Supporting information for

Guanidinium Iodide-Catalyzed Oxidative α -Nitroalkylation of β -Ketoamides

Koji Yasui, Takanari Kato, Kohei Kojima, Kazuo Nagasawa*

* Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology,
2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan Tel & Fax: (+81)42-388-7295, e-mail: knaga@cc.tuat.ac.jp

Table of Contents:

1.	General Information	53
2.	Experimental Section	21
3.	References	22
4.	Copies of ¹ H and ¹³ C NMR spectra	6

1. General Information

Flash chromatography was performed using silica gel 60 (spherical, particle size 0.040-0.100 mm; Kanto Co., Inc., Japan). ¹H and ¹³C NMR spectra were recorded on JEOL EX300, ECA/ECX400 instruments. Chemical shifts in chloroform-d was reported in the scale relative to chloroform-d (¹H NMR; $\delta = 7.26$ ppm, ¹³C NMR; $\delta = 77.0$ ppm) as an internal reference. Data for ¹H NMR were recorded as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant (Hz), integration. Data for ¹³C NMR are reported in terms of chemical shift (δ ppm). Mass spectra were recorded on JEOL JMS-T100X spectrometer.

2. Experimental Section

Preparation of onium iodides

n-Bu₄PI and Py·HI were prepared according to the previous reports.^{1,2}

TBD·HI: To a mixture of 1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD) (1.0 g, 7.2 mmol) in MeOH (20 ml) was added NH₄Cl (423 mg, 7.9 mmol) and the reaction mixture was stirred for 4 h under N₂ atmosphere. The reaction mixture was evaporated *in vacuo* to give a white solid. This white solid was diluted with CH₂Cl₂ and filtered. The filtrates were evaporated *in vacuo* to give TBD·HCl. Then TBD·HCl (955 mg, 5.4 mmol) was dissolved in dry CH₂Cl₂ and added NaI (815 mg, 5.4 mmol) under N₂ atmosphere. After 24 h, the reaction mixture was filtered through a pad of Celite, and concentrated *in vacuo* to give TBDHI (1.4 g, 56% 2 steps). ¹H NMR (300 MHz, CDCl₃) δ 8.20 (s, 2H), 3.36-3.30 (m, 8 H), 2.05-1.97 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 151.1, 46.4, 37.6, 20.2; HRMS (ESI, M+Na) calcd for C₇H₁₄Na₃ 140.1188, found 140.1146.

MeTBD·HI: Prepared from 7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MeTBD) according to the procedure for TBD·HI; (67%, 2 steps). ¹H NMR (300 MHz, CDCl₃) δ 7.52 (s, 1H), 3.55-3.50 (m, 2H), 3.43-3.35 (m, 6H), 3.27 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 150.7, 48.1, 47.8, 47.0, 39.7,

38.4,20.8, 20.4; HRMS (ESI, M+Na) calcd for C₈H₁₆Na₃ 154.1344, found 154.1362.

TMG·HI: Prepared from 1,1,3,3-Tetramethylguanidine (TMG) according to the procedure for TBD·HI; (70%, 2 steps): ¹H NMR (300 MHz, CDCl₃) δ 7.45 (s, 2H), 3.11 (s, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 160.5, 40.9; HRMS (ESI, M+Na) calcd for C₅H₁₄Na₃ 116.1188, found 116.1164.

Synthesis of **β**-ketoester S1b

5-Methyl-1-oso-2-indanecarboxylate (S1b).

To a suspension of NaH (80% in mineral oil, 84 mg, 2.11 mmol) in dimethyl carbonate (2 mL) was added a solution of 5-methyl-1-indanone (140 mg, 0.56 mmol) in dimethyl carbonate (2 mL) dropwise. The resulting mixture was heated at 80 °C for 1 h. After cooling to 0 °C, to the reaction mixture was added 1N HCl (3 mL). The organic layer was extracted with dichloromethane (×3). The extracts were washed with brine, dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (*n*-hexane/ethyl acetate, 9:1 as eluent) to give methyl ester **S1b** (165 mg, 90%). ¹H NMR (300 MHz, CDCl₃) δ 7.67 (d, *J* = 7.5 Hz, 1H), 7.30 (s, 1H), 7.20 (d, *J* = 7.5 Hz, 1H), 3.79 (s, 3H), 3.73 (dd, *J* = 7.8, 4.2 Hz, 1H), 3.52 (dd, *J* = 17.4, 7.8 Hz, 1H), 2.45 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 198.9, 169.7, 154.1, 146.9, 132.9, 129.1, 126.8, 124.5, 53.3, 52.8, 30.1, 22.1; HRMS (ESI, M+Na) calcd for C₁₂H₁₂Na₁O₃ 227.0684, found 227.0711.

General procedure for amidation of methyl esters

N-Benzyl-5-methyl-1-oxo-2,3-dihydro-1*H*-indene-2-carboxamide (1b).

To a suspension of activated MS4A (386 mg) in toluene (4.5 mL) was added β-ketomethyl ester **S1b** (134 mg, 0.66 mmol) and benzylamine (108 μ L, 0.99 mmol) under N₂ atmosphere. The resulting mixture was heated at 70 °C, for 18 h. The reaction mixture was then cooled to an ambient temperature, and filtered through a pad of Celite, and the filtrates were concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (*n*-hexane/ethyl acetate, 5:1 as eluent) to give β-ketoamide **1b** (165 mg, 90%). ¹H NMR (300 MHz, CDCl₃) δ 7.64 (d, *J* = 7.8 Hz, 1H), 7.54 (br, 1H), 7.38-7.24 (m, 6H), 7.17 (d, *J* = 7.8 Hz, 1H), 4.57 (dd, *J* = 14.7, 6.0 Hz, 1H), 4.45 (dd, *J* = 14.7, 5.4 Hz, 1H), 3.77 (dd, *J* = 17.7, 3.9 Hz, 1H), 3.59 (dd, *J* = 8.4, 4.2 Hz, 1H), 3.33 (dd, *J* = 17.7, 8.4 Hz, 1H), 2.45 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 202.7, 166.6, 154.7, 147.2, 138.1, 133.0, 128.9, 128.6, 127.6, 127.3, 127.0, 124.1, 52.9, 43.7, 28.5, 22.2; HRMS (ESI, M+Na) calcd for C₁₈H₁₇N₁Na₁O₂ 302.1157, found 302.1162.

N-Benzyl-5-methoxy-1-oxo-2,3-dihydro-1*H*-indene-2-carboxamide (1c).

Prepared from corresponding β -ketomethyl ester³ according to the general procedure for amidation of methyl esters (50% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.8 Hz, 1H), 7.57 (br, 1H), 7.38-7.20 (m, 5H), 6.93-6.90 (m, 2H), 4.56 (dd, *J* = 14.8, 6.0 Hz, 1H), 4.45 (dd, *J* = 14.8, 5.6 Hz, 1H), 3.90 (s, 3H), 3.78 (dd, *J* = 18.0, 3.6 Hz, 1H), 3.58 (dd, *J* = 8.4, 3.6 Hz, 1H), 3.31 (dd, *J* = 18.0, 8.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 201.1, 166.7, 166.2, 157.4, 138.1, 128.6, 128.4, 127.6, 127.3, 126.1, 116.0, 109.5, 55.7, 52.9, 43.7, 28.7; HRMS (ESI, M+Na) calcd for C₁₈H₁₇N₁Na₁O₃ 318.1106, found 318.1146.

N-Benzyl-5,6-dimethoxy-1-oxo-2,3-dihydro-1*H*-indene-2-carboxamide (1d).

Prepared from corresponding β -ketomethyl ester⁴ according to the general procedure for amidation of methyl esters (51% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.56 (br, 1H), 7.37-7.23 (m, 5H), 7.14 (s, 1H), 6.92 (s, 1H), 4.56 (dd, J = 15.2, 6.0 Hz, 1H), 4.46 (dd, J = 15.2, 5.6 Hz, 1H), 3.98 (s, 3H). 3.90 (s, 3H), 3.73 (dd, J = 17.6, 3.6 Hz, 1H), 3.59 (dd, J = 7.6, 3.6 Hz, 1H), 3.28 (dd, J = 17.6, 7.6 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 201.6, 166.8, 156.4, 150.1, 149.6, 138.1, 128.6, 127.9, 127.6,

127.4, 107.4, 104.4, 56.4, 56.1, 53.0, 43.7, 28.4; HRMS (ESI, M+Na) calcd for C₁₉H₁₉N₁Na₁O₄ 348.1212, found 348.1254.

