Supporting Information for

Thiophosphoramides as Cooperative Catalysts for Copper-Catalyzed Arylation of Carboxylates with Diaryliodonium Salts

Table of contents

A.	General Information	S2
В.	Synthesis and spectra data of compounds 3a-m	S2
C.	Synthesis and spectra data of 3α , 7α , 12α -Triacetoxy- 5β -Cholan-24-oic acid	S7
D.	Reference	S8
E.	NMR spectra Seg	parate file submitted

General Information

Methods and Reagents:

All the reagents were purchased from the commercial sources and used without further purification. All iodonium salts were purchased from TCI America. Abietic acid (technical, ~75% by GC) was purchased from Sigma Aldrich. All reactions were carried out under an atmosphere of nitrogen in flame or oven dried glassware with a magnetic stirrer. Heating was achieved by use of a silicone bath with heating controlled by electronic contact thermometer. Deionized water was used in the preparation of all aqueous solutions and for all aqueous extractions. Solvents used for purification and extraction were ACS or HPLC grade. toluene, dichloromethane, diethyl ether, tetrahydrofuran, and dimethylformamide were filtered through a column of activated alumina under nitrogen atmosphere (Innovative Technology PS-MD-5). Thin-layer chromatography (TLC) was conducted on precoated glass plates with 230-400 mesh silica gel impregnated with fluorescent indicator (250 nm) for routine monitor of reaction progress and visualized using the combination of UV and ceric ammonium molybdate. All products were purified by flash column chromatography using SiliCycle Silica Flash P60 (230-400 mesh) silica gel.

Instrumentation:

NMR spectra were recorded on Varian vnmrs 700 (700MHz), Varian vnmrs 500 (500 MHz), or Varian Inova 500 (500 MHz) spectrometers and chemical shifts are reported in parts per million (ppm) downfield from tetramethylsilane with solvent resonance as the internal standard (CDCl₃ at δ 7.26, DMSO-d6 at δ 2.5). Proton coupling patterns are described as singlet (s), doublet (d), triplet (t), quarted (q), and multiplet (m). High resolution mass spectra (HRMS) were obtained from Micromass AutoSpec Ultima or VG (Micromass) 70-250-S Magnetic Sector mass spectrometers at the University of Michigan mass spectrometry facility. Infrared spectra (IR) were recorded as thin films on NaCl plates on a Perkin Elmer Spectrum BX FT-IR spectrophotometer and were reported in wavenumbers (cm⁻¹).

Synthesis and spectra data of compounds 3

General Procedure:

Potassium *tert*-butoxide (22mg, 0.2mmol), Copper(II) trifluoromethanesulfonate (15mg, 0.04), and benzoic acid (24mg, 0.2mmol) were added to an oven dried and nitrogen flushed 10mL vial charged with 3 mL dry dichloromethane at rt and then left to stir for 10 minutes. Diaryliodonium salt (95mg, 0.22mmol) and **1a** (30mg, 0.04mmol) were added in one portion and reaction was stirred for 24 hrs. The reaction was then quenched with H_2O . The product was extracted with diethyl ether and the organic layer was dried over Na₂SO₄, filtered and concentrated *in vacuo*. Crude material was purified by flash chromatography to give corresponding ester.

Control experiments:

Spectroscopic data of compounds 3a-m

Purification by flash chromatography (99:1 \rightarrow 9:1Hexanes: Et₂O) to afford the above compound **3a**

(33mg, 84%) as white crystal. ¹H NMR (700 MHz, CDCl₃) δ 8.22 (d, J = 7.14 Hz, 2H), 7.65 (t, J = 7.5 Hz, 1H), 7.52 (t, J = 7.8 Hz, 2H), 7.44 (t, J = 7.9 Hz, 2H), 7.28 (t, J = 7.5 Hz, 1H), 7.22 (d, J = 7.7 Hz, 2H); ¹³C NMR (175 MHz, CDCl₃) δ 165.34, 151.09, 133.73, 130.32, 129.72, 129.64, 128.71, 126.04, 121.86; IR (film, cm⁻¹): 2918, 1727, 1598,

