Phosphine-Catalyzed Dearomatizing [3+2] Annulations of

Isoquinolinium Methylides with Allenes

Zhi-Jun Jia,^{*a,b*} Constantin Gabriel Daniliuc^{*c*}, Andrey P. Antonchick^{*a,b*} and Herbert Waldmann^{*a,b*}

^a Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.

^b Technische Universität Dortmund, Fakultät Chemie und Chemische Biologie, Chemische Biologie, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany.

^c Organisch-Chemisches Institut, Universität Münster, Corrensstrasse 40, D-48149 Münster, Germany.

General	2
Procedures for the synthesis of isoquinolinium methylides	3
Crystal data and structure refinement for compound 4a	9
Other failed substrates	. 10
Attempts to enantioseletive [3+2] cycloaddition reactions	. 11
General procedure and substrate scope for [3+2] cycloaddition reactions	. 13
Spectra	. 24
Biological Methods	. 63

General

Unless otherwise noted, all commercially available compounds were used as provided without further purifications. Solvents for chromatography were technical grade.

Analytical thin-layer chromatography (TLC) was performed on *Merck silica gel aluminium plates* with F-254 indicator. Compounds were visualized by irradiation with UV light or potassium permanganate staining. Column chromatography was performed using *silica gel Merck 60* (particle size 0.040-0.063 mm). Solvent mixtures are understood as volume/volume. ¹H-NMR and ¹³C-NMR were recorded on a *Bruker DRX400* (400 MHz), *Bruker DRX500* (500 MHz) and *INOVA500* (500 MHz) using CDCl₃ or DMSO-d₆ as solvent. Data are reported in the following order: chemical shift (δ) values are reported in ppm with the solvent resonance as internal standard (CDCl₃: δ = 7.26 ppm for ¹H, δ = 77.16 ppm for ¹³C); multiplicities are indicated br s (broadened singlet), s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet); coupling constants (*J*) are given in Hertz (Hz).

High resolution mass spectra were recorded on a *LTQ Orbitrap* mass spectrometer coupled to an *Acceka HPLC*-System (HPLC column: *Hypersyl GOLD*, 50 mm x 1 mm, particle size 1.9 μ m, ionization method: electron spray ionization). Fourier transform infrared spectroscopy (FT-IR) spectra were obtained with a *Bruker Tensor 27* spectrometer (ATR, neat) and are reported in terms of frequency of absorption (cm⁻¹). Optical rotations were measured in a *Schmidt* + *Haensch Polartronic HH8* polarimeter.

Procedures for the synthesis of isoquinolinium methylides^{1,2,3}

For **1a**, **1b**:³

To a mixture of 2-bromomalonate and 30 mL acetone was added isoquinoline. The mixture was stirred for 24 h at r.t., and the resulting precipitate was filtered and recrystallized from *i*-PrOH and ether to give a colorless solid. The solid was dissolved in water, the pH was adjusted to alkaline conditions and the solution extracted with CHCl₃. Recrystallization gave yellow needles.

For **1c-1p**:^{1,2}

To a solution of $Cu(acac)_2$ (1 mol %) in 5 mL of CH_2Cl_2 were added the corresponding isoquinoline (1.0 mmol) and iodonium ylide (1.2 mmol). The reaction mixture was stirred at room temperature to 40 °C. After completion of the reaction (monitored by TLC), the solution was concentrated and purified by chromatography on silica gel to give the corresponding isoquinolinium methylides **1a-1p**.

1a, 65% yield; ¹H-NMR (500 MHz, CDCl₃): $\delta = 9.28$ (s, 1H), 8.30 (d, J = 6.8 Hz, 1H), 8.15 (d, J = 8.3 Hz, 1H), 8.00 – 8.01 (m, J = 4.5 Hz, 2H), 7.97 (d, J = 6.9 Hz, 1H), 7.83 (ddd, J = 8.1, 5.3, 2.8 Hz, 1H), 3.73 ppm(s, 6H); ¹³C-NMR (126 MHz, CDCl₃): $\delta = 153.49$, 141.41, 136.37, 135.64, 130.21, 129.75, 127.74, 126.85, 123.55, 97.35, 54.93, 50.74 ppm; FT-IR: $\tilde{\nu} = 3067$, 2948, 1702, 1589, 1440, 1368, 1075 cm⁻¹; HRMS: calcd. for [M+H]⁺ C₁₄H₁₄NO₄: 260.09173, found: 260.09195.

^{1.} S. b. R. Goudreau, D. Marcoux and A. B. Charette, The Journal of Organic Chemistry, 2008, 74, 470.

B. Xin, W. Tang, Y. Wang, G. Lin, H. Liu, Y. Jiao, Y. Zhu, H. Yuan, Y. Chen and T. Lu, *Bioorg. Med. Chem. Lett.*, 2012, 22, 4783.

^{3.} O. Tsuge, S. Kanemasa, K. Sakamoto and S. Takenaka, Bull. Chem. Soc. Jpn., 1988, 61, 2513-2524.

1b, 73% yield; ¹H-NMR (500 MHz, CDCl₃): $\delta = 9.28$ (s, 1H), 8.31 (d, J = 6.9 Hz, 1H), 8.13 (d, J = 8.2 Hz, 1H), 8.00 – 7.88 (m, 2H), 7.94 (d, J = 6.9 Hz, 1H), 7.88 – 7.77 (m, 1H), 4.20 (q, J = 7.0 Hz, 4H), 1.29 ppm (t, J = 7.0 Hz, 6H); ¹³C-NMR (126 MHz, CDCl₃): $\delta = 153.26$, 141.40, 136.22, 135.46, 130.11, 129.68, 127.69, 126.81, 123.32, 97.59, 64.64, 59.12, 14.95 ppm; FT-IR: $\tilde{\nu} = 3081$, 2976, 1655, 1605, 1409, 1372, 1330, 1170, 1049 cm⁻¹; HRMS: calcd. for [M+H]⁺C₁₆H₁₈NO₄: 288.12303, found: 288.12299.

1c, 78% yield; ¹H-NMR (500 MHz, CDCl₃): $\delta = 9.33$ (s, 1H), 8.37 (d, J = 6.8 Hz, 1H), 8.13 (d, J = 8.2 Hz, 1H), 8.03 – 7.99 (m, 2H), 7.96 (d, J = 6.9 Hz, 1H), 7.83 (dt, J = 8.2, 4.0 Hz, 1H), 7.44 – 7.36 (m, 4H), 7.33 – 7.23 (m, 6H), 5.28 ppm(s, 4H); ¹³C-NMR (126 MHz, CDCl₃): $\delta = 153.38$, 141.32, 137.98, 136.29, 135.57, 130.15, 129.73, 128.41, 127.78, 127.69, 127.41, 126.81, 123.43, 64.97 ppm; FT-IR: $\tilde{\nu} = 3031$, 2949, 1709, 1575, 1384, 1282, 1052 cm⁻¹; HRMS: calcd. for [M+H]⁺C₂₆H₂₂NO₄: 412.15433, found: 412.15440.