N-Benzyl-5-oxo-6,7-dihydro-5*H*-indeno[5,6-*d*][1,3]dioxole-6-carboxamide (1e).

Prepared from corresponding β-ketomethyl ester⁴ according to the general procedure for amidation of methyl esters (70% yield). ¹H NMR (300 MHz, CDCl₃) δ 7.53 (br, 1H), 7.40-7.24 (m, 5H), 7.07 (s, 1H), 6.87 (s, 1H), 4.56 (dd, J = 15.0, 6.0 Hz, 1H), 4.44 (dd, J = 15.0, 6.0 Hz, 1H), 3.70 (dd, J = 17.4, 3.6 Hz, 1H), 3.58 (dd, J = 7.8, 3.6 Hz, 1H), 3.24 (dd, J = 17.4, 7.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 200.9, 166.6, 155.2, 152.4, 148.5, 138.1, 129.7, 128.7, 127.4, 105.8, 102.6, 102.4, 53.2, 43.8, 31.1, 28.6; HRMS (ESI, M+Na) calcd for C₁₈H₁₅N₁Na₁O₄ 332.0899, found 332.0891.

N-Benzyl-5-bromo-1-oxo-2,3-dihydro-1*H*-indene-2-carboxamide (1f).

Prepared from corresponding β-ketomethyl ester according to the general procedure for amidation of methyl esters (85% yield). ¹H NMR (300 MHz, CDCl₃) δ 7.71 (s, 1H), 7.60 (d, J = 8.4 Hz, 1H), 7.53 (d, J = 8.4 Hz, 1H), 7.43-7.24 (m, 6H), 3.83 (dd, J = 18.0, 4.2 Hz, 1H), 3.60 (dd, J = 8.4, 4.2 Hz, 1H), 3.35 (dd, J = 18.0, 8.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 201.8, 165.9, 155.7, 137.9, 134.1, 131.3, 130.0, 128.6, 127.6, 127.4, 125.5, 52.9, 43.8, 28.4; HRMS (ESI, M+Na) calcd for $C_{17}H_{14}^{81}Br_1N_1Na_1O_2$ 368.0085 and $C_{17}H_{14}^{79}Br_1N_1Na_1O_2$ 366.0106, found 368.0132 and 366.0080.

N-Benzyl-5-chloro-1-oxo-2,3-dihydro-1*H*-indene-2-carboxamide (1g).

Prepared from corresponding β-ketomethyl ester³ according to the general procedure for amidation of methyl esters; (68% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 8.4 Hz, 1H), 7.50 (s, 1H), 7.41 (s, 1H), 7.68-7.24 (m, 6H), 4.54 (dd, J = 15.2, 6.0 Hz, 1H), 4.44 (dd, J = 15.2, 6.0 Hz, 1H), 3.80 (dd, J = 18.0, 4.0 Hz, 1H), 3.60 (dd, J = 8.4, 4.0 Hz, 1H), 3.32 (dd, J = 18.0, 8.4 Hz, 1H); ¹³C NMR

(75 MHz, CDCl₃) δ 201.7, 165.9, 155.7, 142.4, 137.9, 133.7, 128.7, 128.5, 127.7, 127.5, 126.9, 125.4, 53.0, 43.8, 28.4; HRMS (ESI, M+Na) calcd for C₁₇H₁₄Cl₁N₁Na₁O₂ 322.0611, found 322.0620.

N-Benzyl-5-chloro-1-oxo-2,3-dihydro-1H-indene-2-carboxamide (1h).

Prepared from corresponding β -ketomethyl ester⁵ according to the general procedure for amidation of methyl esters; (71% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 7.6 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 1H), 7.46 (br, 1H), 7.38-7.20 (m, 7H), 4.56 (dd, *J* = 15.2, 6.0 Hz, 1H), 4.44 (dd, *J* = 15.2, 5.6 Hz, 1H), 3.42 (dd, *J* = 8.8, 5.2 Hz, 1H), 3.17 (ddd, *J* = 16.8, 6.4, 4.4 Hz, 1H), 2.96 (ddd, *J* = 16.8, 8.4, 4.4 Hz, 1H), 2.58-2.43 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 167.6, 144.8, 138.1, 134.3, 131.9, 128.8, 128.6, 127.8, 127.6, 127.3, 126.8, 52.6, 43.7, 27.9, 25.4; HRMS (ESI, M+Na) calcd for C₁₈H₁₇N₁Na₁O₂ 302.1157, found 302.1121.

N-Benzyl-5-oxo-6,7,8,9-tetrahydro-5H-benzo[7]annulene-6-carboxamide (1i).

To a suspension of activated MS4A (973 mg) in toluene (10 mL) was added β -ketomethyl ester **S1i**⁵ (638 mg, 2.92 mmol) and benzylamine (1.1 ml, 10.2 mmol) under N₂ atmosphere. The resulting mixture was heated to 70 °C for 24 h. The reaction mixture was cooled to an ambient temperature, filtered through a pad of Celite, and the filtrates were concentrated *in vacuo*. To the residue was added dioxane (5 mL) and 6N HCl (1 mL), and the mixture was stirred at room temperature for 24 h. The resulting mixture was extracted with ethyl acetate (×2), and the combined extracts were washed with sat. NaHCO₃, brine, dried over MgSO₄, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (*n*-hexane/ethyl acetate, 5:1 as eluent) to give β -ketoamide **1i** (282 mg, 33% 2 steps). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (br, 1H), 7.63 (d, *J* = 7.6 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.38-7.20 (m, 7H), 4.60-4.44 (m, 2H), 3.72 (dd, *J* = 10.0, 4.8 Hz, 1H), 3.00-2.86 (m, 2H), 2.34-2.22 (m, 1H), 2.18-2.00 (m, 2H), 2.00-1.82 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 205.1, 168.7, 141.5, 138.8, 138.2, 132.4, 129.7, 128.6, 128.5, 127.6, 127.3, 126.6, 55.4, 43.5, 32.5, 27.3, 24.4; HRMS (ESI, M+Na) calcd for C₁₉H₁₉N₁Na₁O₂ 316.1314, found 316.1362.

N-Butyl-1-oxo-2,3-dihydro-1H-indene-2-carboxamide (1j).

Prepared from corresponding β-ketomethyl ester⁶ and *n*-butylamine according to the general procedure for amidation of methyl esters (59% yield). ¹H NMR (300 MHz, CDCl₃) δ 7.74 (d, J = 7.8 Hz, 1H), 7.62 (t, J = 7.5 Hz, 1H), 7.51 (d, J = 7.5, 1H), 7.38 (t, J = 7.5 Hz, 1H), 7.14 (br, 1H), 3.79 (dd, J = 17.7, 3.9 Hz, 1H), 3.54 (dd, J = 8.4, 3.9 Hz, 1H), 3.35 (dd, J = 17.7, 8.4 Hz, 1H), 3.36-3.27 (m, 2H), 1.58-1.49 (m, 2H), 1.43-1.31 (m, 2H), 0.93 (t, J = 7.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 203.5, 166.2, 154.3, 135.6, 135.3, 127.5, 126.6, 124.2, 52.8, 39.5, 31.5, 28.7, 20.0, 13.7; HRMS (ESI, M+Na) calcd for C₁₄H₁₇N₁Na₁O₂ 254.1157, found 254.1117.

N-(4-methoxyphenyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxamide (11).

According to the general procedure for amidation of methyl esters, the title compound was prepared from corresponding β-ketomethyl ester and 4-methoxyaniline (87% yield). ¹H NMR (300 MHz, CDCl₃) δ 9.05 (s, 1H), 7.79 (d, J = 7.5 Hz, 1H), 7.66 (td, J = 7.5, 0.9 Hz, 1H), 7.55 (d, J = 7.5 Hz, 1H), 7.50 (d, J = 9.0 Hz, 2H), 7.41 (t, J = 7.5 Hz, 2H), 6.87 (d, J = 9.0 Hz, 2H), 3.86 (dd, J = 18.0, 3.9 Hz, 1H), 3.73 (dd, J = 8.4, 3.9 Hz, 1H), 3.44 (dd, J = 18.0, 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 203.6, 164.1, 156.4, 154.2, 136.0, 135.3, 130.9, 127.7, 126.7, 124.4, 121.7, 114.1, 55.4, 53.2, 28.6; HRMS (ESI, M+Na) calcd for C₁₇H₁₅N₁Na₁O₃ 304.0950, found 304.0921.