1589, 1485, 1449, 1256, 1195, 1177, 1062, 1024; HRMS (ESI+) m/z calcd for $C_{13}H_{10}O_2$ [M+H]+ 199.0754, found 199.0750;

MeO Purification by flash chromatography (99:1→9:1Hexanes: Et₂O) to afford the above compound **3b** (43mg, 93%) as white crystal. ¹H NMR (700 MHz, CDCl₃) δ 8.16 (d, J = 8.75 Hz, 2H), 7.42 (t, *J* = 7.1 Hz, 2H), 7.26 (t, J = 7.46 Hz, 1H), 7.21 (d, *J* = 7.8 Hz, 2H), 6.99 (d, J = 8.82 Hz, 2H), 3.90 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 165.06, 164.01, 151.20, 132.43, 129.58, 125.86, 122.02, 121.95, 113.97, 55.67; IR (film, cm⁻¹): 2929, 1724, 1605, 1509, 1485, 1449, 1318, 1255, 1193, 1178, 1162, 1074, 1024; HRMS (ESI+) *m/z* calcd for C₁₄H₁₂O₃ [M+H]+229.0859, found 229.0868, calcd [M+Na]+ 251.0679, found 251.0672;

Purification by flash chromatography (95:5 \rightarrow 8:2Hexanes: Et₂O) to afford the above compound **3c** (40 mg, 86%) as white solid. ¹H NMR (700 MHz, CDCl₃) δ 8.20 (s, 1H), 8.10 (d, *J* = 7.8 Hz, 1H), 7.62 (d, *J* = 7.98 Hz, 1H), 7.49 – 7.42 (m, 3H), 7.30 (t, *J* = 7.5 Hz, 1H), 7.22 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (175 MHz, CDCl₃) δ 164.13, 150.84, 134.89, 133.74, 131.46, 130.32, 130.04, 129.71, 128.42, 126.25, 121.70,; IR (film, cm⁻¹): 3068, 2922, 1732, 1590, 1484, 1248, 1195, 1075; HRMS (EI) *m/z* calcd for C₁₃H₉ClO₂ [M]+232.0291, found 232.0292;

Purification by flash chromatography (9:1→7:3Hexanes: Et₂O) to afford the above compound **3d** (32mg, 67%) as yellow solid. ¹H NMR (700 MHz, CDCl₃) δ 8.38 (m, 4H), 7.47 (t, *J* = 8.0 Hz, 2H), 7.32 (t, *J* = 7.5 Hz, 1H), 7.24 (d, *J* = 7.7 Hz, 2H); ¹³C NMR (175 MHz, CDCl₃) δ163.46, 151.03, 150.63, 135.11, 131.44, 129.83, 126.56, 123.87, 121.55; IR (film, cm⁻¹): 2923, 1738, 1518, 1265, 1182, 1077; HRMS (El) *m/z* calcd for C₁₃H₉NO₄ [M]+243.0532, found 243.0535;

Br Purification by flash chromatography (95:5→9:1Hexanes: Et₂O) to afford the above compound **3e** (44mg, 80%) as white crystal. ¹H NMR (700 MHz, CDCl₃) δ 8.07 (d, *J* = 8.61 Hz, 2H), 7.66 (d, *J* = 8.61 Hz, 2H), 7.44 (t, *J* = 7.56 Hz, 2H), 7.29 (t, *J* = 7.46 Hz, 1H), 7.21 (d, *J* = 7.56 Hz, 2H); ¹³C NMR (175 MHz, CDCl₃) δ164.64, 150.89, 132.10, 131.80, 129.69, 128.98, 128.62, 126.20, 121.75; IR (film, cm⁻¹): 2922, 2852, 1728, 1583, 1484, 1394, 1265, 1192, 1174, 1155, 1074; HRMS (EI) *m/z* calcd for C₁₃H₉BrO₂ [M]+275.9786, found 275.9789;