1d, 52% yield; Only ¹H-NMR is available due to its poor solubility even in all the solvents, ¹H-NMR (400 MHz, CDCl₃): $\delta = 9.68$ (s, 1H), 8.42 (d, J = 6.2 Hz, 1H), 8.06 (d, J = 7.5 Hz, 1H), 7.96 (d, J = 7.6 Hz, 2H), 7.87 – 7.76 (m, 1H), 3.76 ppm (s, 6H); FT-IR: $\tilde{v} = 3023$, 2943, 1701, 1590, 1440, 1377, 1359, 1080 cm⁻¹; HRMS: calcd. for [M+H]⁺ C₁₄H₁₃⁷⁹BrNO₄: 338.00225, found: 338.00255; calcd. for [M+H]⁺ C₁₄H₁₃⁸¹BrNO₄: 340.00020, found: 340.00045;

1e, 80% yield; Only ¹H-NMR is available due to its poor solubility even in all the solvents, ¹H-NMR (500 MHz, CDCl₃): $\delta = 9.23$ (s, 1H), 8.47 – 8.21 (m, 2H), 8.15 – 8.00 (m, 1H), 8.00 – 7.78 (m, 2H), 3.76 ppm (s, 6H); FT-IR: $\tilde{v} = 3112$, 2947, 1701, 1587, 1442, 1374, 1083, 1077 cm⁻¹; HRMS: calcd. for [M+H]⁺ C₁₄H₁₃⁷⁹BrNO₄: 338.00225, found: 338.00268; calcd. for [M+H]⁺ C₁₄H₁₃⁸¹BrNO₄: 340.00020, found: 340.00052;

1f, 62% yield; ¹H-NMR (500 MHz, CDCl₃): $\delta = 9.67$ (s, 1H), 8.40 (d, J = 6.8 Hz, 1H), 8.06 (d, J = 7.5 Hz, 1H), 8.00 – 7.92 (m, 2H), 7.81 (t, J = 7.9 Hz, 1H), 3.76 ppm (s, 6H); ¹³C-NMR (126 MHz, CDCl₃): $\delta = 165.60$, 153.44, 142.27, 137.90, 135.69, 134.21, 127.26, 126.39, 124.30, 123.68, 50.93 ppm; FT-IR: $\tilde{v} = 3064$, 2948, 1626, 1597, 1439, 1337, 1187, 1075 cm⁻¹; HRMS: calcd. for [M+H]⁺ C₁₄H₁₃⁷⁹BrNO₄: 338.00225, found: 338.00257; calcd. for [M+H]⁺ C₁₄H₁₃⁸¹BrNO₄: 340.00020, found: 340.00050;

1g, 51% yield; ¹H-NMR (500 MHz, CDCl₃): $\delta = 9.70$ (s, 1H), 8.43 (dd, J = 6.8, 1.0 Hz, 1H), 7.98 (d, J = 8.8 Hz, 1H), 7.95 (d, J = 6.8 Hz, 1H), 7.85 (d, J = 8.8 Hz, 1H), 3.76 ppm (s, 6H); ¹³C-NMR (126 MHz, CDCl₃): $\delta = 165.56$, 150.42, 142.40, 136.66, 135.75, 135.30, 131.80, 127.04, 126.22, 123.35, 50.94 ppm; FT-IR: $\tilde{v} = 3039$, 2944, 1585, 1436, 1337, 1183, 1111, 1054 cm⁻¹; HRMS: calcd. for [M+H]⁺C₁₄H₁₂Cl₂NO₄: 328.01379, found: 328.01438.

1h, 55% yield; ¹H-NMR (400 MHz, CDCl₃): $\delta = 9.04$ (s, 1H), 8.16 (d, J = 6.0 Hz, 1H), 8.01 (d, J = 8.7 Hz, 1H), 7.81 (s, 1H), 7.41 (d, J = 8.7 Hz, 1H), 7.25 – 7.20 (m, 1H), 4.04 (s, 3H), 3.72 ppm (s, 6H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 167.88$, 165.48, 152.34, 141.80, 139.40,

131.57, 123.48, 123.21, 122.09, 104.86, 56.36, 50.68 ppm; FT-IR: $\tilde{v} = 2944$, 2847, 1588, 1434, 1337, 1266, 1184, 1091 cm⁻¹; HRMS: calcd. for [M+H]⁺C₁₅H₁₆NO₅: 290.10230, found: 290.10282.

1i, 58% yield; ¹H-NMR (400 MHz, CDCl₃): $\delta = 9.13$ (s, 1H), 8.18 (d, J = 6.8 Hz, 1H), 7.97 – 7.78 (m, 2H), 7.61 (d, J = 9.1 Hz, 1H), 7.33 (s, 1H), 3.97 (s, 3H), 3.72 ppm (s, 6H); ¹³C-NMR (126 MHz, CDCl₃): $\delta = 165.82$, 160.56, 151.68, 139.68, 132.28, 129.56, 129.19, 128.27, 123.29, 106.17, 56.09, 50.72 ppm; FT-IR: $\tilde{v} = 3084$, 2946, 1705, 1587, 1436, 1375, 1263, 1078 cm⁻¹; HRMS: calcd. for [M+H]⁺C₁₅H₁₆NO₅: 290.10230, found: 290.10236.

1j, 61% yield; ¹H-NMR (400 MHz, CDCl₃): $\delta = 9.53$ (s, 1H), 8.21 (d, J = 6.9 Hz, 1H), 7.90 – 7.85 (m, 2H), 7.50 (d, J = 8.3 Hz, 1H), 7.06 (d, J = 8.0 Hz, 1H), 4.05 (s, 3H), 3.72 ppm (s, 6H); ¹³C-NMR (126 MHz, CDCl₃): $\delta = 165.92$, 157.75, 150.07, 141.73, 137.38, 137.14, 122.99, 120.39, 118.28, 107.90, 56.39, 50.64 ppm; FT-IR: $\tilde{v} = 3045$, 2938, 1596, 1428, 1344, 1213, 1085 cm⁻¹; HRMS: calcd. for [M+H]⁺C₁₅H₁₆NO₅: 290.10230, found: 290.10268.

1k, 55% yield; ¹H-NMR (400 MHz, CDCl₃): $\delta = 9.18$ (s, 1H), 8.23 (d, J = 6.8 Hz, 1H), 8.03 (d, J = 8.1 Hz, 1H), 7.86 (d, J = 6.8 Hz, 1H), 7.82 – 7.71 (m, 1H), 7.65 (d, J = 8.1 Hz, 1H), 3.73 (s, 6H), 2.66 ppm (s, 3H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 165.96$, 153.09, 147.64, 141.46, 136.81, 132.53, 129.52, 126.12, 125.92, 122.87, 96.87, 50.72, 22.80 ppm; FT-IR: $\tilde{\nu} = 3033$, 2943, 1585, 1334, 1189, 1090 cm⁻¹; HRMS: calcd. for [M+H]⁺ C₁₅H₁₆NO₄: 274.10738, found: 274.10747.

11, 58% yield; ¹H-NMR (400 MHz, CDCl₃): $\delta = 9.16$ (s, 1H), 8.23 (d, J = 6.7 Hz, 1H), 7.95 – 7.87 (m, 3H), 7.85 – 7.78 (m, 1H), 3.72 (s, 6H), 2.61 ppm (s, 3H); ¹³C-NMR (126 MHz, CDCl₃): $\delta = 165.79$, 152.91, 140.91, 140.67, 138.02, 134.77, 130.08, 128.31, 128.05, 126.56, 123.30, 50.68, 21.90 ppm; FT-IR: $\tilde{v} = 3093$, 2948, 1702, 1588, 1438, 1372, 1071 cm⁻¹; HRMS: calcd. for [M+H]⁺C₁₅H₁₆NO₄: 274.10738, found: 274.10748.