N-(4-bromophenyl)-1-oxo-2,3-dihydro-1*H*-indene-2-carboxamide (1m).

According to the general procedure for amidation of methyl esters, the title compound was prepared from corresponding β -ketomethyl ester and 4-bromoaniline (85% yield). ¹H NMR (300 MHz, CDCl₃) δ 9.23 (s, 1H), 7.80 (d, *J* = 7.5 Hz, 1H), 7.68 (td, *J* = 7.5, 0.9 Hz, 1H), 7.55 (d, *J* = 7.5 Hz, 1H), 7.68 (td, *J* = 7.5, 0.9 Hz, 1H), 7.55 (d, *J* = 7.5 Hz, 1H), 7.68 (td, *J* = 7.5, 0.9 Hz, 1H), 7.55 (d, *J* = 7.5 Hz, 1H), 7.68 (td, *J* = 7.5, 0.9 Hz, 1H), 7.55 (d, *J* = 7.5 Hz, 1H), 7.68 (td, *J* = 7.5, 0.9 Hz, 1H), 7.55 (d, *J* = 7.5 Hz, 1H), 7.68 (td, *J* = 7.5 Hz, 1H), 7.68 (td, *J* = 7.5 Hz, 1H), 7.68 (td, *J* = 7.5 Hz, 1H), 7.55 (d, *J* = 7.5 Hz, 1H), 7.68 (td, *J* = 7.5 Hz, 1H), 7.55 (d, *J* = 7.5 Hz, 1H), 7.68 (td, *J* = 7.5 Hz, 1H), 7.55 (d, *J* = 7.5 Hz, 1H), 7.68 (td, *J* = 7.5 Hz, 1H), 7.55 (d, *J* = 7.5 Hz, 1H), 7.68 (td, *J* = 7.5 Hz, 1H), 7.55 (d, J = 7.

1H), 7.51 (d, J = 9.0 Hz, 2H), 7.44 (d, J = 9.0 Hz, 2H), 7.43 (t, J = 7.5 Hz, 1H), 3.85 (dd, J = 17.4, 4.2 Hz, 1H), 3.74 (dd, J = 8.1, 4.2 Hz, 1H), 3.45 (dd, J = 17.4, 8.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 203.4, 164.4, 154.1, 136.8, 136.1, 135.1, 131.9, 127.8, 126.7, 124.5, 121.4, 116.8, 53.3, 28.4; HRMS (ESI, M+Na) calcd for C₁₆H₁₂⁸¹Br₁N₁Na₁O₂ 353.9929 and C₁₆H₁₂⁷⁹Br₁N₁Na₁O₂ 351.9949, found 353.9946 and 351.9953.

N-(3,4-dichlorophenyl)-1-oxo-2,3-dihydro-1*H*-indene-2-carboxamide (1n).

According to the general procedure for amidation of methyl esters, the title compound was prepared from corresponding β-ketomethyl ester and 3,4-dichroloaniline (88% yield). ¹H NMR (300 MHz, CDCl₃) δ 9.30 (s, 1H), 7.86 (d, J = 2.1 Hz, 1H), 7.80 (d, J = 7.5 Hz, 1H), 7.69 (td, J = 7.5, 0.9 Hz, 1H), 7.56 (d, J = 7.5 Hz, 1H), 7.43 (t, J = 7.5 Hz, 1H), 7.42 (dd, J = 8.1, 2.1 Hz, 1H), 7.38 (d, J = 8.1 Hz, 1H), 3.84 (dd, J = 17.7, 4.2 Hz, 1H), 3.74 (dd, J = 8.4, 4.2 Hz, 1H), 3.45 (dd, J = 17.7, 8.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 203.3, 164.5, 154.1, 137.2, 136.3, 135.0, 132.7, 130.4, 127.9, 127.4, 126.7, 124.6, 121.5, 119.1, 53.3, 28.4; HRMS (ESI, M+Na) calcd for C₁₆H₁₁Cl₂N₁Na₁O₂ 342.0065, found 342.0079.

General procedure for oxidative α -nitroalkylation of β -ketoamides.

N-Benzyl-2-(1-nitroethyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxamide (3aa).

To a mixture of β -ketoamide $1a^7$ (26.5 mg, 0.1 mmol) and nitroethane (2a) (214 µL, 3.0 mmol) in acetonitrile (1 mL) was added TBD·HI (2.7 mg, 0.01 mmol) under Ar atmosphere at room temperature, and the resulting mixture was heated at 70 °C. To the resulting mixture was added TBHP (70% in H₂O, 21.2 µL, 0.15 mmol) dropwise at this temperature, and the mixture was stirred for 30 min. Then the reaction mixture was cool to room temperature, and was added 10% Na₂S₂O₃. The reaction mixture was extracted with ethyl acetate (×3), and the extracts were washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (*n*-hexane/ethyl acetate = 9:1 as eluent) to give **3aa** as a 1:1 mixture of

separable diastereomers (32 mg, 94% combined yield) with a trace amount of **4a**.⁷ **3aa** (less polar): ¹H NMR (300 MHz, CDCl₃) δ 7.79 (d, J = 8.1 Hz, 1H), 7.65 (dt, J = 1.5, 7.5 Hz, 1H), 7.50 (d, J = 7.5 Hz, 1H), 7.46-7.26 (m, 5H), 7.21 (dd, J = 8.1, 1.8 Hz, 2H), 5.26 (q, J = 6.9 Hz, 1H), 4.52 (dd, J = 14.7, 6.0 Hz, 1H), 4.27 (dd, J = 14.7, 5.4 Hz, 1H), 4.21 (d, J = 18.0 Hz, 1H), 3.16 (d, J = 18.0 Hz, 1H), 1.63 (d, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 203.2, 164.6, 153.3, 137.2, 136.2, 134.4, 128.8, 128.0, 127.8, 127.6, 126.6, 124.8, 85.2, 63.7, 44.5, 30.9, 15.2; HRMS (ESI, M+Na) calcd for C₁₉H₁₈N₂Na₁O₄ 361.1164, found 361.1184. **3aa** (polar): ¹H NMR (300 MHz, CDCl₃) δ 7.77 (d, J = 7.5 Hz, 1H), 7.69 (dt, J = 0.9, 7.5 Hz, 1H), 7.54 (d, J = 7.5 Hz, 1H), 7.43 (t, J = 7.5 Hz, 1H), 7.38-7.24 (m, 5H), 7.14 (brs, 1H), 5.29 (q, J = 6.9 Hz, 1H), 4.56 (dd, J = 14.7, 6.0 Hz, 1H), 4.33 (dd, J = 14.7, 5.1 Hz, 1H), 4.07 (d, J = 18.9 Hz, 1H), 3.52 (d, J = 18.9 Hz, 1H), 1.48 (d, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 202.4, 165.7, 153.8, 137.3, 136.8, 134.7, 128.8, 128.2, 127.8, 127.7, 126.6, 124.9, 86.9, 63.1, 44.4, 32.5, 15.0; HRMS (ESI, M+Na) calcd for C₁₉H₁₈N₂Na₁O₄ 361.11643, found 361.11421.

N-Benzyl-5-methyl-2-(1-nitroethyl)-1-oxo-2,3-dihydro-1*H*-indene-2-carboxamide (3ba).

According to the general procedure for oxidative α-nitroalkylation of β-ketoamides, the title compound was obtained as a 1:1 mixture of inseparable diastereomers (88% combined yield). ¹H NMR (300 MHz, CDCl₃) δ 7.68 (d, J = 7.2 Hz, 0.5H), 7.65 (d, J = 6.9 Hz, 0.5H), 7.46-7.12 (m, 9H), 5.27 (q, J = 6.9 Hz, 0.5H), 5.24 (q, J = 6.9 Hz, 0.5H), 4.56 (dd, J = 14.7, 5.7 Hz, 0.5H), 4.52 (dd, J = 14.7, 6.0 Hz, 0.5H), 4.33 (dd, J = 14.7, 5.1 Hz, 0.5H), 4.27 (dd, J = 14.7, 5.4 Hz, 0.5H), 4.14 (d, J = 18.0 Hz, 0.5H), 4.01 (d, J = 18.6 Hz, 0.5H), 3.47 (d, J = 18.6 Hz, 0.5H), 3.11 (d, J = 18.0 Hz, 0.5H), 2.47 (s, 1.5H), 2.45 (s, 1.5H), 1.62 (d, J = 6.9 Hz, 1.5H), 1.47 (d, J = 6.9 Hz, 1.5H); ¹³C NMR (75 MHz, CDCl₃) δ 202.4, 201.5, 165.9, 164.8, 154.3, 153.7, 148.6, 147.9, 137.3, 137.3, 132.3, 132.1, 129.5, 129.3, 128.8, 128.7, 127.8, 127.7, 127.6, 126.9, 124.7, 124.7, 86.8, 85.2, 63.7, 63.2, 44.4, 44.3, 32.1, 30.7, 22.3, 22.2, 15.1, 14.9; HRMS (ESI, M+Na) calcd for C₂₀H₂₀N₂Na₁O₄ 375.1321, found 375.1285.

