Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Electronic Supplementary Materials for Chemical Communications

SnO₂ nanocrystals anchoring on N-doped graphene for high-performance lithium storage

Wei Zhou^{*a*}, Jinxian Wang^{*a,b*}, Feifei Zhang^{*a,c*}, Shumin Liu^{*a*}, Jianwei Wang^{*a*}, Dongming Yin^{*a*}, Limin Wang^{*a,d*,*}

^aState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.

^bSchool of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China.

^cUniversity of Chinese Academy of Sciences, Beijing 100049, China.

^dChangzhou Institute of Energy Storage Materials and Devices, Changzhou, 213000, China.

* Corresponding author. Tel.: +86 431 85262447. Fax: +86 431 85262836. E-mail address: Imwang@ciac.ac.cn

Supplementary Materials

Experimental details

Fig. S1 XRD patterns of SnO₂ nanocrystals and SnO₂/N-doped graphene composite.

Fig. S2 TEM (a) and HRTEM (b) images of SnO₂ nanocrystals.

Fig. S3 TGA curve of SnO₂/N-doped graphene composite.

Fig. S4 STEM image (a), Sn (b), C (c) and N (d) elemental mappings of SnO₂/N-

doped graphene composite.

Fig. S5 C1s XPS spectra of GO (a) and SnO₂/N-doped graphene composite (b).

Fig. S6 TEM (a) and HRTEM (b) images of SnO₂/N-doped graphene composite electrode after 1C cycling.

Materials Preparation

Graphite oxide was produced by a modified Hummers method.¹ Graphene oxide suspension (2 mg mL⁻¹) was prepared by dispersing 60 mg graphite oxide into a mixed solution, which contained 20 mL DI water and 10 mL ethylene glycol. Then, 1 g urea and 0.3 g SnCl₄·5H₂O were dissolved into the above solution. The solution was transferred into an autoclave and heated by microwave (MARS6, CEM Corporation, USA) to reach 180 °C and kept for 5 minutes. After naturally cooled, obtained black precipitate was rinsed several times by DI water and absolute ethanol. Last, it was dried under vacuum at 80 °C overnight. For comparison, pristine SnO₂ nanocrystals were obtained by the same process without the addition of graphene oxide.

Materials Characterization

The structure and morphology of the products were characterized by X-ray diffraction (Bruker D8 Focus diffractometer with Cu K α radiation) and transmission electron microscope (FEI Tecnai G2). Thermogravimetric analysis (TGA) was performed on a NETZSCH STA 449F3 simultaneous thermal analyzer in air with a heating rate of 10 °C min⁻¹. X-ray photoelectron spectroscopy (XPS) analysis was carried out using an ESCALABMKLL X-ray photoelectron spectrometer with monochromatic Al K α source.

Electrochemical measurements

A *N*-methyl pyrrolidinone (NMP) slurry consisting of the active material, carbon black and polyvinylidene difluoride (PVDF) with a weight ratio of 8:1:1 was pasted on a copper foil. After drying, the foil was punched into disk electrodes. The electrodes were vacuum dried, weighted and assembled into 2025 coin-type cells, with Li-foil as counter electrode and Celgard 2400 membrane as separator. The electrolyte was 1M LiPF₆ dissolved in a 1:1 (v/v) mixture of ethylene carbonate (EC) and diethyl carbonate (DEC). The cells were galvanostatic cycled between 0.01 and 3V versus Li metal at various C rates using LAND CT2001A battery testing system.

Fig. S1 XRD patterns of SnO $_2$ nanocrystals and SnO $_2$ /N-doped graphene composite.

Fig. S2 TEM (a) and HRTEM (b) images of SnO₂ nanocrystals.

Fig. S3 TGA curve of SnO₂/N-doped graphene composite.

Fig. S4 STEM image (a), Sn (b), C (c) and N (d) elemental mappings of SnO₂/N-doped graphene composite.

Fig. S5 C1s XPS spectra of GO (a) and SnO_2/N -doped graphene composite (b).

Fig. S6 TEM (a) and HRTEM (b) images of SnO₂/N-doped graphene composite electrode after 1C cycling.

References

 D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev, L.B. Alemany, W. Lu and J.M. Tour, ACS Nano, 2010, 4, 4806.