Purification by flash chromatography (99:1→9:1Hexanes: Et₂O) to afford the above compound **3f** (27mg, 73%) as colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.38 (t, *J* = 7.9 Hz, 2H), 7.22 (t, *J* = 7.4 Hz, 1H), 7.15 – 7.08 (m, 3H), 1.96 (s, 3H), 1.89 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (175 MHz, CDCl₃) δ166.71, 151.28, 139.50, 129.49, 128.32, 125.66, 121.86, 14.78, 12.32; IR (film, cm⁻¹): 2926, 1722, 1650, 1592, 1494, 1485, 1388, 1258, 1242, 1194, 1161, 1110, 1056, 1001; HRMS (ESI) *m/z* calcd for C₁₁H₁₂O₂ [M+H]+177.0910, found 177.0906;

Purification by flash chromatography (99:1→9:1Hexanes: Et₂O) to afford the above compound **3g** (31mg, 83%) as yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.38 (t, *J* = 7.8 Hz, 2H), 7.22 (t, *J* = 7.1 Hz, 1H), 7.11 (d, *J* = 7.7 Hz, 2H), 7.01 (td, *J* = 7.4, 1.1 Hz, 1H), 2.28 (p, *J* = 7.5 Hz, 2H), 1.95 (s, 3H), 1.11 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 166.87, 151.29, 146.22, 129.47, 126.80, 125.65, 121.86, 22.38, 13.11, 12.48; IR (film, cm⁻¹): 2965, 1725, 1646, 1593, 1487, 1231, 1195, 1162, 1126, 1089, 1066; HRMS (ESI) *m/z* calcd for C₁₂H₁₄O₂ [M+H]+ 191.1067, found 191.1067;

Purification by flash chromatography (99:1 \rightarrow 9:1Hexanes: Et₂O) to afford the above compound **3h** (39mg, 89%) as white crystal. ¹H NMR (700 MHz, CDCl₃) δ 7.88 (d, *J* = 16.0 Hz, 1H), 7.62 – 7.57 (m, 2H), 7.46 – 7.39 (m, 5H), 7.28 – 7.24 (m, 1H), 7.18 (d, *J* = 7.6 Hz, 2H), 6.65 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (175 MHz, CDCl₃) δ 165.54, 150.92, 146.71, 134.30, 130.84, 129.58, 129.13, 128.44, 125.93,

121.77, 117.44; IR (film, cm⁻¹): 2923, 1724, 1635, 1483, 1305, 1202, 1139; HRMS (APCI+) *m*/*z* calcd for C₁₅H₁₂O₂ [M+H]+225.0910, found 225.0899;

ÓMe Purification by flash chromatography (95:5→9:1Hexanes: Et₂O) to afford the above compound **3i** (34mg, 67%) as colorless liquid. ¹H NMR (700 MHz, CDCl₃) δ 7.37 (t, *J* = 7.56 Hz, 2H), 7.27 – 7.21 (m, 2H), 7.04 (d, J = 7.56 Hz, 2H), 6.87 (d, J=7.56 Hz, 1H), 6.82 (s, 1H), 6.79 (dd, *J* = 8.2, 2.4 Hz, 1H), 3.81 (s, 3H), 3.06 (t, *J* = 7.8 Hz, 2H), 2.89 (t, *J* = 7.8 Hz, 2H); ¹³C NMR (175 MHz, CDCl₃) δ 171.52, 159.89, 150.76, 141.86, 129.72, 129.54, 125.94, 121.66, 120.84, 114.26, 111.93, 55.31, 36.06, 31.13; IR (film, cm⁻¹): 2940, 1755, 1593, 1584, 1491, 1454, 1259, 1192, 1161, 1126, 1041; HRMS (APCl+) *m/z* calcd for C₁₆H₁₆O₃ [M+H]+257.1172, found 257.1172;

Purification by flash chromatography (99:1 \rightarrow 9:1Hexanes: Et₂O) to afford the above compound **3j** (35mg, 71%) as off-white crystal. ¹H NMR (700 MHz, CDCl₃) δ 7.43 – 7.36 (m, 4H), 7.33 (t, *J* = 7.7 Hz, 2H), 7.27 – 7.22 (m, 2H), 7.11 (d, *J* = 7.7 Hz, 2H), 6.61 (d, *J* = 15.9 Hz, 1H), 6.41 (dt, *J* =