N-Benzyl-5-methoxy-2-(1-nitroethyl)-1-oxo-2,3-dihydro-1*H*-indene-2-carboxamide (3ca).

According to the general procedure for oxidative α-nitroalkylation of β-ketoamides, the title compound was obtained as a 1:1 mixture of inseparable diastereomers (73% combined yield). ¹H NMR (300 MHz, CDCl₃) δ 7.71-7.64 (m, 2H), 7.50 (t, J = 5.1 Hz, 1H), 7.36-7.20 (m, 11H), 6.97-6.91 (m, 4H), 5.26 (q, J = 6.9 Hz, 1H), 5.24 (q, J = 6.9 Hz, 1H), 4.56 (dd, J = 14.1, 6.0 Hz, 1H), 4.52 (dd, J = 14.1, 6.0 Hz, 1H), 4.32 (dd, J = 14.7, 5.1 Hz, 1H), 4.28 (dd, J = 14.7, 5.1 Hz, 1H), 4.14 (d, J = 17.7 Hz, 1H), 4.02 (d, J = 18.9 Hz, 1H), 3.91 (s, 3H), 3.89 (s, 3H), 3.48 (d, J = 18.9 Hz, 1H), 3.14 (d, J = 17.7 Hz, 1H), 1.61 (d, J = 6.9 Hz, 3H), 1.45 (d, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 200.8, 199.9, 167.0, 166.6, 166.1, 165.1, 157.3, 156.6, 137.4, 137.3, 128.8, 128.7, 127.8, 127.7, 127.6, 127.4, 116.9, 116.5, 109.4, 109.2, 86.8, 85.1, 63.7, 63.3, 55.9, 55.8, 44.4, 44.3, 31.9, 30.8, 15.2, 14.8; HRMS (ESI, M+Na) calcd for C₂₀H₂₀N₂Na₁O₅ 391.1270, found 391.1256.

N-Benzyl-5,6-dimethoxy-2-(1-nitroethyl)-1-oxo-2,3-dihydro-1*H*-indene-2-carboxamide(3da).

According to the general procedure for oxidative α-nitroalkylation of β-ketoamides, the title compound was obtained as a 1:1 mixture of separable diastereomers (84% combined yield). **3da** (less polar): ¹H NMR (300 MHz, CDCl₃) δ 7.50 (brt, J = 5.7 Hz, 1H), 7.36-7.28 (m, 3H), 7.23-7.21 (m, 3H), 7.16 (s, 1H), 6.89 (s, 1H), 5.24 (q, J = 6.9, 1H), 4.52 (dd, J = 14.7, 6.0 Hz, 1H), 4.28 (dd, J = 14.7, 5.4 Hz, 1H), 4.08 (d, J = 17.7 Hz, 1H), 3.10 (d, J = 17.7 Hz, 1H), 1.61 (d, J = 6.9 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 201.1, 165.1, 156.9, 149.9, 149.4, 137.3, 128.8, 127.7, 127.7 127.0 107.4, 104.8, 85.1, 63.9, 56.4, 56.1, 44.4, 30.5, 15.2; HRMS (ESI, M+Na) calcd for C₂₁H₂₂N₂Na₁O₆ 421.1376, found 421.1333. **3da** (polar): ¹H NMR (300 MHz, CDCl₃) δ 7.36-7.21 (m, 6H), 7.12 (s, 1H), 4.00 (s, 3H), 3.95 (d, J = 18.3 Hz, 1H), 3.90 (s, 3H), 3.43 (d, J = 18.3 Hz, 1H), 1.45 (d, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 200.2, 166.2, 157.3, 150.1, 137.4, 128.7, 127.8, 127.6, 127.2, 107.2, 104.6, 86.8, 63.3, 56.5, 56.1, 44.3, 31.8, 14.8; HRMS (ESI, M+Na) calcd for C₂₁H₂₂N₂Na₁O₆ 421.1376, found 421.1358.

N-Benzyl-6-(1-nitroethyl)-5-oxo-6,7-dihydro-5*H*-indeno[5,6-*d*][1,3]dioxole-6-carboxamide (3ea).

According to the general procedure for oxidative α-nitroalkylation of β-ketoamides, the title compound was obtained as a 1:1 mixture of separable diastereomers (93% combined yield). **3ea** (less polar): ¹H NMR (300 MHz, CDCl₃) δ 7.46 (br, 1H), 7.36-7.20 (m, 5H), 7.10 (s, 1H), 6.85 (s, 1H), 6.09 (s, 1H), 6.09 (s, 1H), 5.21 (q, J = 6.9 Hz, 1H), 4.52 (dd, J = 14.7, 6.0 Hz, 1H), 4.28 (dd, J = 14.7, 5.1 Hz, 1H), 4.05 (d, J = 18.0 Hz, 1H), 3.06 (d, J = 18.0 Hz, 1H), 1.61 (d, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 200.6, 164.9, 155.7, 151.7, 148.8, 137.3, 128.8, 128.8, 127.7, 127.6, 105.8, 103.0, 102.6, 85.1, 64.0, 44.4, 30.7, 15.1; HRMS (ESI, M+Na) calcd for C₂₀H₁₈N₂Na₁O₆ 405.1063, found 405.1062. **3ea** (polar): ¹H NMR (300 MHz, CDCl₃) δ 7.37-7.23 (m, 5H), 7.22 (br, 1H), 7.06 (s, 1H), 6.89 (s, 1H), 6.11 (s, 2H), 5.23 (q, J = 6.9 Hz, 1H), 4.57 (dd, J = 15.0, 6.3 Hz, 1H), 4.33 (dd, J = 15.0, 5.4 Hz, 1H), 3.92 (d, J = 18.9 Hz, 1H), 3.40 (d, J = 18.9 Hz, 1H), 1.24 (d, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 199.7, 165.9, 156.2, 152.4, 149.0, 137.4, 129.0, 128.7, 127.8, 127.6, 105.7, 102.8, 102.8, 86.8, 63.5, 44.3, 32.0, 14.8; HRMS (ESI, M+Na) calcd for C₂₀H₁₈N₂Na₁O₆ (s₂₀H₁₈N₂Na₁O₆ 405.10626, found 405.10437.

N-Benzyl-5-bromo-2-(1-nitroethyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxamide (3fa).

According to the general procedure for oxidative α-nitroalkylation of β-ketoamides, the title compound was obtained as a 7:3 mixture of inseparable diastereomers (85% combined yield). ¹H NMR (300 MHz, CDCl₃) δ 7.73-7.53 (m, 3H), 7.38-7.23 (m, 5.7H), 7.23-7.18 (m, 1H), 7.12 (brs, 0.3H), 5.26 (q, J = 6.9 Hz, 0.3H), 5.23 (q, J = 6.9 Hz, 0.7H), 4.54 (dd, J = 14.7, 6.0 Hz, 0.3H), 4.52 (dd, J = 14.7, 6.3 Hz, 0.7H), 4.33 (dd, J = 14.7, 5.4 Hz, 0.3H), 4.27 (dd, J = 14.7, 5.4 Hz, 0.7H), 4.20 (d, J = 18.0 Hz, 0.7H), 4.06 (d, J = 18.6 Hz, 0.3H), 3.48 (d, J = 18.6 Hz, 0.3H), 3.13 (d, J = 18.0 Hz, 0.7H), 1.62 (d, J = 6.9 Hz, 2.7H), 1.50 (d, J = 6.9 Hz, 0.9H); ¹³C NMR (75 MHz, CDCl₃) δ 202.1, 201.3, 165.2, 164.2, 155.0, 154.6, 137.1, 137.1, 133.5, 133.3, 132.6, 132.0, 131.7, 129.9, 128.9, 128.8, 127.8, 127.7, 127.6, 125.9, 86.8, 85.1, 63.8, 63.1, 44.6, 44.5, 32.3, 30.6, 15.1, 15.1; HRMS (ESI, M+Na) calcd for C₁₉H₁₇⁸¹Br₁N₂Na₁O₄ 441.0249 and C₁₉H₁₇⁷⁹Br₁N₂Na₁O₄ 439.0269, found 441.0222 and 439.0240.