1m, 60% yield; ¹H-NMR (400 MHz, CDCl₃): $\delta = 9.41$ (s, 1H), 8.29 (d, J = 6.7 Hz, 1H), 7.95 (d, J = 6.7 Hz, 1H), 7.88 – 7.77 (m, 2H), 7.62 (d, J = 6.7 Hz, 1H), 3.74 (s, 6H), 2.80 ppm (s, 3H); ¹³C-NMR (126 MHz, CDCl₃): $\delta = 165.71$, 151.10, 141.11, 138.33, 137.08, 135.59, 130.88, 127.44, 124.97, 123.97, 50.73, 18.57 ppm; FT-IR: $\tilde{v} = 3042$, 2940, 1592, 1432, 1346, 1198, 1091 cm⁻¹; HRMS: calcd. for [M+H]⁺C₁₅H₁₆NO₄: 274.10738, found: 274.10751.

1n, 67% yield; ¹H-NMR (400 MHz, CDCl₃): $\delta = 9.26$ (s, 1H), 8.30 (s, 1H), 8.25 – 8.13 (m, 2H), 8.13 – 8.03 (m, 1H), 8.03 – 7.94 (m, 1H), 7.83 – 7.68 (m, 2H), 7.65 – 7.44 (m, 3H), 3.76 ppm (s, 6H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 165.80$, 153.06, 152.00, 141.68, 140.83, 138.61, 130.26, 130.01, 129.76, 129.56, 127.91, 126.75, 124.16, 123.55, 50.81 ppm; FT-IR: $\tilde{v} = 3017$, 2952, 1574, 1439, 1350, 1186, 1080 cm⁻¹; HRMS: calcd. for [M+H]⁺ C₂₀H₁₈BrNO₄: 336.12303, found: 336.12326.

10, 72% yield; ¹H-NMR (400 MHz, CDCl₃): $\delta = 9.27$ (s, 1H), 8.33 – 8.16 (m, 2H), 8.04 (d, 1H), 8.00 – 7.93 (m, 1H), 7.90 – 7.78 (m, 1H), 7.61 – 7.46 (m, 5H), 3.76 ppm (s, 6H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 167.87$, 165.84, 152.15, 140.40, 137.39, 136.96, 135.64,

7

134.28, 133.60, 130.07, 129.59, 129.25, 128.06, 125.51, 50.86 ppm; FT-IR: $\tilde{v} = 2945$, 1611, 1434, 1364, 1176, 1074 cm⁻¹; HRMS: calcd. for $[M+H]^+ C_{20}H_{18}BrNO_4$: 336.12303, found: 336.12375.

1p, 72% yield; ¹H-NMR (500 MHz, CDCl₃): $\delta = 9.14$ (s, 1H), 8.18 – 8.10 (m, 3H), 8.06 – 7.96 (m, 1H), 7.87 – 7.76 (m, 1H), 3.73 (s, 6H), 3.06 (t, J = 7.3 Hz, 2H), 1.87 – 1.71 (m, 3H), 1.07 ppm (t, J = 7.3 Hz, 3H).; ¹³C-NMR (126 MHz, CDCl₃): $\delta = 151.84$, 140.04, 136.26, 135.97, 135.28, 130.57, 129.72, 127.88, 123.48, 50.71, 32.06, 23.04, 14.05 ppm; FT-IR: $\tilde{v} = 2943$, 1707, 1624, 1434, 1367, 1171, 1072 cm⁻¹; HRMS: calcd. for [M+H]⁺ C₁₇H₂₀NO₄: 302.13868, found: 302.13920.

Crystal data and structure refinement for compound 4a

Formula weight	373.39
Temperature	223(2) K
Wavelength	0.71073 Å
Crystal system, space group	monoclinic, P2 ₁ /c (No. 14)
Unit cell dimensions	a = 8.7052(2) Å
	$b = 7.8790(2) \text{ Å} \beta = 93.841(1)^{\circ}$
	c = 27.3581(9) Å
Volume	1872.23(9) Å ³
Z, Calculated density	4, 1.325 Mg/m ³
Absorption coefficient	0.098 mm ⁻¹
F(000)	792
Crystal size	$0.30 \times 0.15 \times 0.03 \text{ mm}$
Theta range for data collection	4.48 to 26.37°
Limiting indices	-10<=h<=10, -9<=k<=8, -34<=1<=34
Reflections collected / unique	16357 / 3784 [R(int) = 0.073]
Completeness to theta = 26.37	98.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9971 and 0.9712
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3784 / 0 / 247
Goodness-of-fit on F^2	1.060
Final R indices [I>2 σ (I)]	$R1 = 0.0643, wR^2 = 0.1242$
R indices (all data)	$R1 = 0.1122, WR^2 = 0.1476$
Largest diff. peak and hole	0.192 and -0.220 e.Å $^{-3}$

Other failed substrates

Attempts to enantioseletive [3+2] cycloaddition reactions

Ratio of isomers = 1.2:1yiled = 87%ee = 0.

t = 7h Ratio of isomers = 2:1 yiled = 72% ee = 0.

General procedure and substrate scope for [3+2] cycloaddition reactions

Reactions were performed with **1a** (0.1 mmol), **2** or **5** (0.15 mmol) and PBu₃ (0.02 mmol) in CH_2Cl_2 (1 mL) at room temperature. After completion of the reaction, NaBH₄ (0.3 mmol) and acetic acid or trifluoroacetic acid (1 mmol) were added sequentially at 0 °C, and the reaction mixture was stirred for 10 minutes. The reaction mixture was quenched by the addition of saturated NaHCO₃ and extracted with CH_2Cl_2 (3×5 ml). The combined organic phases were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude residue was purified by silica gel flash chromatography to give the desired product.

Dimethyl 2-(2-ethoxy-2-oxoethyl)-5,6-dihydropyrrolo[2,1-a]isoquinoline-3,3(10bH)-

dicarboxylate

4a: 75% yield; ¹H-NMR (500 MHz, CDCl₃): $\delta = 7.19 - 7.07$ (m, 4H), 6.51 (d, J = 1.3 Hz, 1H), 5.17 (s, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.78 (s, 3H), 3.63 (s, 3H), 3.45 - 3.34 (m, 2H), 3.33 (d, J = 1.3 Hz, 2H), 2.95 - 2.83 (m, 1H), 2.70 (dd, J = 12.2, 8.0 Hz, 1H), 1.26 ppm (t, J = 7.1 Hz, 3H); ¹³C-NMR (126 MHz, CDCl₃): $\delta = 170.57$, 169.31, 169.26, 137.08, 134.77, 133.21, 133.05, 129.01, 126.43, 126.04, 124.39, 81.51, 65.53, 60.94, 52.64, 52.52, 42.47, 33.98, 28.34, 14.32 ppm; FT-IR: $\tilde{v} = 2953$, 2841, 1731, 1452, 1235, 1138, 1029 cm⁻¹; HRMS: calcd. for [M+H]⁺C₂₀H₂₄NO₆: 374.15981, found: 374.15949.