15.7, 7.1 Hz, 1H), 3.50 (d, *J* = 7.07 Hz, 2H); ¹³C NMR (175 MHz, CDCl₃) δ170.18, 150.80, 136.84, 134.21, 129.59, 128.74, 127.87, 126.50, 126.06, 121.65, 121.13, 38.60; IR (film, cm⁻¹): 3034, 1742, 1591, 1492, 1364, 1201, 1133; HRMS (APCl+) *m/z* calcd for C₁₆H₁₄O₂ [M+H]+ 239.1067, found 239.1060;

Purification by flash chromatography (99:1 \rightarrow 9:1Hexanes: Et₂O) to afford the above compound (42mg, 84%) as white crystal. ¹H NMR (700 MHz, CDCl₃) δ 8.21 (d, *J* = 7.1 Hz, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.52 (t, *J* = 7.7 Hz, 2H), 7.45 (d, *J* = 8.8 Hz, 2H), 7.15 (d, *J* = 8.8 Hz, 2H), 1.35 (s, 9H); ¹³C NMR (175 MHz, CDCl₃) δ 165.49, 148.83, 148.71, 133.64, 130.29, 129.83, 128.67, 126.53, 121.13, 34.66, 31.58; IR (film, cm⁻¹): 2964, 1730, 1508, 1262, 1203, 1170, 1076, 1060, 1021; HRMS (ESI+) *m/z* calcd for C₁₇H₁₈O₂ [M+H]+255.1380, found 255.1378;

Purification by flash chromatography (99:1→9:1Hexanes: Et₂O) to afford the above compound (38mg, 70%) as white crystal. ¹H NMR (700 MHz, CDCl₃): δ 8.19 (d, J = 7.1 Hz, 2H), 7.65 (t, J = 7.5 Hz, 1H), 7.57 – 7.50 (m, 4H), 7.12 (d, J = 8.82, 2H); ¹³C NMR (175 MHz, CDCl₃) δ 165.01, 150.10, 133.95, 132.68, 130.35, 129.30, 128.78, 123.69, 119.13; IR (film, cm⁻¹): 2923, 1730, 1482, 1259, 1198, 1160, 1057; HRMS (EI) *m/z* calcd for C₁₃H₉BrO₂ [M]+275.9786, found 275.9787;

Potassium tert-butoxide (22mg, 0.2mmol), copper(II) trifluoromethanesulfonate (15mg, 0.04mmol), and abietic acid (60mg of 75% abietic acid, 0.15 mmol) were added to an oven dried and nitrogen flushed 10 mL vial charged with 3 mL dry dichloromethane at rt and then left to stir for 10 minutes. Diaryliodonium salt (95mg, 0.22mmol) and 1a (30mg, 0.04mmol) were added in one portion and reaction was stirred for 24 hrs at 40°C. The reaction was then quenched with H₂O. The product was extracted with diethyl ether and the organic layer was dried over Na₂SO₄, filtered and concentrated. Purification by flash chromatography (95:5 \rightarrow 9:1 Hexanes: EtOAc) to afford the above compound **3k** (40 mg, 71%) as yellow viscous liquid. Some impurities from the starting material (75% abietic acid) was also observed in the product and was inseparable by accessible purification process. ¹H NMR (700 MHz, $CDCl_3$) δ 7.36 (t, J = 7.8 Hz, 2H), 7.21 (t, J = 7.3 Hz, 1H), 7.01 (d, J = 7.9 Hz, 2H), 5.81 (s, 1H), 5.43 (s, 1H), 2.31 - 2.27 (m, 1H), 2.26 - 2.21 (m, 1H), 2.11 (d, J = 2.7 Hz, 2H), 2.03 - 1.99 (m, 2H), 1.94 (d, J = 13.1 Hz, 1H), 1.86 - 1.82 (m, 2H), 1.70 - 1.63 (m, 2H), 1.39 (s, 3H), 1.29 - 1.19 (m, 4H), 1.03 (t, J = 6.7 Hz, 6H), 0.89 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ177.26, 151.30, 145.62, 135.71, 129.45, 125.68, 122.46, 121.67, 120.57, 51.03, 46.99, 45.20, 38.42, 37.20, 35.04, 34.74, 27.59, 25.92, 22.62, 21.55, 20.97, 18.29, 17.27, 14.20; IR (film, cm⁻¹):2928, 1743, 1594, 1492, 1458, 1385, 12766, 1227, 1190, 1162, 1129, 1101, 1025, 1000; HRMS (ESI+) *m/z* calcd for C₂₆H₃₄O₂ [M+H]+ 379.2632, found 379.2635;