N-Benzyl-5-chloro-2-(1-nitroethyl)-1-oxo-2,3-dihydro-1*H*-indene-2-carboxamide (3ga).

According to the general procedure for oxidative α-nitroalkylation of β-ketoamides, the title compound was obtained as a 1:1 mixture of inseparable diastereomers (85% combined yield). ¹H NMR (300 MHz, CDCl₃) δ 7.01 (brt, J = 6.3 Hz, 1H), 7.51 (d, J = 9.9 Hz, 1H), 7.42-7.10 (m, 9H), 5.26 (q, J = 6.9, 0.5H), 5.23 (q, J = 6.9, 0.5H), 4.56 (dd, J = 14.7, 6.0 Hz, 0.5H), 4.52 (dd, J = 14.7, 6.3 Hz, 0.5H), 4.33 (dd, J = 14.7, 5.4 Hz, 0.5H), 4.28 (dd, J = 14.7, 5.4 Hz, 0.5H), 4.20 (d, J = 17.4 Hz, 0.5H), 4.06 (d, J = 18.6 Hz, 0.5H), 3.48 (d, J = 18.6 Hz, 0.5H), 3.13 (d, J = 17.4 Hz, 0.5H), 1.63 (d, J = 6.9 Hz, 1.5H), 1.50 (d, J = 6.9 Hz, 1.5H); ¹³C NMR (75 MHz, CDCl₃) δ 201.8, 201.1, 165.3, 164.2, 155.0, 154.6, 143.6, 143.0, 137.1, 133.1, 132.9, 129.2, 128.9, 128.8, 127.8, 127.8, 127.7, 126.8, 126.0, 125.9, 86.9, 85.2, 63.9, 63.2, 44.6, 44.5, 32.4, 30.7, 15.1, 15.1; HRMS (ESI, M+Na) calcd for C₁₉H₁₇Cl₁N₂Na₁O₄ 395.0775, found 395.0744.

N-Benzyl-2-(1-nitroethyl)-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxamide (3ha).

According to the general procedure for oxidative α-nitroalkylation of β-ketoamides, the title compound was obtained as a 7:3 mixture of inseparable diastereomers (88% combined yield). ¹H NMR (300 MHz, CDCl₃) δ 8.06 (dd, J = 7.5, 1.2 Hz, 0.7H), 8.02 (dd, J = 7.5, 0.9 Hz, 0.3H), 7.56 (td, J = 7.5, 1.2 Hz, 0.3H), 7.55 (td, J = 7.5, 1.5 Hz, 0.7H), 7.38-7.24 (m, 5H), 7.20-7.12 (m, 2H), 7.02 (br, 0.7H), 6.62 (br, 0.3H), 5.48 (q, J = 6.9 Hz, 0.7H), 5.35 (q, J = 6.9 Hz, 0.3H), 4.53 (dd, J = 14.7, 6.3 Hz, 0.3H), 4.51 (dd, J = 14.7, 6.6 Hz, 0.7H), 4.29 (dd, J = 14.7, 5.1 Hz, 0.3H), 4.22 (dd, J = 14.7, 5.1 Hz, 0.7H), 3.24-3.12 (m, 1H), 2.98-2.78 (m, 2H), 2.35-2.16 (m, 1H), 1.61 (d, J = 6.9 Hz, 0.3H), 1.56 (d, J = 6.9 Hz, 0.7H); ¹³C NMR (75 MHz, CDCl₃) δ 197.5, 196.8, 164.7, 164.0, 144.3, 143.9, 137.2, 137.2, 135.1, 134.9, 131.3, 128.8, 128.8, 128.7, 128.7, 128.4, 127.7, 127.7, 127.6, 127.5, 127.4, 127.0, 127.0, 87.5, 85.5, 61.0, 60.8, 44.4, 44.3, 26.3, 25.9, 25.8, 24.3, 15.7, 14.0; HRMS (ESI, M+Na) calcd for C₂₀H₂₀N₂Na₁O₄ 375.1321, found 375.1342.

N-Benzyl-6-(1-nitroethyl)-5-oxo-6,7,8,9-tetrahydro-5*H*-benzo[7]annulene-6-carboxamide (3ia). According to the general procedure for oxidative α -nitroalkylation of β -ketoamides, the title compound was obtained as a 3:2 mixture of inseparable diastereomers (84% combined yield). ¹H NMR (300 MHz, CDCl₃) δ 7.58 (d, *J* = 7.5, 0.4H), 7.58 (d, *J* = 7.5, 0.6H), 7.52 (br, 0.6H), 7.51-7.38 (m, 2H), 7.37-7.22 (m, 6.4H), 7.12 (d, J = 7.5, 0.6H), 7.08 (d, J = 7.5, 0.4H), 5.43 (q, J = 6.9 Hz, 0.6H), 5.06 (q, J = 6.9 Hz, 0.4H), 4.57-4.37 (m, 2H), 2.78-2.38 (m, 3H), 3.36-3.26 (m, 0.6H), 2.24-2.10 (m, 0.4H), 1.91-1.50 (m, 2H), 1.65 (d, J = 6.9 Hz, 1.2H), 1.52 (d, J = 6.9 Hz, 1.8H); ¹³C NMR (75 MHz, CDCl₃) δ 210.8, 210.1, 165.0, 164.2, 140.1, 139.2, 138.3, 137.4, 137.3, 137.2, 133.0, 132.4, 129.5, 128.8, 128.8, 128.5, 128.2, 127.9, 127.8, 127.1, 91.3, 88.5, 62.4, 62.0, 44.3, 44.2, 31.2, 30.8, 28.3, 22.9, 22.4, 22.1, 16.5, 14.0; HRMS (ESI, M+Na) calcd for C₂₁H₂₂N₂Na₁O₄ 389.1477, found 389.1513.

N-Butyl-2-(1-nitroethyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxamide (3ja).

According to the general procedure for oxidative α-nitroalkylation of β-ketoamides, the title compound was obtained as a 1:1 mixture of separable diastereomers (80% combined yield). **3ja** (less polar): ¹H NMR (300 MHz, CDCl₃) δ 7.78 (d, *J* = 8.1 Hz, 1H), 7.64 (td, *J* = 7.2, 1.2 Hz, 1H), 7.49 (d, *J* = 8.1 Hz, 1H), 7.40 (td, *J* = 7.2, 1.2 Hz, 1H), 7.00 (bs, 1H), 5.26 (q, *J* = 6.9 Hz, 1H), 4.19 (d, *J* = 17.4 Hz, 1H), 3.34-3.23 (m, 1H), 3.20-3.09 (m, 1H) 3.13 (d, *J* = 17.4 Hz, 1H), 1.67 (d, *J* = 6.9 Hz, 1H), 1.54-1.42 (m, 2H), 1.36-1.24 (m, 2H), 0.90 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 203.5, 164.5, 153.3, 136.2, 134.5, 127.9, 126.6, 124.8, 85.4, 63.7, 40.3, 31.2, 30.9, 20.0, 15.2, 13.7; HRMS (ESI, M+Na) calcd for C₁₆H₂₀N₂Na₁O₄ 327.1321, found 327.1296. **3ja** (polar): ¹H NMR (300 MHz, CDCl₃) δ 7.77 (d, *J* = 7.5 Hz, 1H), 7.68 (bt, *J* = 7.5 Hz, 1H), 7.53 (d, *J* = 7.5 Hz, 1H), 7.42 (t, *J* = 7.5 Hz, 1H), 6.87 (bs, 1H), 5.25 (q, *J* = 6.9 Hz, 1H), 4.03 (d, *J* = 18.6 Hz, 1H), 3.40-3.28 (m, 1H), 3.21-3.10 (m, 1H), 1.52 (d, *J* = 6.9 Hz, 3H), 1.57-1.43 (m, 2H), 1.39-1.25 (m, 2H), 0.91 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 202.8, 165.5, 153.7, 136.7, 134.8, 128.1, 126.6, 124.8, 87.2, 62.9, 40.1, 32.7, 31.1, 20.0, 15.1, 13.7; HRMS (ESI, M+Na) calcd for C₁₆H₂₀N₂Na₁O₃ 22.7, 31.1, 20.0, 15.1, 13.7; HRMS (ESI, M+Na) calcd for C₁₆H₂₀N₂Na₁O₃ 22.8, 165.5, 153.7, 136.7, 134.8, 128.1, 126.6, 124.8, 87.2, 62.9, 40.1, 32.7, 31.1, 20.0, 15.1, 13.7; HRMS (ESI, M+Na) calcd for C₁₆H₂₀N₂Na₁O₄ 327.1295.