Diethyl 2-(2-ethoxy-2-oxoethyl)-5,6-dihydropyrrolo[2,1-*a*]isoquinoline-3,3(10b*H*)-dicarboxylate

4b: 95% yield; ¹H-NMR (500 MHz, CDCl₃): $\delta = 7.20 - 7.07$ (m, 4H), 6.54 (s, 1H), 5.23 (s, 1H), 4.33 - 4.22 (m, 2H), 4.14 (q, J = 7.1 Hz, 2H), 4.11 - 4.01 (m, 2H), 3.48 (s, 1H), 3.41 - 3.30 (m, 3H), 2.98 - 2.87 (m, 1H), 2.83 - 2.71 (m, J = 15.7 Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H),

1.26 (t, J = 7.1 Hz, 3H), 1.06 ppm (t, J = 7.1 Hz, 3H); ¹³C-NMR (126 MHz, CDCl₃): $\delta = 170.55$, 168.59, 136.40, 134.94, 133.20, 132.47, 128.70, 126.68, 126.20, 124.40, 81.81, 65.60, 61.90, 60.96, 43.10, 33.99, 28.54, 14.31, 14.25, 13.79 ppm; FT-IR: $\tilde{\nu} = 2981$, 2932, 1728, 1447, 1369, 1225, 1147, 1027 cm⁻¹; HRMS: calcd. for [M+H]⁺C₂₂H₂₈NO₆: 402.19111, found: 402.19064.

Dibenzyl 2-(2-ethoxy-2-oxoethyl)-5,6-dihydropyrrolo[2,1-*a*]isoquinoline-3,3(10b*H*)-dicarboxylate

4c: 84% yield; ¹H-NMR (500 MHz, CDCl₃): $\delta = 7.38 - 7.31$ (m, 5H), 7.31 - 7.24 (m, 3H), 7.20 - 7.13 (m, 2H), 7.14 - 7.06 (m, 4H), 6.56 (d, J = 1.4 Hz, 1H), 5.28 - 5.24 (m, 1H), 5.21 (s, 1H), 5.19 (d, J = 12.3 Hz, 1H), 5.11 (d, J = 12.3 Hz, 1H), 5.03 (d, J = 12.3 Hz, 1H), 4.08 (qd, J = 7.1, 3.5 Hz, 2H), 3.39 (ddd, J = 8.7, 5.3, 3.5 Hz, 2H), 3.34 (d, J = 8.7 Hz, 2H), 2.89 - 2.76 (m, 1H), 2.65 (dt, J = 16.1, 4.4 Hz, 1H), 1.22 ppm (t, J = 7.1 Hz, 3H); ¹³C-NMR (126 MHz, CDCl₃): $\delta = 170.54$, 137.17, 135.49, 135.03, 134.92, 133.01, 132.97, 128.99, 128.66, 128.59, 128.38, 128.34, 128.23, 128.18, 126.47, 126.03, 124.31, 81.81, 67.47, 67.39, 65.62, 60.88, 42.56, 33.91, 28.44, 14.25 ppm; FT-IR: $\tilde{v} = 2979$, 1731, 1454, 1368, 1139, 1026 cm⁻¹; HRMS: calcd. for [M+H]⁺C₃₂H₃₂NO₆: 526.22241, found: 526.22278.

Dimethyl 7-bromo-2-(2-ethoxy-2-oxoethyl)-5,6-dihydropyrrolo[2,1-*a*]isoquinoline-3,3(10b*H*)-dicarboxylate

4d: 51% yield; ¹H-NMR (500 MHz, CDCl₃): $\delta = 7.41$ (d, J = 7.5 Hz, 1H), 7.11 – 6.99 (m, 2H), 6.47 (d, J = 1.2 Hz, 1H), 5.13 (s, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.82 (dd, J = 7.8, 2.3 Hz, 1H), 3.78 (s, 3H), 3.67 (s, 3H), 3.55 (ddd, J = 12.8, 6.7, 2.8 Hz, 1H), 3.37 – 3.28 (m, 3H), 2.81 (dd, J = 9.9, 6.9 Hz, 1H), 2.74 (d, J = 3.4 Hz, 1H), 1.25 ppm (t, J = 7.1 Hz, 3H); ¹³C-NMR (126 MHz, CDCl₃): $\delta = 170.50$, 169.05, 139.35, 134.34, 133.60, 132.87, 130.57, 127.26, 125.69, 123.62, 81.05, 65.64, 61.02, 52.86, 52.63, 42.21, 33.93, 29.31, 14.33 ppm; FT-IR: $\tilde{v} = 2981$, 2953, 1731, 1562, 1437, 1240, 1143, 1030 cm⁻¹; HRMS: calcd. for [M+H]⁺

 $C_{20}H_{23}^{79}BrNO_6$: 452.07033, found: 452.06829; calcd. for $[M+H]^+ C_{220}H_{23}^{81}BrNO_6$: 454.06828, found: 454.06794.

Dimethyl 9-bromo-2-(2-ethoxy-2-oxoethyl)-5,6-dihydropyrrolo[2,1-*a*]isoquinoline-3,3(10b*H*)-dicarboxylate

4e: 69% yield; ¹H-NMR (500 MHz, CDCl₃): $\delta = 7.28 - 7.24$ (m, 1H), 7.24 - 7.21 (m, 1H), 6.98 (d, J = 8.1 Hz, 1H), 6.46 (d, J = 1.4 Hz, 1H), 5.13 (s, 1H), 4.15 (q, J = 7.2 Hz, 2H), 3.82 (dd, J = 6.6, 3.0 Hz, 1H), 3.78 (s, 3H), 3.63 (s, 3H), 3.47 - 3.28 (m, 3H), 2.86 - 2.73 (m, 1H), 2.63 (dt, J = 16.3, 4.3 Hz, 1H), 1.26 ppm (t, J = 7.2 Hz, 3H); ¹³C-NMR (126 MHz, CDCl₃): $\delta = 170.44$, 169.12, 139.17, 133.74, 133.60, 132.49, 130.69, 129.51, 127.50, 119.61, 81.37, 65.13, 61.06, 52.77, 52.65, 42.14, 33.94, 27.69, 14.33 ppm; FT-IR: $\tilde{\nu} = 2986$, 1731, 1568, 1234, 1173, 1029 cm⁻¹; HRMS: calcd. for [M+H]⁺ C₂₀H₂₃⁷⁹BrNO₆: 452.07033, found: 452.06919; calcd. for [M+H]⁺ C₂₂₀H₂₃⁸¹BrNO₆: 454.06828, found: 454.06799.

