Control over Connectivity and Magnetism of Tetrahedral FeSe₂ Chains through Coordination Fe-Amine Complexes

Joshua T. Greenfield, Chongin Pak, Saeed Kamali, Kathleen Lee, and Kirill Kovnir*

Supporting Information

Table of Contents

Table SI 1. Parameters for single crystal data collection and structure refinement for Fe_3Se_4 (dien) ₂ and Fe_3Se_4 (tren)	.S2
Figure SI 1. Powder X-ray diffraction patterns for Fe ₃ Se ₄ (dien) ₂ and Fe ₃ Se ₄ (tren)	.S3
Figure SI 2. SEM images and EDX spectra of Fe_3Se_4 (dien) ₂ and Fe_3Se_4 (tren)	.S4
Figure SI 3. ⁵⁷ Fe Mössbauer spectra for Fe₃Se₄(tren)	.S5
Figure SI 4. Magnetic χT plots for Fe ₃ Se ₄ (dien) ₂ and Fe ₃ Se ₄ (tren)	.S6
References	. S7

Compound	Fe ₃ Se ₄ (dien) ₂	Fe ₃ Se₄(tren)	
λ (Å)	Mo-K _α , 0.71073		
Temp. (K)	90(2)		
Space Group	C222 ₁ (No. 20)	<i>P</i> 2 ₁ / <i>c</i> (No. 14)	
a (Å)	9.140(2)	9.039(2)	
b (Å)	18.122(3)	10.630(2)	
<i>c</i> (Å)	11.544(2)	16.641(3)	
β (°)		102.652(3)	
V (Å ³)	1912.0(5)	1560.2(5)	
Z	4	4	
ρ (g⋅cm⁻³)	2.396	2.681	
μ (mm ⁻¹)	9.861	12.067	
θ range (°)	2.25-33.11	2.29-32.00	
Data/param.	3541/97	5391/155	
<i>R</i> ₁	0.055	0.036	
wR ₂	0.088	0.068	
Goodness-of-Fit	1.01	1.04	
Diff. peak and hole (e/Å ³)	1.29 and -1.35	1.42 and -1.19	
Flack parameter	0.37(2)	N/A	

Table SI 1. Parameters for single crystal data collection and structure refinement for $Fe_3Se_4(dien)_2$ and $Fe_3Se_4(tren)$

Figure SI 1. Experimental (black) and calculated (red) powder X-ray diffraction patterns for Fe₃Se₄(dien)₂ (top) and Fe₃Se₄(tren) (bottom). The samples were prepared on single-crystal Si(510) zero-background holders, and the patterns were collected with a D/teX Ultra high-speed silicon strip detector in continuous sweep mode from 5-60° 2 θ at a rate of 1°/min with the sample spinning at 60 rpm. The energy window of the detector was narrowed to reduce fluorescence from iron. Least-squares refinement (Le Bail method) was performed in the software Jana2006¹ to determine the room-temperature unit cell parameters; Fe₃Se₄(dien)₂: *a* = 9.229(1) Å, *b* = 18.014(2) Å, *c* = 11.620(1) Å; Fe₃Se₄(tren): *a* = 9.019(2) Å, *b* = 10.734(3) Å, *c* = 16.840(4) Å, β = 102.99(2)°. These parameters were used with the 90 K atomic coordinates to calculate the theoretical powder diffraction patterns shown above.

Figure SI 2. Scanning electron microscope (SEM) images (top) and energy-dispersive X-ray (EDX) spectra (bottom) of $Fe_3Se_4(dien)_2$ (left) and $Fe_3Se_4(tren)$ (right), collected with an accelerating voltage of 20 kV. Only Fe, Se, and C were visible by EDX, though the precise elemental compositions could not be accurately determined due to sample degradation caused by the electron beam.

Figure SI 3. ⁵⁷Fe Mössbauer spectra for Fe₃Se₄(tren) collected at 300 K (top) and 80 K (bottom). Experimental data: black circles; calculated spectra: black lines; Fe₃Se₄(tren) component spectra: blue, red, and orange lines; impurity phases: gray lines. Spectra were collected using a conventional constant-acceleration spectrometer employing a ⁵⁷Co/Rh source held at room temperature. Least-squares refinement was performed using the software Recoil.² The room-temperature spectrum can be described by four components, including three doublets and one sextet: Q_1 and Q_2 have centroid shifts (δ) characteristic of Fe³⁺, Q_3 corresponds to Fe²⁺, and Q_4 is a magnetically-split signal from an elemental iron impurity with an intensity of 7%. Q₂ had a much higher linewindth compared to Q_1 and Q_3 . Based on the ratio of the intensities of Q_1 to Q_3 we can assign Q_1 to the Fe³⁺ in the FeSe₂ chains and Q_3 to the Fe²⁺ in the Fe(tren) complexes, while Q_2 corresponds to the Fe³⁺ in an unidentified impurity phase that remains non-magnetic at low temperature. The 80 K spectrum is more complex, and must be described by six components, including three doublets and three sextets. The signal from elemental iron (Q₄) remained unchanged, while Q₂ split into two similar doublets, Q₂ and Q_{2A}. The Fe³⁺ in the FeSe₂ chains (Q_1) underwent complete magnetic ordering, appearing as a sextet with a hyperfine field (B_{hf}) of 19.0 T. The Fe^{2+} in the Fe(tren) complex underwent partial magnetic ordering, evidenced by the decrease in intensity and broadening of Q_3 and the formation of the sextet Q_{3A} with B_{hf} = 27.6 T. As none of the impurity phases ordered between 300 K and 80 K, these spectra confirm that the magnetic ordering observed by SQUID magnetometry occurs entirely in the Fe₃Se₄(tren) phase, and that the strongest interactions are between the Fe^{3+} in the FeSe₂ chains, with weaker interactions observed in the Fe²⁺ in the Fe(tren) complexes.

Figure SI 4. Temperature dependences of χT for Fe₃Se₄(dien)₂ (top) and Fe₃Se₄(tren) (bottom) in an applied field of 10 mT. A temperature-independent contribution, χ_0 , for Fe₃Se₄(dien)₂ was estimated from the linear fit shown by the red line.

References

- 1. V. Petricek; M. Dusek; L. Palatinus. Z. Kristallogr. 2014, 229, 345.
- 2. K. Lagarec; D. C. Rancourt. *Recoil, Mössbauer Spectral Analysis Software for Windows, Version 1.0;* Department of Physics, University of Ottawa: Canada, **1998**.