2-(1-nitroethyl)-1-oxo-N-phenyl-2,3-dihydro-1H-indene-2-carboxamide (5ka).

According to the general procedure for oxidative α -nitroalkylation of β -ketoamides, the title compound was obtained as a 10:7 mixture of separable diastereomers (92% combined yield). **5ka** (less polar): ¹H NMR (300 MHz, CDCl₃) δ 8.92 (s, 1H), 7.83 (d, *J* = 7.8 Hz, 1H), 7.67 (td, *J* = 7.8,

0.9 Hz, 1H), 7.54-7.49 (m, 3H), 7.43 (t, J = 7.5 Hz, 1H), 7.34 (t, J = 7.5 Hz, 2H), 7.14 (t, J = 7.5 Hz, 1H), 5.39 (q, J = 6.9 Hz, 1H), 4.26 (d, J = 18.0 Hz, 1H), 3.21 (d, J = 18.0 Hz, 1H), 1.74 (d, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 203.6, 162.4, 153.3, 137.0, 136.5, 134.4, 129.1, 128.1, 126.6, 125.1, 125.0, 119.9, 85.3, 64.2, 30.7, 15.3; HRMS (ESI, M+Na) calcd for C₁₈H₁₆N₂Na₁O₄ 347.1008, found 347.0987. **5ka** (polar): ¹H NMR (300 MHz, CDCl₃) δ 8.85 (s, 1H), 7.82 (d, J = 7.5 Hz, 1H), 7.72 (td, J = 7.5 Hz, 2H), 7.14 (t, J = 7.5 Hz, 1H), 7.51 (d, J = 7.5 Hz, 2H), 7.46 (t, J = 7.5 Hz, 1H), 7.34 (t, J = 7.5 Hz, 2H), 7.14 (t, J = 7.5 Hz, 1H), 5.34 (q, J = 6.9 Hz, 1H), 4.12 (d, J = 18.9 Hz, 1H), 3.55 (d, J = 18.9 Hz, 1H), 1.57 (d, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 203.0, 163.6, 153.7, 137.0, 136.9, 134.7, 129.0, 128.3, 126.6, 125.1, 125.0, 120.4, 87.3, 63.5, 32.3, 15.0; HRMS (ESI, M+Na) calcd for C₁₈H₁₆N₂Na₁O₄ 347.1008, found 347.0985.

N-(4-methoxyphenyl)-2-(1-nitroethyl)-1-oxo-2,3-dihydro-1*H*-indene-2-carboxamide (5la).

According to the general procedure for oxidative α-nitroalkylation of β-ketoamides, the title compound was obtained as a 10:7 mixture of separable diastereomers (97% combined yield). **5la** (less polar): ¹H NMR (300 MHz, CDCl₃) δ 8.79 (s, 1H), 7.83 (d, *J* = 7.5 Hz, 1H), 7.67 (td, *J* = 7.5, 1.2 Hz, 1H), 7.52 (d, *J* = 7.5 Hz, 1H), 7.42 (t, *J* = 7.5 Hz, 1H), 7.41 (bd, *J* = 9.0 Hz, 2H), 6.86 (bd, *J* = 9.0 Hz, 1H), 5.39 (q, *J* = 6.9 Hz, 1H), 4.25 (d, *J* = 18.0 Hz, 1H), 3.20 (d, *J* = 18.0 Hz, 1H), 1.73 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 203.7, 162.2, 156.9, 153.3, 136.5, 134.5, 130.1, 128.0, 126.6, 125.0, 121.6, 114.2, 85.3, 64.1, 55.5, 30.8, 15.3; HRMS (ESI, M+Na) calcd for C₁₉H₁₈N₂Na₁O₅ 377.1113, found 377.1132. **5la** (polar): ¹H NMR (300 MHz, CDCl₃) δ 8.72 (s, 1H), 7.40 (d, *J* = 9.0 Hz, 1H), 6.86 (d, *J* = 9.0 Hz, 1H), 5.33 (q, *J* = 6.9 Hz, 1H), 4.11 (d, *J* = 18.6 Hz, 1H), 3.79 (s, 3H), 4.55 (d, *J* = 18.6 Hz, 1H), 1.56 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 203.1, 163.5, 156.9, 153.7, 137.0, 134.7, 130.0, 128.3, 126.6, 125.0, 122.2, 114.1, 87.3, 63.3, 55.5, 32.4, 15.0; HRMS (ESI, M+Na) calcd for C₁₉H₁₈N₂Na₁O₅ (ESI, M+Na) calcd for C₁₉H₁₈N₂Na₁O₅, 156.9, 153.7, 137.0, 134.7, 130.0, 128.3, 126.6, 125.0, 122.2, 114.1, 87.3, 63.3, 55.5, 32.4, 15.0; HRMS (ESI, M+Na) calcd for C₁₉H₁₈N₂Na₁O₅ 377.1113, found 377.1134.7, 130.0, 128.3, 126.6, 125.0, 122.2, 114.1, 87.3, 63.3, 55.5, 32.4, 15.0; HRMS (ESI, M+Na) calcd for C₁₉H₁₈N₂Na₁O₅ 377.1113, found 377.1104.

N-(4-bromophenyl)-2-(1-nitroethyl)-1-oxo-2,3-dihydro-1*H*-indene-2-carboxamide (5ma). According to the general procedure for oxidative α -nitroalkylation of β -ketoamides, the title

compound was obtained as a 10:7 mixture of separable diastereomers (95% combined yield). **5ma** (less polar): ¹H NMR (300 MHz, CDCl₃) δ 8.95 (s, 1H), 7.83 (d, *J* = 7.5 Hz, 1H), 7.68 (t, *J* = 7.5 Hz, 1H), 7.52 (d, *J* = 7.5 Hz, 1H), 7.46-7.36 (m, 5H), 5.34 (q, *J* = 6.9 Hz, 1H), 4.23 (d, *J* = 17.7 Hz, 1H), 3.21 (d, *J* = 17.7 Hz, 1H), 1.72 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 203.6, 162.5, 153.3, 136.6, 136.1, 134.3, 132.1, 128.2, 126.6, 125.0, 121.4, 117.8, 85.2, 64.1, 30.7, 15.3; HRMS (ESI, M+Na) calcd for C₁₈H₁₅⁸¹Br₁N₂Na₁O₄ 427.0092 and C₁₈H₁₅⁷⁹Br₁N₂Na₁O₄ 425.0113, found 427.0076 and 425.0159. **5ma** (polar): ¹H NMR (300 MHz, CDCl₃) δ 8.92 (s, 1H), 7.82 (d, *J* = 7.5 Hz, 1H), 7.73 (td, *J* = 7.5, 0.9 Hz, 1H), 7.57 (d, *J* = 7.5 Hz, 1H), 7.49-7.39 (m, 5H), 5.30 (q, *J* = 6.9 Hz, 1H), 4.10 (d, *J* = 18.6 Hz, 1H), 3.55 (d, *J* = 18.6 Hz, 1H), 1.53 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.9, 163.7, 153.8, 137.2, 136.0, 134.5, 132.0, 128.4, 126.6, 125.1, 121.9, 117.7, 87.1, 63.5, 31.9, 30.1, 14.8; HRMS (ESI, M+Na) calcd for C₁₈H₁₅⁸¹Br₁N₂Na₁O₄ 425.0013, found 427.0070 and 425.0068.

N-(3,4-dichlorophenyl)-2-(1-nitroethyl)-1-oxo-2,3-dihydro-1*H*-indene-2-carboxamide (5na).