Dimethyl 10-bromo-2-(2-ethoxy-2-oxoethyl)-5,6-dihydropyrrolo[2,1-*a*]isoquinoline-3,3(10b*H*)-dicarboxylate

4f: 62% yield; ¹H-NMR (500 MHz, CDCl₃): $\delta = 7.39$ (d, J = 7.3 Hz, 1H), 7.08 – 6.94 (m, 2H), 6.88 (s, 1H), 5.45 (s, 1H), 4.24 – 4.04 (m, 2H), 3.78 (s, 3H), 3.73 (s, 3H), 3.60 – 3.45 (m, 1H), 3.39 – 3.21 (m, 2H), 3.17 (ddd, J = 14.7, 11.4, 3.7 Hz, 1H), 2.72 (ddd, J = 16.5, 11.5, 5.4 Hz, 1H), 2.51 (d, J = 16.5 Hz, 1H), 1.27 ppm (dt, J = 14.3, 7.1 Hz, 3H); ¹³C-NMR (126 MHz, CDCl₃): $\delta = 170.53$, 169.80, 169.72, 137.82, 134.91, 133.64, 132.29, 131.28, 129.07, 127.67, 122.08, 82.15, 66.65, 60.99, 52.96, 52.79, 41.67, 33.96, 27.52, 14.33 ppm; FT-IR: $\tilde{\nu} = 2981$, 2953, 1731, 1558, 1434, 1226, 1138, 1027 cm⁻¹; HRMS: calcd. for [M+H]⁺ C₂₀H₂₃⁷⁹BrNO₆: 452.07033, found: 452.06934; calcd. for [M+H]⁺ C₂₀H₂₃⁸¹BrNO₆: 454.06828, found: 454.06767.

Dimethyl 9,10-dichloro-2-(2-ethoxy-2-oxoethyl)-5,6-dihydropyrrolo[2,1-*a*]isoquinoline-3,3(10b*H*)-dicarboxylate

4g: 52% yield; ¹H-NMR (500 MHz, CDCl₃): $\delta = 7.27 - 7.24$ (m, 1H), 6.95 (d, J = 8.2 Hz, 1H), 6.79 (d, J = 1.1 Hz, 1H), 5.49 (s, 1H), 4.16 – 4.09 (m, 2H), 3.78 (s, 3H), 3.73 (s, 3H), 3.56 (ddd, J = 14.2, 5.5, 2.2 Hz, 1H), 3.34 – 3.24 (m, 2H), 3.21 – 3.12 (m, 1H), 2.70 (ddd, J = 17.0, 11.4, 5.7 Hz, 1H), 2.53 (d, J = 17.0 Hz, 1H), 1.25 ppm (t, J = 7.1 Hz, 3H); ¹³C-NMR (126 MHz, CDCl₃): $\delta = 170.42$, 169.62, 169.44, 135.70, 135.64, 132.89, 132.84, 131.05, 130.31, 128.96, 128.12, 81.87, 65.63, 61.05, 53.02, 52.85, 41.40, 33.95, 27.10, 14.33 ppm; FT-IR: $\tilde{\nu} = 2953$, 1731, 1432, 1225, 1138, 1028 cm⁻¹; HRMS: calcd. for [M+H]⁺ C₂₀H₂₂Cl₂NO₆: 442.08187, found: 442.08248.

Dimethyl 2-(2-ethoxy-2-oxoethyl)-8-methoxy-5,6-dihydropyrrolo[2,1-*a*]isoquinoline-3,3(10b*H*)-dicarboxylate

4h: 59% yield; ¹H-NMR (500 MHz, CDCl₃): $\delta = 7.01$ (d, J = 8.4 Hz, 1H), 6.72 (dd, J = 8.4, 2.5 Hz, 1H), 6.65 (d, J = 2.5 Hz, 1H), 6.48 (s, 1H), 5.13 (s, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.78 (s, 3H), 3.76 (s, 3H), 3.64 (s, 3H), 3.41 – 3.33 (m, 2H), 3.32 (d, J = 1.2 Hz, 2H), 2.94 – 2.79 (m, 1H), 2.67 (dd, J = 11.9, 4.2 Hz, 1H), 1.25 ppm (t, J = 7.1 Hz, 3H); ¹³C-NMR (126 MHz, CDCl₃): $\delta = 170.58$, 169.22, 158.15, 136.09, 133.40, 132.80, 129.42, 125.42, 114.01, 112.04, 81.57, 65.14, 60.95, 55.39, 52.70, 52.56, 42.47, 33.98, 28.62, 14.33 ppm; FT-IR: $\tilde{v} = 2930$, 2840, 1761, 1719, 1609, 1434, 1306, 1018 cm⁻¹; HRMS: calcd. for [M+H]⁺ C₂₁H₂₆NO₇: 404.17038, found: 404.16921.

Dimethyl 2-(2-ethoxy-2-oxoethyl)-9-methoxy-5,6-dihydropyrrolo[2,1-*a*]isoquinoline-3,3(10b*H*)-dicarboxylate

4i: 79% yield; ¹H-NMR (500 MHz, CDCl₃): $\delta = 7.01$ (d, J = 8.3 Hz, 1H), 6.70 (dd, J = 8.3, 2.6 Hz, 1H), 6.64 (d, J = 2.6 Hz, 1H), 6.48 (s, 1H), 5.16 (s, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.85 – 3.74 (m, 6H), 3.65 (s, 3H), 3.43 (ddd, J = 12.4, 6.2, 3.6 Hz, 1H), 3.38 – 3.27 (m, 3H), 2.86 – 2.73 (m, 1H), 2.68 – 2.52 (m, 1H), 1.26 ppm (t, J = 7.1 Hz, 3H); ¹³C-NMR (126 MHz, CDCl₃): $\delta = 170.56$, 169.31, 157.90, 137.91, 133.15, 133.05, 129.96, 126.66, 112.21, 109.96, 81.45, 65.67, 60.95, 55.43, 52.68, 52.53, 42.54, 33.95, 27.28, 14.31 ppm; FT-IR: $\tilde{v} = 3004$, 2954, 2928, 1726, 1606, 1500, 1350, 1064 cm⁻¹; HRMS: calcd. for [M+H]⁺ C₂₁H₂₆NO₇: 404.17038, found: 404.16866.

Dimethyl 2-(2-ethoxy-2-oxoethyl)-10-methoxy-5,6-dihydropyrrolo[2,1-*a*]isoquinoline-3,3(10b*H*)-dicarboxylate

4j: 84% yield; ¹H-NMR (500 MHz, CDCl₃): $\delta = 7.15 - 7.03$ (m, J = 7.9 Hz, 1H), 6.75 - 6.59 (m, 3H), 5.31 (s, 1H), 4.12 (dd, J = 14.1, 7.0 Hz, 2H), 3.81 (s, 3H), 3.76 (s, 3H), 3.69 (s, 3H), 3.54 (dd, J = 14.1, 5.7 Hz, 1H), 3.32 - 3.23 (m, 2H), 3.25 - 3.11 (m, 1H), 2.79 - 2.63 (m, 1H), 2.58 - 2.45 (m, 1H), 1.25 ppm (t, J = 7.0 Hz, 3H); ¹³C-NMR (126 MHz, CDCl₃): $\delta = 170.80$, 170.04, 156.24, 136.06, 134.91, 130.95, 126.97, 124.82, 121.88, 107.74, 81.44, 63.48, 60.84, 55.21, 52.77, 52.56, 41.67, 34.04, 27.32, 14.30 ppm; FT-IR: $\tilde{\nu} = 2953$, 2838, 1730, 1581, 1468, 1248, 1088 cm⁻¹; HRMS: calcd. for [M+H]⁺ C₂₁H₂₆NO₇: 404.17038, found: 404.16929.

