.283680	-1090.086600	-48.802920
Yy	5.683254	-52.319789	-46.636535
zz	849.757768	-903.256997	-53.499228
xy	-8.162603	8.181365	0.018762
xz	0.000013	-0.000011	0.000002
yz	0.000477	-0.000473	0.000004

```
1/3 trace= -49.646228
anisotropy= 6.076480
```

3 Me-C6F3H2_tpss-d3.def2-TZVP
quadrupole moment

xx	800.484089	-842.151496	-41.667406
YY	5.638271	-47.214789	-41.576518
z z	519.053790	-561.331613	-42.277823
xy	-8.062614	8.071414	0.008800
xz	0.000000	0.000000	0.000000
yz	0.000000	0.000000	0.000000
	trace= sotropy=	$\begin{array}{r} -41.840582 \\ 0.660743 \end{array}$	
4 Me-PhF_tpss-d3.def2-TZVP			
XX	768.162598	-805.547806	-37.385208
YY	5.674882	-42.171577	-36.496695
z z	196.362822	-227.123694	-30.760872
$x y$	8.318732	-8.367093	-0.048361
xz	-0.000000	0.000000	0.000000
yz	0.000000	0.000000	0.000000
	trace= sotropy=	$\begin{array}{r} -34.880925 \\ 6.228361 \end{array}$	
5 Me-PhOH_tpss-d3.def2-TZVP quadrupole moment			
XX	207.088265	-237.813642	-30.725376
YY	729.473386	-763.346511	-33.873125
z z	5.572723	-43.433538	-37.860815
$x y$	-67.925935	64.134476	-3.791459
XZ	-0.038360	0.043759	0.005398
yz	-0.651011	0.659836	0.008825
$1 / 3$ trace $=$ -34.153105 anisotropy $=$ 9.027072			

6 Me-diOMePh_tpss-d3.def2-TZVP
quadrupole moment

Xx	1358.753997	-1396.380023	-37.626026
Yy	626.745929	-676.515676	-49.769748
zz	18.307726	-69.339131	-51.031405
xy	10.161769	-9.894614	0.267155
$x z$	40.840424	-40.433195	0.407229
Yz	-3.165321	3.165982	0.000660
	trace= sotropy=	$\begin{array}{r} -46.142393 \\ 12.848914 \end{array}$	

7 Me-NMeIndole_tpss-d3.def2-TZVP
quadrupole moment

xx	842.208673	-886.930466	-44.721793
Yy	704.029467	-746.879669	-42.850201
zz	11.239894	-63.183269	-51.943376
$x y$	23.410024	-25.339496	-1.929472
xz	0.000000	0.000000	0.000000
yz	0.000000	0.000000	0.000000
	trace= sotropy=	$\begin{array}{r} -46.505123 \\ 8.963178 \end{array}$	