According to the general procedure for oxidative α-nitroalkylation of β-ketoamides, the title compound was obtained as a 10:7 mixture of separable diastereomers (63% combined yield). **5na** (less polar):¹H NMR (300 MHz, CDCl₃) δ 8.98 (s, 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.78 (d, J = 2.4 Hz, 1H), 7.68 (t, J = 7.5 Hz, 1H), 7.52 (dd, J = 7.8, 1.2 Hz, 1H), 7.44 (t, J = 7.8 Hz, 1H), 7.39 (d, J = 9.0 Hz, 1H), 7.32 (dd, J = 9.0, 2.4 Hz, 1H), 5.34 (q, J = 7.2 Hz, 1H), 4.21 (d, J = 17.7 Hz, 1H), 3.25 (d, J = 17.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 203.4, 162.9, 153.3, 136.7, 136.6, 134.4, 133.1, 130.7, 128.6, 128.2, 126.6, 125.1, 121.8, 119.2, 85.3, 64.3, 30.9, 15.3; HRMS (ESI, M+Na) calcd for C₁₈H₁₄Cl₂N₂Na₁O₄ 415.0228, found 415.0201. **5na** (polar): ¹H NMR (300 MHz, CDCl₃) δ 8.88 (s, 1H), 7.82 (d, J = 7.8 Hz, 1H), 7.75-7.70 (m, 2H), 7.57 (t, J = 7.8 Hz, 1H), 7.46 (t, J = 7.5 Hz, 1H), 7.41-7.32 (m, 2H), 5.27 (q, J = 6.9 Hz, 1H), 4.97 (d, J = 18.9 Hz, 1H), 3.54 (d, J = 18.9 Hz, 1H), 1.53 (d, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.8, 163.9, 153.8, 137.3, 136.6, 134.6, 133.0, 130.6, 128.5, 126.7, 125.2, 122.2, 119.7, 87.1, 63.7, 32.1, 14.9; HRMS (ESI, M+Na) calcd for C₁₈H₁₄Cl₂N₂Na₁O₄ 415.0228, found 415.0276.

N-Benzyl-2-(nitromethyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxamide (3ab).

According to the general procedure for oxidative α-nitroalkylation of β-ketoamides using CHCl₃ as a solvent, the title compound was obtained as a 1:1 mixture of separable diastereomers (90% combined yield). ¹H NMR (300 MHz, CDCl₃) δ 7.81 (d, J = 7.8 Hz, 1H), 7.68 (brt, J = 7.8 Hz, 1H), 7.52 (d, J = 7.8 Hz, 1H), 7.44 (t, J = 7.5 Hz, 1H), 7.36-7.24 (m, 3H), 7.21 (brd, J = 6.3 Hz, 2H), 7.03 (brs, 1H), 5.00 (d, J = 13.5 Hz, 1H), 4.92 (d, J = 13.5 Hz, 1H), 4.49 (dd, J = 14.7, 6.0 Hz, 1H), 4.32 (dd, J = 14.7, 5.4 Hz, 1H), 4.18 (d, J = 18.0 Hz, 1H), 3.25 (d, J = 18.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 202.0, 164.9, 152.9, 137.1, 136.5, 134.2, 128.7, 128.2, 127.6, 127.4, 126.6, 124.9, 78.6, 59.3, 44.2, 34.3; HRMS (ESI, M+Na) calcd for C₁₈H₁₆N₂Na₁O₄ 347.1008, found 347.0994.

N-Benzyl-2-(1-nitropropyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxamide (3ac).

According to the general procedure for oxidative α-nitroalkylation of β-ketoamides using CHCl₃ as a solvent, the title compound was obtained as a 1:1 mixture of separable diastereomers (82% combined yield). **3ac** (less polar): ¹H NMR (300 MHz, CDCl₃) δ 7.75 (d, J = 8.1 Hz, 1H), 7.66 (td, J = 7.5, 2.1 Hz, 1H), 7.50 (d, J = 7.5 Hz, 1H), 7.44-7.18 (m, 7H), 5.07 (dd, J = 10.2, 2.7 Hz, 1H), 4.54 (dd, J = 14.7, 6.3 Hz, 1H), 4.28 (dd, J = 14.7, 5.4 Hz, 1H), 4.17 (d, J = 17.7 Hz, 1H), 3.49 (d, J = 17.7 Hz, 1H), 2.16-2.05 (m, 1H), 1.96-1.82 (m, 1H), 1.00 (t, J = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 203.0, 164.8, 153.8, 137.3, 136.5, 133.9, 128.8, 128.0, 127.7, 127.6, 126.6, 124.9, 92.1, 63.7, 44.4, 31.1, 23.2, 10.9; HRMS (ESI, M+Na) calcd for C₂₀H₂₀N₂Na₁O₄ 375.1321, found 375.1278. **3ac** (polar): ¹H NMR (300 MHz, CDCl₃) δ 7.76 (d, J = 8.1 Hz, 1H), 7.69 (td, J = 7.5, 2.1 Hz, 1H), 7.53 (d, J = 7.8 Hz, 1H), 7.42 (t, J = 7.8 Hz, 1H), 7.38-7.21 (m, 6H), 5.03 (dd, J = 11.4, 3.0 Hz, 1H), 4.56 (dd, J = 14.7, 6.3 Hz, 1H), 4.33 (dd, J = 14.7, 5.1 Hz, 1H), 4.05 (d, J = 18.9 Hz, 1H), 3.62 (d, J = 18.9 Hz, 1H), 2.18-2.02 (m, 1H), 1.60-1.40 (m, 1H), 0.92 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 202.7, 165.6, 153.9, 137.2, 136.8, 134.6, 128.7, 128.1, 127.9, 127.7, 126.6, 124.9, 94.2, 63.1, 44.4, 32.7, 22.7, 10.5; HRMS (ESI, M+Na) calcd for C₂₀H₂₀N₂Na₁O₄ 375.1321, found 375.1279.

According to the general procedure for oxidative α-nitroalkylation of β-ketoamides using CHCl₃ as a solvent, the title compound was obtained as a 1:1 mixture of separable diastereomers (81% combined yield). **3ad** (less polar): ¹H NMR (300 MHz, CDCl₃) δ 7.75 (d, J = 7.5 Hz, 1H), 7.67 (dt, J = 0.9, 7.5 Hz, 1H), 7.59-7.48 (m, 2H), 7.44-7.20 (m, 9H), 7.02-6.95 (m, 2H), 5.36 (dd, J = 10.5, 3.0 Hz, 1H), 4.59 (dd, J = 14.4, 6.6 Hz, 1H), 4.24 (d, J = 18.0 Hz, 1H), 4.24 (dd, J = 14.4, 5.0 Hz, 1H), 3.57 (d, J = 18.0 Hz, 1H), 3.35 (dd, J = 15.0, 10.5 Hz, 1H), 3.13 (dd, J = 15.0, 3.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 202.5, 164.6, 153.7, 137.3, 136.7, 135.1, 133.9, 128.9, 128.8, 128.8, 128.8, 128.0, 128.0, 127.9, 127.5, 126.6, 125.1, 92.1, 63.5, 44.5, 35.5, 30.9; HRMS (ESI, M+Na) calcd for C₂₅H₂₂N₂Na₁O₄ 437.14773, found 437.15143. **3ad** (polar): ¹H NMR (300 MHz, CDCl₃) δ 7.80 (d, J = 7.8 Hz, 1H), 7.71 (td, J = 7.5, 0.9 Hz, 1H), 7.56 (d, J = 7.5 Hz, 1H), 7.44 (t, J = 7.2 Hz, 1H), 7.37-7.21 (m, 9H), 7.10-7.04 (m, 2H), 5.34 (dd, J = 11.4, 2.7 Hz, 1H), 4.55 (dd, J = 14.7, 5.7 Hz, 1H), 4.11 (d, J = 18.9 Hz, 1H), 3.71 (d, J = 18.9 Hz, 1H), 3.32 (dd, J = 14.4, 11.4 Hz, 1H), 2.84 (dd, J = 14.4, 2.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 202.7, 165.4, 153.7, 137.1, 136.9, 134.7, 134.4, 128.8, 128.8, 128.8, 128.3, 127.9, 127.7, 126.7, 125.0, 94.1, 63.0, 44.5, 35.4, 32.9; HRMS (ESI, M+Na) calcd for C₂₅H₂₂N₂Na₁O₄ 437.14773 (dd, J = 14.4, 2.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 202.7, 165.4, 153.7, 137.1, 136.9, 134.7, 134.4, 128.8, 128.8, 128.8, 128.3, 127.9, 127.7, 126.7, 125.0, 94.1, 63.0, 44.5, 35.4, 32.9; HRMS (ESI, M+Na) calcd for C₂₅H₂₂N₂Na₁O₄ 437.1477, found 437.1483.