Dimethyl 2-(2-ethoxy-2-oxoethyl)-8-methyl-5,6-dihydropyrrolo[2,1-*a*]isoquinoline-3,3(10b*H*)-dicarboxylate

4k: 67% yield; ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.02 - 6.94$ (m, 2H), 6.94 - 6.88 (m, 1H), 6.48 (s, 1H), 5.15 (s, 1H), 4.15 (q, J = 7.1 Hz, 2H), 3.77 (s, 3H), 3.64 (s, 3H), 3.45 - 3.33 (m, 2H), 3.33 - 3.26 (m, 2H), 2.89 - 2.77 (m, 1H), 2.64 (dt, J = 16.2, 4.2 Hz, 1H), 2.28 (s, 3H), 1.26 ppm (t, J = 7.1 Hz, 3H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 170.58$, 169.26, 135.89,

134.54, 134.06, 133.41, 132.77, 129.62, 126.81, 124.30, 81.54, 65.40, 60.92, 52.65, 52.51, 42.48, 33.98, 28.21, 21.17, 14.32 ppm; FT-IR: $\tilde{v} = 2981$, 2953, 1731, 1550, 1433, 1235, 1140, 1030 cm⁻¹; HRMS: calcd. for [M+H]⁺C₂₁H₂₆NO₆: 388.17546, found: 388.17670.

Dimethyl 2-(2-ethoxy-2-oxoethyl)-9-methyl-5,6-dihydropyrrolo[2,1-*a*]isoquinoline-3,3(10b*H*)-dicarboxylate

41: 72% yield; ¹H-NMR (500 MHz, CDCl₃): $\delta = 7.03 - 6.85$ (m, 3H), 6.50 (s, 1H), 5.16 (s, 1H), 4.19 - 4.04 (m, 2H), 3.78 (s, 3H), 3.64 (s, 3H), 3.46 - 3.38 (m, 1H), 3.36 - 3.23 (m, 3H), 2.83 - 2.79 (m, 1H), 2.65 - 2.60 (m, 1H), 2.30 (s, 3H), 1.26 ppm (td, J = 7.1, 2.7 Hz, 3H); ¹³C-NMR (126 MHz, CDCl₃): $\delta = 170.48$, 169.26, 135.40, 133.24, 132.71, 131.37, 128.83, 127.10, 124.94, 122.02, 81.37, 65.45, 60.82, 52.55, 52.41, 42.38, 33.84, 27.61, 21.13, 14.19 ppm; FT-IR: $\tilde{\nu} = 2953$, 2918, 1731, 1433, 1217, 1150, 1029 cm⁻¹; HRMS: calcd. for [M+H]⁺ C₂₁H₂₆NO₆: 388.17546, found: 388.17688.

Dimethyl 2-(2-ethoxy-2-oxoethyl)-10-methyl-5,6-dihydropyrrolo[2,1-*a*]isoquinoline-3,3(10b*H*)-dicarboxylate

4m: 80% yield; ¹H-NMR (500 MHz, CDCl₃): $\delta = 7.04$ (t, J = 7.4 Hz, 1H), 6.99 (d, J = 7.4 Hz, 1H), 6.92 (d, J = 7.4 Hz, 1H), 6.50 (s, 1H), 5.45 (s, 1H), 4.18 – 4.09 (m, 2H), 3.78 (s, 3H), 3.72 (s, 3H), 3.50 (ddd, J = 13.6, 5.4, 2.6 Hz, 1H), 3.34 - 3.27 (m, 2H), 3.17 (ddd, J = 13.6, 11.1, 3.8 Hz, 1H), 2.79 – 2.70 (m, 1H), 2.62 – 2.51 (m, J = 18.3 Hz, 1H), 2.34 (s, 3H), 1.25 ppm (t, J = 7.1 Hz, 3H); ¹³C-NMR (126 MHz, CDCl₃): $\delta = 170.63$, 169.76, 135.05, 134.47, 134.23, 133.35, 132.28, 128.75, 127.53, 126.23, 81.90, 65.36, 60.92, 52.85, 52.68, 41.96, 33.88, 28.18, 20.17, 14.31 ppm; FT-IR: $\tilde{\nu} = 2980$, 2953, 1730, 1433, 1224, 1133, 1031 cm⁻¹; HRMS: calcd. for [M+H]⁺C₂₁H₂₆NO₆: 388.17546, found: 388.17725.

Dimethyl 2-(2-ethoxy-2-oxoethyl)-8-phenyl-5,6-dihydropyrrolo[2,1-*a*]isoquinoline-3,3(10b*H*)-dicarboxylate

4n: 76% yield; ¹H-NMR (500 MHz, CDCl₃): $\delta = 7.58 - 7.53$ (m, 2H), 7.45 - 7.37 (m, 3H), 7.37 - 7.29 (m, 2H), 7.19 (d, J = 7.9 Hz, 1H), 6.54 (d, J = 1.4 Hz, 1H), 5.23 (s, 1H), 4.16 (q, J = 7.1 Hz, 2H), 3.79 (s, 3H), 3.66 (s, 3H), 3.52 - 3.44 (m, 1H), 3.45 - 3.36 (m, 1H), 3.36 - 3.30 (m, 2H), 2.95 (ddd, J = 15.9, 9.2, 6.8 Hz, 1H), 2.76 (dt, J = 15.9, 3.9 Hz, 1H), 1.27 ppm (t, J = 7.1 Hz, 3H); ¹³C-NMR (126 MHz, CDCl₃): $\delta = 170.58$, 169.34, 141.14, 139.45, 136.11, 135.11, 133.19, 133.06, 128.82, 127.83, 127.24, 127.15, 124.94, 124.90, 81.47, 65.44, 60.98, 52.73, 52.57, 42.41, 33.97, 28.37, 14.33 ppm; FT-IR: $\tilde{v} = 2953$, 1731, 1433, 1234, 1148, 1029 cm⁻¹; HRMS: calcd. for [M+H]⁺ C₂₆H₂₈NO₆: 450.19111, found: 450.19098.

Dimethyl 2-(2-ethoxy-2-oxoethyl)-6-phenylpyrrolo[2,1-*a*]isoquinoline-3,3(10b*H*)-dicarboxylate

40: 60% yield; ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.52 - 7.33$ (m, 4H), 7.32 - 7.27 (m, 1H), 7.20 - 7.04 (m, 4H), 6.81 - 6.73 (m, 2H), 5.58 (s, 1H), 4.19 (q, J = 7.2 Hz, 2H), 3.79 (s, 3H), 3.73 (s, 3H), 3.47 (s, 2H), 1.29 ppm (t, J = 7.2 Hz, 3H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 170.42$, 168.39, 167.90, 138.83, 133.30, 132.50, 130.72, 129.83, 129.27, 128.63, 128.59, 127.03, 126.41, 126.38, 123.02, 122.85, 118.08, 80.41, 65.62, 61.16, 53.24, 53.15, 33.66, 14.34 ppm; FT-IR: $\tilde{\nu} = 2954$, 1732, 1607, 1443, 1244, 1178, 1029 cm⁻¹; HRMS: calcd. for [M+H]⁺C₂₆H₂₆NO₆: 448.17546, found: 448.17365.