References

1. Li, J.; Luo, S.; Cheng, J.-P., Chiral Primary-Tertiary Diamine Catalysts Derived From Natural Amino Acids for syn-Aldol Reactions of Hydroxy Ketones. J. Org. Chem. 2009, 74, 1747-1750.
2. Macmillan, D.; Ahrendt, K. Acid Addition Salts of Imidazolidinones as Reaction Catalysts. WO0153269 (A1), 2001/07/26/, 2001.
3. Holland, M. C.; Paul, S.; Schweizer, W. B.; Bergander, K.; Mück-Lichtenfeld, C.; Lakhdar, S.; Mayr, H.; Gilmour, R., Noncovalent Interactions in Organocatalysis: Modulating Conformational Diversity and Reactivity in the MacMillan Catalyst. Angew. Chem. Int. Ed. 2013, 52, 7967-7971.
4. Brazier, J. B.; Evans, G.; Gibbs, T. J. K.; Coles, S. J.; Hursthouse, M. B.; Platts, J. A.; Tomkinson, N. C. O., Solution Phase, Solid State, and Theoretical Investigations on the MacMillan Imidazolidinone. Org. Lett. 2009, 11, 133-136.
5. Fitzi, R.; Seebach, D., Resolution and use in α-amino acid synthesis of imidazolidinone glycine derivatives. Tetrahedron 1988, 44, 5277-5292.
6. Seebach, D.; Dziadulewicz, E.; Behrendt, L.; Cantoreggi, S.; Fitzi, R., Synthesis of Nonproteinogenic (R)- or (S)-Amino Acids Analogues of Phenylalanine, Isotopically Labelled and Cyclic Amino Acids from tert-Butyl 2-(tert-Butyl)-3-methyl-4-oxo-1imidazolidinecarboxylate (Boc-BMI). Liebigs Ann. Chem. 1989, 1989, 1215-1232.
7. Gang, s.; Shen, C.; Yang, X.; Tang, J.; Zhang, R.; Zou, G. Preparing method and application of chiral imidazolinone fungicide decorated by peptide loded with silica gel. CN101036894 (A), 2007/09/19/, 2007.
8. Zhang, Y.; Zhao, L.; Lee, S. S.; Ying, J. Y., Enantioselective Catalysis over Chiral Imidazolidin-4-one Immobilized on Siliceous and Polymer-Coated Mesocellular Foams. Adv. Synth. Catal. 2006, 348, 2027-2032.
9. Snyder, S. A.; Zografos, A. L.; Lin, Y., Total Synthesis of Resveratrol-Based Natural Products: A Chemoselective Solution. Angew. Chem. Int. Ed. 2007, 46, 8186-8191.
10. Zheng, H.; Comeforo, K.; Gao, J., Expanding the Fluorous Arsenal: Tetrafluorinated Phenylalanines for Protein Design. J. Am. Chem. Soc. 2009, 131, 18-19.
11. Crich, D.; Huang, X., On the Reaction of Tryptophan Derivatives with NPhenylselenyl Phthalimide: The Nature of the Kinetic and Thermodynamic Hexahydropyrrolo[2,3-b]indole Products. Alkylation of Tryptophan with Inversion of Configuration. J. Org. Chem. 1999, 64, 7218-7223.
12. Samulis, L.; Tomkinson, N. C. O., Preparation of the MacMillan imidazolidinones. Tetrahedron 2011, 67, 4263-4267.
13. Alonso, F.; Riente, P.; Yus, M., Wittig-Type Olefination of Alcohols Promoted by Nickel Nanoparticles: Synthesis of Polymethoxylated and Polyhydroxylated Stilbenes. Eur. J. Org. Chem. 2009, 2009, 6034-6042.
14. Hubert, C.; Garrigues, B., Influence des ultrasons sur la diastéréosélectivité. Synthèse d'imidazolidine-4-one chirales. Can. J. Chem. 1998, 76, 234-237.
15. Paras, N. A.; MacMillan, D. W. C., New Strategies in Organic Catalysis: The First Enantioselective Organocatalytic Friedel-Crafts Alkylation. J. Am. Chem. Soc. 2001, 123, 4370-4371.
16. Austin, J. F.; MacMillan, D. W. C., Enantioselective Organocatalytic Indole Alkylations. Design of a New and Highly Effective Chiral Amine for Iminium Catalysis. J. Am. Chem. Soc. 2002, 124, 1172-1173.
17. Chen, Y. K.; Yoshida, M.; MacMillan, D. W. C., Enantioselective Organocatalytic Amine Conjugate Addition. J. Am. Chem. Soc. 2006, 128, 9328-9329.
18. Furche, F.; Ahlrichs, R.; Hättig, C.; Klopper, W.; Sierka, M.; Weigend, F., Turbomole: Turbomole. Wiley Interdisciplinary Reviews: Computational Molecular Science 2014, 4, 91100; TURBOMOLE V6.5 2013, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.
19. Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E., Climbing the Density Functional Ladder: Nonempirical Meta-Generalized Gradient Approximation Designed for Molecules and Solids. Phys. Rev. Lett. 2003, 91.
20. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements HPu. The Journal of Chemical Physics 2010, 132.
21. Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456-1465.
22. Weigend, F.; Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn : Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
23. Grimme, S., Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory. Chem. Eur. J. 2012, 18, 9955-9964.
24. Klamt, A.; Schüürmann, G., COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc., Perkin Trans. 2 1993, 799-805.