Purification by flash chromatography (1:1 \rightarrow 0:1Hexanes: EtOAc) to afford the above compound **3I** (33mg, 34%) as light yellow solid. ¹H NMR (700 MHz, CDCl₃) δ 7.37 (t, *J* = 7.9 Hz, 2H), 7.22 (t, *J* = 7.4 Hz, 1H), 7.07 (d, *J* = 7.7 Hz, 2H), 4.00 (s, 1H), 3.85 (s, *J* = 2.5 Hz, 1H), 3.48 (s, 1H), 3.47 – 3.43 (m, 1H), 2.64 – 2.59 (m, 1H), 2.52 – 2.48 (m, 1H), 2.26 – 2.18 (m, 1H), 1.98 – 1.88 (m, 5H), 1.85 – 1.81 (m, 1H), 1.78 (d, *J* = 14.4 Hz, 1H), 1.75 – 1.66 (m, 4H), 1.63 – 1.59 (m, 1H), 1.58 – 1.46 (m, 6H), 1.40 (d, *J* = 12.1 Hz, 2H), 1.37 – 1.32 (m, 1H), 1.14 (dd, *J* = 12.2, 6.1 Hz, 1H), 1.05 (d, *J* = 6.1 Hz, 3H), 1.01 – 0.96 (m, 1H), 0.89 (s, 3H), 0.71 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 172.86, 150.91, 129.53, 125.84, 121.70, 73.15, 72.08, 68.57, 47.28, 46.67, 42.04, 41.58, 39.80, 39.71, 35.36, 35.34, 34.86, 34.77, 31.53, 31.01, 30.64, 28.47, 27.65, 26.73, 23.35, 22.66, 17.53, 12.70; IR (film, cm⁻¹): 3392, 2924, 1755, 595, 1456, 1376, 1259, 1234, 1194, 1076, 1036; HRMS (ESI+) *m/z* calcd for C₃₀H₄₄O₅ [M+NH₄]+ 502.3527, found 502.3526;

Purification by flash chromatography (9:1 \rightarrow 7:3 Hexanes: EtOAc) to afford the above compound **3m** (108 mg, 89%) as colorless solid. ¹H NMR (700 MHz, CDCl₃) δ (t, J = 7.98, 2H),

7.22 (t, J = 7.4 Hz, 1H), 7.06 (d, J = 7.6 Hz, 2H), 5.11 (s, 1H), 4.91 (s, 1H), 4.59 – 4.57 (m, 1H), 2.60 (ddd, J = 15.0, 9.6, 5.1 Hz, 1H), 2.47 (ddd, J = 15.8, 9.1, 7.0 Hz, 1H), 2.15 (s, 3H), 2.09 (s, 3H), 2.05 (s, 3H), 1.98 – 1.91 (m, 3H), 1.90 – 1.87 (m, 1H), 1.81 – 1.74 (m, 2H), 1.70 (d, J = 5.6 Hz, 1H), 1.68 (d, J = 13.1 Hz, 1H), 1.65 – 1.62 (m, 1H), 1.61 – 1.58 (m, 2H), 1.53 – 1.48 (m, 3H), 1.46 – 1.41 (m, 2H), 1.38 – 1.32 (m, 1H), 1.30 – 1.22 (m, 3H), 1.16 – 1.11 (m, 1H), 1.07 (td, J = 14.4, 3.3 Hz, 1H), 0.92 (s, 3H), 0.89 (d, J = 6.4 Hz, 3H), 0.75 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 172.52, 170.48, 170.32, 150.65, 129.38, 125.73, 121.48, 77.25, 77.06, 76.88, 75.35, 74.05, 70.65, 47.36, 45.07, 43.39, 40.90, 37.70, 34.66, 34.61, 34.59, 34.31, 31.21, 31.19, 30.69, 29.66, 28.86, 27.22, 26.86, 25.56, 22.79, 22.54, 21.61, 21.48, 21.43, 17.54, 12.23; IR (film, cm⁻¹): 2922, 1727, 1446, 1379, 1239, 1199, 1136, 1022; HRMS (EI) *m/z* calcd for C₃₆H₅₀O₈ [M+NH₄]+ 628.3844, found 628.3848;