Dimethyl 2-(2-ethoxy-2-oxoethyl)-6-propylpyrrolo[2,1-*a*]isoquinoline-3,3(10b*H*)-dicarboxylate

4p: 87% yield; ¹H-NMR (500 MHz, CDCl₃): $\delta = 7.21 - 7.10$ (m, 3H), 7.00 (d, J = 7.4 Hz, 1H), 6.71 (d, J = 0.5 Hz, 1H), 6.40 (s, 1H), 5.45 (s, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.82 (s, 3H), 3.60 (s, 3H), 3.44 - 3.34 (m, 2H), 2.56 (ddd, J = 13.7, 8.2, 5.4 Hz, 1H), 2.26 - 2.18 (m, 1H), 1.67 - 1.58 (m, 1H), 1.56 - 1.44 (m, 1H), 1.27 (t, J = 7.1 Hz, 3H), 0.96 ppm (t, J = 7.1 Hz, 3H); ¹³C-NMR (126 MHz, CDCl₃): $\delta = 170.43$, 168.61, 168.20, 133.25, 132.44, 131.08, 130.42, 127.76, 126.97, 126.00, 122.76, 121.16, 115.22, 80.79, 65.62, 61.08, 53.01, 52.92, 33.70, 32.18, 22.52, 14.33, 14.06 ppm; FT-IR: $\tilde{v} = 2956, 1735, 1686, 1441, 1244, 1173, 1129, 1031$ cm⁻¹; HRMS: calcd. for [M+H]⁺C₂₃H₂₈NO₆: 414.19111, found: 414.19033.

Diethyl 2-(2-oxo-2-phenylethylidene)-1,5,6,10b-tetrahydropyrrolo[2,1-*a*]isoquinoline-3,3(2*H*)-dicarboxylate

6a: 91% yield; ¹H-NMR (400 MHz, CDCl₃): $\delta = 8.00 - 7.92$ (m, 2H), 7.61 - 7.53 (m, 1H), 7.51 - 7.44 (m, 2H), 7.45 - 7.39 (m, 1H), 7.21 - 7.10 (m, 4H), 4.39 - 4.22 (m, 4H), 4.19 (dd, J = 9.6, 6.3 Hz, 1H), 3.96 (ddd, J = 18.2, 6.2, 1.9 Hz, 1H), 3.59 (dd, J = 11.1, 5.9 Hz, 1H), 3.30 - 3.18 (m, 1H), 2.98 - 2.79 (m, 3H), 1.35 (t, J = 6.1 Hz, 3H), 1.31 ppm (t, J = 6.1 Hz, 3H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 190.56, 168.03, 167.64, 156.95, 138.73, 137.98, 134.29, 132.98, 128.92, 128.78, 128.40, 126.65, 126.06, 125.55, 120.33, 79.07, 62.28, 61.95, 60.32, 44.54, 37.80, 30.19, 14.62, 14.25 ppm; FT-IR: <math>\tilde{v} = 2980, 1727, 1671, 1368, 1228, 1040$ cm⁻¹; HRMS: calcd. for [M+H]⁺ C₂₆H₂₈NO₅: 434.19620, found: 434.19605.

Diethyl 2-(2-(furan-2-yl)-2-oxoethylidene)-1,5,6,10b-tetrahydropyrrolo[2,1*a*]isoquinoline-3,3(2*H*)-dicarboxylate

6b: 83% yield; ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.64 - 7.54$ (m, 1H), 7.31 - 7.28 (m, 1H), 7.23 - 7.21 (m, 1H), 7.18 - 7.11 (m, 4H), 6.60 - 6.48 (m, 1H), 4.42 - 4.21 (m, 4H), 4.23 - 4.12 (m, 1H), 4.03 (ddd, J = 18.5, 6.3, 1.9 Hz, 1H), 3.57 (dd, J = 11.0, 6.3 Hz, 1H), 3.32 - 3.16 (m, 1H), 2.97 - 2.76 (m, 3H), 1.35 (t, J = 7.1 Hz, 3H), 1.30 ppm (t, J = 7.1 Hz, 3H); ¹³C-

NMR (101 MHz, CDCl₃): δ = 178.52, 167.87, 167.44, 157.59, 154.24, 146.47, 137.97, 134.27, 128.91, 126.66, 126.09, 125.57, 119.36, 117.26, 112.58, 79.10, 62.28, 61.94, 60.34, 44.53, 37.89, 30.17, 14.60, 14.23 ppm; FT-IR: \tilde{v} = 2980, 1727, 1667, 1621, 1466, 1232, 1040 cm⁻¹; HRMS: calcd. for [M+H]⁺C₂₄H₂₆NO₆: 424.17546, found: 424.17525.

Diethyl 2-(2-(3-bromophenyl)-2-oxoethylidene)-1,5,6,10b-tetrahydropyrrolo[2,1*a*]isoquinoline-3,3(2*H*)-dicarboxylate

6c: 83% yield; Ratio of isomer, 78:22; For major product: ¹H-NMR (400 MHz, CDCl₃): $\delta = 8.10 - 8.04$ (m, 1H), 7.91 - 7.84 (m, 1H), 7.68 (ddd, J = 8.0, 2.0, 1.0 Hz, 1H), 7.40 - 7.29 (m, 2H), 7.22 - 7.06 (m, 4H), 4.37 - 4.24 (m, 4H), 4.18 (dd, J = 9.6, 6.3 Hz, 1H), 3.93 (ddd, J = 18.4, 6.3, 1.8 Hz, 1H), 3.59 (dd, J = 11.1, 6.3 Hz, 1H), 3.30 - 3.15 (m, 1H), 2.96 - 2.78 (m, 3H), 1.40 - 1.29 ppm (m, 6H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 189.01, 167.91, 167.49, 158.26, 140.50, 137.87, 135.79, 134.28, 131.44, 130.38, 128.94, 126.89, 126.69, 126.08, 125.51, 123.12, 119.74, 79.10, 62.37, 62.03, 60.26, 44.51, 37.94, 30.18, 14.63, 14.26 ppm; FT-IR: <math>\tilde{v} = 2980, 1727, 1673, 1368, 1220, 1038$ cm⁻¹; HRMS: calcd. for [M+H]⁺ C₂₆H₂₇⁷⁹BrNO₅: 512.10671, found: 512.10677; calcd. for [M+H]⁺ C₂₂H₂₁⁸¹BrNO₆: 514.10467, found: 514.10462; For minor isomer, ¹H-NMR (400 MHz, CDCl₃): $\delta = 8.17 - 8.07$ (m, 1H), 7.91 - 7.87 (m, 1H), 7.68 (ddd, J = 8.0, 2.0, 1.0 Hz, 1H), 7.35 (dd, J = 10.4, 5.4 Hz, 1H), 7.20 - 7.11 (m, 4H), 7.09 - 7.05 (m, 1H), 4.31 - 4.24 (m, 3H), 4.18 - 4.12 (m, 1H), 4.06 (dd, J = 10.8, 7.1 Hz, 1H), 3.77 (dd, J = 10.8, 7.1 Hz, 3H), 1.09 ppm (t, J = 7.1 Hz, 3H).