N-Benzyl-2-(nitro(phenyl)methyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxamide (3ae).

According to the general procedure for oxidative α-nitroalkylation of β-ketoamides using CHCl₃ as reaction solvent, the title compound was obtained as a 1:1 mixture of separable diastereomers (90% combined yield). **3ae** (less polar): ¹H NMR (300 MHz, CDCl₃) δ 7.83 (d, J = 7.5 Hz, 1H), 7.68 (td, J = 7.5, 0.9 Hz, 1H), 7.54 (d, J = 8.1 Hz, 1H), 7.48-7.40 (m, 2H), 7.40-7.32 (m, 2H), 7.30-7.26 (m, 3H), 7.24-7.19 (m, 2H), 7.15 (brt, J = 5.4, 1H), 6.33 (s, 1H), 4.40 (dd, J = 14.4, 6.6 Hz, 1H), 4.27 (d, J = 17.4 Hz, 1H), 4.08 (dd, J = 14.4 Hz, 1H), 3.55 (d, J = 17.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 202.8, 163.6, 153.7, 137.0, 136.3, 134.0, 130.6, 130.1, 128.9, 128.8, 128.7, 128.0, 127.7, 126.6, 124.9, 92.5, 64.9, 44.6, 32.3; HRMS (ESI, M+Na) calcd for C₂₄H₂₀N₂Na₁O₄ 423.1321, found 423.1329. **3ae** (polar): ¹H NMR (300 MHz, CDCl₃) δ 7.70 (d, J = 8.1 Hz, 1H), 7.56 (td, J = 7.5, 1.2 Hz, 1H), 7.39 (d, J = 14.7, 4.8 Hz, 1H), 4.29 (dd, J = 14.7, 4.8 Hz, 1H), 4.18 (dd, J = 18.6 Hz, 1H), 3.59 (d, J = 18.6 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 200.9, 165.7, 153.1, 137.0, 136.3, 134.7, 130.3, 129.9, 128.8, 128.7, 128.1, 127.9, 127.6, 127.5, 126.4, 124.9, 94.1, 64.4, 44.4, 33.7; HRMS (ESI, M+Na) calcd for C₂₄H₂₀N₂Na₁O₄ 423.1321, found 423.132.

N-Benzyl-2-(2-nitropropan-2-yl)-1-oxo-2,3-dihydro-1H-indene-2-carboxamide (3af).

According to the general procedure for oxidative α-nitroalkylation of β-ketoamides using CHCl₃ as reaction solvent and neutral silica gel for purification, the titled compound was obtained in 87%. ¹H NMR (300 MHz, CDCl₃) δ 7.78 (d, J = 7.5 Hz, 1H), 7.63 (t, 1H), 7.44-7.38 (m, 2H), 7.36-7.20 (m, 5H), 4.57 (dd, J = 14.7, 6.0 Hz, 1H), 4.27 (dd, J = 14.7, 5.4 Hz, 1H), 4.18 (d, J = 17.7 Hz, 1H), 3.20 (d, J = 17.7 Hz, 1H), 1.89 (s, 3H), 1.74 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 203.9, 165.2, 151.8, 137.2, 136.0, 135.5, 128.8, 127.8, 127.8, 127.7, 126.1, 124.5, 93.4, 64.5, 44.6, 35.3, 24.5, 24.2; HRMS (ESI, M+Na) calcd for C₂₀H₂₀N₂Na₁O₄ 375.1321, found 375.1298.

Ethyl 2-(2-(benzylcarbamoyl)-1-oxo-2,3-dihydro-1*H*-inden-2-yl)-2-nitroacetate (3ag).

According to the general procedure for oxidative α-nitroalkylation of β-ketoamides using CHCl₃ as a reaction solvent and neutral silica gel for purification, the titled compound was obtained as a 3:2 mixture of inseparable diastereomers (79% combined yield). ¹H NMR (300 MHz, CDCl₃) δ 7.82 (brd, J = 7.5 Hz, 1H), 7.69 (brt, J = 7.8 Hz, 1H), 7.55 (brd, J = 7.8, 1H), 7.45 (brt, J = 7.2 Hz, 0.6H), 7.37-7.26 (m, 3.4H), 7.21-7.15 (m, 2H), 6.77 (brt, J = 4.8 Hz, 0.4H), 6.46 (brt, J = 4.8 Hz, 0.6 H), 6.14 (s, 0.6H), 5.98 (s, 0.4H), 4.50 (dd, J = 14.4, 6.3 Hz, 0.4H), 4.45 (dd, J = 14.4, 5.7 Hz, 0.6H), 4.37-4.20 (m, 2H), 4.18-4.04 (m, 2H), 3.56 (d, J = 18.0 Hz, 0.4H), 3.54 (d, J = 18.6 Hz, 0.6H), 1.31 (t, J = 7.2 Hz, 1.2H), 1.01 (t, J = 7.2 Hz, 1.8H); ¹³C NMR (75 MHz, CDCl₃) δ 200.7, 198.9, 164.5, 163.4, 162.7, 162.5, 153.4, 153.2, 137.0, 136.3, 134.1, 133.9, 128.7, 128.3, 128.1, 127.6, 127.6, 127.5, 127.5, 126.6, 126.6, 125.1, 125.1, 90.8, 88.7, 63.6, 63.5, 62.3, 62.1, 44.4, 34.0, 32.5, 13.7, 13.3; HRMS (ESI, M+Na) calcd for C₂₁H₂₀N₂Na₁O₆ 419.1219, found 419.1224.

Table SI-1 Screening of the onium salts of iodide for oxidative coupling of 2,3-dihydroindanonederived β -ketoamide **1a** and nitroethane (**2a**) in the presence of TBHP.

o C	O NHBn 1a	nium iodide (10 mol % TBHP (1.5 eq) ^a <u>EtNO₂ (2a) (30 eq)</u> MeCN (0.1 M) 70 °C, 30 min		NHBn NO ₂ + 4a	O ↓ NHBn ℃H
	Entry	Onium iodide	3aa $(\%)^b$	4a $(\%)^b$	
	1	TBD·HI	94	2	
	2	MeTBD·HI	<3	18	
	3	<i>n</i> Bu ₄ NI	<2	<2	
	4	<i>n</i> Bu ₄ PI	<2	31	
	5	TMG·HI	<2	85	

^{*a*} 70% TBHP in H₂O was used. ^{*b*} Isolated yield.

¹H NMR studies for detecting the complex of TBD with nitronate from 2e.

Figure SI-1 ¹H NMR spectra: a) α -nitrotolene:TBD·HI, b) α -nitrotolene:TBD·HI in the presence of TBHP, c) α -nitrotolene:TBD.

We performed the following NMR experiments. By mixing α -nitrotoluene **2e** and TBD·HI, we confirmed the spectra for these two species (experiment-(a)). Then, we added TBHP to the mixture of (a). With this experiment, we observed new peaks marked with green (experiment (b)). These peaks are consistent with the NMR peaks obtained by mixing with **2e** and TBD (experiment (c)), which is considered as complexation mixture of nitronate salt with TBD.

References

- 1. M. R. Zubiri, S. Anguille, J. J. Brunet, J. Mol. Catal. A: Chem. 2007, 271, 145.
- 2. M. G. Voronkov, A. V. Vlasov and N. N. Vlasova, Russ. J. Org. Chem., 2010, 46, 1838.
- 3. S. Kobayashi, T. Gustafsson, Y. Shimizu, H. Kiyohara and R. Matsubara, Org. Lett., 2006, 8, 4923.
- 4. C. Pan, X. Zeng, Y. Guan, X. Jiang, L. Li, H. Zhang, Synlett, 2011, 425.
- 5. L. Q. Cui, Z. L. Dong, K. Liu and C. Zhang, Org. Lett., 2011, 13, 6488.
- 6. K. V. Emelen, T. D. Wit, J. Hoornaert and F. Compernolle, Tetrahedron, 2002, 58, 4225.
- 7. C. D. Fusco, S. Meninno, C. Tedesco and A. Lattanzi, Org. Biomol. Chem., 2013, 11, 896.

4. Copies of ¹H and ¹³C NMR spectra

S29

S55

S69

S108

S116