Synthesis of 3a, 7a, 12a-Triacetoxy-5β-Cholan-24-oic acid

To an ice cooled solution of cholic acid (1 gm; 2.45 mmol) in pyridine (3ml) and acetic anhydride (2 ml), DMAP (180 mg; 1.47 mmol) was added. The reaction mixture was stirred at rt for 3 hrs. The solution was concentrated *in vacuo*, dissolved in 50 ml diethyl ether, washed with 0.1 M HCl, NaHCO₃, and brine. The organic layer was dried over MgSO₄, filtered and concentrated *in vacuo* to give the crude product. Purification *via* flash chromatography (8:2 \rightarrow 1:1Hexanes: EtOAc) to afford the above compound (831 mg, 63%) as colorless solid. ¹H NMR (700 MHz, CDCl₃) δ 5.09 (s, 1H), 4.91 (s, 1H), 4.59 – 4.56 (m, 1H), 2.42 – 2.36 (m, 1H), 2.27 – 2.22 (m, 1H), 2.14 (s, 3H), 2.09 (s, 3H), 2.05 (s, 3H), 2.04 – 1.99 (m, 1H), 1.97 – 1.93 (m, 1H), 1.90 – 1.84 (m, 2H), 1.82 – 1.72 (m, 3H), 1.68 – 1.64 (m, 2H), 1.63 – 1.59 (m, 2H), 1.54 – 1.48 (m, 2H), 1.45 – 1.41 (m, 2H), 1.34 – 1.25 (m, 4H), 1.14 – 1.08 (m, 1H), 1.08 – 1.03 (m, 1H), 0.92 (s, 3H), 0.87 (dt, *J* = 14.4, 7.0 Hz, 2H), 0.83 (d, *J* = 6.6 Hz, 3H), 0.73 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 179.36, 170.58, 170.54, 170.42, 75.37, 74.08, 70.70, 47.31, 45.04, 43.37, 40.89, 37.71, 34.58, 34.52, 34.30, 31.56, 31.21, 30.75, 30.51, 28.86, 27.14, 26.86, 25.55, 22.63, 22.53, 21.60, 21.47, 17.46, 14.10, 12.21; IR (film, cm⁻¹): 2936, 2013, 1730, 1441, 1374, 1230, 1023; HRMS (EI) *m/z* calcd for C₃₀H₄₆O₈ [M+NH₄] + 552.3531, found 552.3530; Calcd [M+Na]+ 557.3085, found 557.3081;

References:

- For the synthesis of [Ph₂I]⁺BF4⁻ Bielawski, M.; Aili, D.; Olofsson, B. J. Org. Chem., **2008**, 73, 4602
- For Synthesis of 1a and 1b, Rodriguez, A. A.; Yoo, H.; Ziller, J. W.; Shea, K. J. *Tetrahedron Lett.*, 2009, 50, 6830
- Synthesis of Cu(BF₄)₂ is based on the synthesis of Cu(SbF₆)₂ by Evans, D.A.; Murry, J.A.; von Matt, P.; Norcross, R.D.; Miller, S.J. Angew. Chem. Int. Ed. Engl. 1995, 34, 798
- Synthesis of 3α, 7α, 12α-Triacetoxy-5β-Cholan-24-oic acid Gao, H.; Dias, J.R. J. Prakt. Chem. 1997, 339, 187