Diethyl 2-(2-(naphthalen-1-yl)-2-oxoethylidene)-1,5,6,10b-tetrahydropyrrolo[2,1-a]isoquinoline-3,3(2H)-dicarboxylate

6d: 79% yield; ¹H-NMR (400 MHz, CDCl₃): $\delta = 8.52$ (d, J = 8.2 Hz, 1H), 7.99 (d, J = 8.2 Hz, 1H), 7.90 (d, J = 8.2 Hz, 1H), 7.84 (d, J = 7.2 Hz, 1H), 7.61 – 7.49 (m, 3H), 7.26 – 7.23 (m, 1H), 7.21 – 7.10 (m, 4.9 Hz, 4H), 4.38 – 4.22 (m, 5H), 4.00 (dd, J = 18.3, 6.2 Hz, 1H), 3.62 (dd, J = 11.4, 6.2 Hz, 1H), 3.34 – 3.22 (m, 1H), 3.06 – 2.81 (m, 3H), 1.31 ppm (q, J = 7.2 Hz, 6H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = ^{13}$ C NMR (101 MHz, cdcl₃) δ 194.17, 167.69, 167.39, 137.67, 134.25, 134.10, 132.65, 128.99, 128.70, 128.16, 127.85, 126.87, 126.66, 126.24, 125.88, 125.64, 124.80, 124.62, 79.13, 62.49, 62.18, 60.58, 44.74, 37.70, 30.13, 14,68, 14.28 ppm; FT-IR: $\tilde{v} = 2978$, 2924, 1727, 1673, 1368, 1230, 1039 cm⁻¹; HRMS: calcd. for [M+H]⁺ C₃₀H₃₀NO₅: 484.21185, found: 484.21150.

Dimethyl 9-bromo-2-(2-oxo-2-phenylethylidene)-1,5,6,10b-tetrahydropyrrolo[2,1*a*]isoquinoline-3,3(2*H*)-dicarboxylate

6e: 64% yield; ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.98 - 7.93$ (m, 2H), 7.60 - 7.54 (m, 1H), 7.50 - 7.46 (m, 2H), 7.40 (dd, J = 3.1, 1.9 Hz, 1H), 7.29 - 7.25 (m, 2H), 7.01 (d, J = 8.4 Hz, 1H), 4.15 - 4.06 (m, 1H), 3.92 (ddd, J = 11.7, 8.0, 2.7 Hz, 1H), 3.87 (s, 3H), 3.82 (s, 3H), 3.54 (dd, J = 10.8, 6.4 Hz, 1H), 3.14 (dd, J = 14.7, 8.0 Hz, 1H), 2.91 - 2.74 ppm (m, 3H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 190.37, 168.45, 167.92, 155.98, 139.88, 138.53, 133.17, 133.12, 130.59, 129.78, 128.83, 128.52, 128.45, 120.56, 119.65, 78.99, 59.98, 53.43, 52.66, 44.25, 37.56, 29.61 ppm; FT-IR: <math>\tilde{v} = 2955, 1755, 1728, 1672, 1443, 1220, 1118, 1033$ cm⁻¹; HRMS: calcd. for [M+H]⁺ C₂₄H₂₃⁷⁹BrNO₅: 484.07541, found: 484.07507; calcd. for [M+H]⁺ C₂₄H₂₃⁸¹BrNO₅: 486.07337, found: 486.07296.

Dimethyl 9-methoxy-2-(2-oxo-2-phenylethylidene)-1,5,6,10b-tetrahydropyrrolo[2,1*a*]isoquinoline-3,3(2*H*)-dicarboxylatedimethyl **6f**: 78% yield; ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.99 - 7.92$ (m, 2H), 7.59 - 7.55 (m, 1H), 7.51 - 7.42 (m, 2H), 7.40 (dd, J = 3.2, 1.9 Hz, 1H), 7.05 (d, J = 8.4 Hz, 1H), 6.75 (dd, J = 8.4, 2.6 Hz, 1H), 6.67 (d, J = 2.4 Hz, 1H), 4.14 (dd, J = 9.7, 6.1 Hz, 1H), 3.94 (ddd, J = 8.1, 6.1, 3.0 Hz, 1H), 3.87 (s, 3H), 3.81 (s, 3H), 3.79 (s, 3H), 3.53 (dd, J = 10.7, 6.1 Hz, 1H), 3.22 - 3.11 (m, 1H), 2.94 - 2.82 (m, 2H), 2.81 - 2.74 ppm (m, 1H); ¹³C-NMR (101 MHz, CDCl₃): $\delta = 190.52$, 168.64, 168.02, 158.04, 156.57, 138.67, 138.61, 133.06, 129.88, 128.81, 128.43, 126.16, 120.46, 113.27, 110.21, 79.22, 60.48, 55.55, 53.38, 52.54, 44.69, 37.64, 29.27 ppm; FT-IR: $\tilde{\nu} = 2953$, 1730, 1672, 1614, 1503, 1443, 1226, 1040 cm⁻¹; HRMS: calcd. for [M+H]⁺ C₂₅H₂₆NO₆: 436.17546, found: 436.17547.

Spectra

1b

1c

1e

1g

1h

1m

f1 (ppm)

4b

4c

4d

4e

4g

4h

4i

4k

4m

4n

0

100 90 f1 (ppm) . 80

p

6a

6b

6c- major

6c-minor

6d

6e

6f

Biological Methods: The hedgehog signaling inhibition and cell viability assay:

For assaying signal transduction through the HH pathway mouse embryonic mesoderm fibroblast C3H10T1/2 cells were used. These multipotent mesenchymal progenitor cells can differentiate into osteoblasts upon treatment with the SMO agonist Purmorphamine. During differentiation osteoblast specific genes such as alkaline phosphatase (ALK), which plays an essential role in bone formation, are highly expressed. Activity of ALK can directly be monitored by following substrate hydrolysis yielding a highly luminescent product. Inhibition of the pathway results in reduction of luminescence.¹

The screening for small molecule inhibitors of the HH pathway was carried out in 384 well format. Shortly, 800 cells per well were seeded and allowed to grow overnight. The next day, compounds were added to a final concentration of 10 µM using the acoustic nanoliter dispenser ECHO 520. After one hour, Purmorphamine was added to a final concentration of 1.5 µM; control cells did not receive Purmorphamine. After four days, the cell culture medium was aspirated and a commercial luminogenic ALK substrate (CDP-Star, Roche) was added. After one hour, luminescence was read. To identify and exclude toxic compounds that also lead to a reduction in the luminescent signal, cell viability measurements were carried out in parallel. The cell viability assay followed the same workflow as the HH assay, except that only 200 cells per well were seeded. Cell culture medium alone served as control for the cell viability assay. For the measurement of cell viability, Cell Titer Glo reagent (Promega) which determines the cellular ATP content was used. Hits were scored as showing at least a 50% reduction in the luminescent signal in the HH assay, and a minimum of 80% cell viability. Dose-response analysis for hit compounds was done using a three-fold dilution curve starting from 30 µM. IC₅₀ values were calculated using the Quattro software suite (Quattro Research GmbH).

a) X. Wu, S. Ding, Q. Ding, N. S. Gray, P. G. Schultz J. Am. Chem. Soc. 2002, 124, 14520-14521; b) M. M. Beloti, L. S. Bellesini, A. L. Rosa, Cell Biol. Int. 2005, 29, 537-541; b) X. Wu,1 J. Walker, J. Zhang, S Ding, P. G. Schultz Chem. Biol. 2004, 11, 1229-1238; c) X.-J Li, B.-Y. Hu, S. A. Jones, Y.-S. Zhang, Y. Sha, T. Lavaute, Z.-W. Du, Stem Cells 2008, 26, 886-893; (d) S. Sinha, J. K. Chen, Nat. Chem. Biol. 2006, 2, 29-30.