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1 Supplemental Figures

Figure S1: Local grafted chain density for RP/Rg = 1 and fA = 0.5. (a), (d), and (g) display
the diblock grafted particles, (b), (e), and (h) display mixed brush particles, while (c), (f), and (i)
display the Janus brush particles. (a - c) Isosurfaces of the explicit grafted particle sitting near
the interface. The red isosurfaces denote the A grafted monomers while the blue isosurfaces
represent the B grafted monomers. The red and blue background show the A and B matrix
chain density, respectively. (d - f) Color maps indicating the A grafted chain density. (g -
i) Color maps indicating the B grafted chain density. The color maps are taken from slices
through the particle center. The color bar denotes the volume fraction of the corresponding
component.
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Figure S2: Local grafted chain density for RP/Rg = 2.5 and fA = 0.75. (a), (d), and (g)
display the diblock grafted particles, (b), (e), and (h) display mixed brush particles, while (c),
(f), and (i) display the Janus brush particles. (a - c) Isosurfaces of the explicit grafted particle
sitting near the interface. The red isosurfaces denote the A grafted monomers while the blue
isosurfaces represent the B grafted monomers. The red and blue background show the A and
B matrix chain density, respectively. (d - f) Color maps indicating the A grafted chain density.
(g - i) Color maps indicating the B grafted chain density. The color maps are taken from slices
through the particle center. The color bar denotes the volume fraction of the corresponding
component.
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Figure S3: Distance of the explicit particle center to the interface as a function of fA for
RP/Rg = 1 (left) and RP/Rg = 2.5 (right). Negative values correspond to the particle re-
siding predominantly in the B phase while positive values correspond to the particle residing
predominantly in the A phase.
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Figure S4: Density of the grafted chains in the plane parallel to the A− B interface versus the
distance from the center of the explicit particle for RP/Rg = 1 (left) and RP/Rg = 2.5 (right)
at fA = 0.5.
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Figure S5: Interfacial tension for pure A/B homopolymer blend and for added diblock as a
function of fA.

5



-4 -2 0 2 4
Distance from the Interface [Rg]

0

0.0002

0.0004

0.0006

0.0008
P

ar
ti

cl
e 

C
en

te
r 

D
en

si
ty

Bare
Diblock
Mixed
Janus

Figure S6: Particle center density versus the perpendicular distance from the interface for
RP/Rg = 2.5 at fA = 0.5. Each curve was averaged over three independent complex Langevin
trajectories as well as the symmetry of the two A-B interfaces that are in the simulation box.
The bare particles sample a wider range of positions relative to the interface, making them less
effective at breaking A-B contacts and reducing the interface tension.
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2 Theory
The model used in this communication is based on a recent extension of polymer field theory to
incorporate polymer nanocomposite systems with grafted nanoparticles.1 This method enables
a pure field theoretic approach for polymer nanocomposite where sampling the fully fluctuating
chemical fields is feasible. The current model includes both an A/B homopolymer blend and
bare or grafted nanoparticles, where three kinds of grafting (homogenous, mixed, and Janus-
grafting) are imposed. The polymers are modeled as discrete Gaussian chains with N interaction
sites. The density of a polymer segment is distributed about its center over a unit Gaussian:
h(r) = ( 1

2πb2
)3/2 exp(− r2

2b2
), where b here is the statistical segment length. Thus, the polymer

density distribution is defined as

ρ̂K(r) = (h ∗ ρ̂K,c)(r) (S.1)

where f ∗g is the shorthand notation for the convolution of two functions f(x) and g(x) defined
by (f ∗ g)(x) =

∫∞
−∞ dx

′f(x− x′)g(x′), and ρ̂K,c is the distribution of polymer segment centers
given as:

ρ̂K,c(r) =

nK∑
i

NK∑
j

δ(r− ri,j). (S.2)

Similar treatment of the density distribution of a single nanoparticle is imposed following
our previous works,1,2 where the distribution of nanoparticle centers for bare and homoge-
nous/mixed grafted nanoparticles is taken as

ρ̂P,c(r) =

nP∑
i

δ(r− ri). (S.3)

The Janus-grafted nanoparticles have an orientation associated with them, and the distribution
with the additional orientational dependence is given as

ρ̂P,c(r,u) =

nP∑
i

δ(r− ri)δ(u− ui). (S.4)

To control how the density decays from the bulk segment density, ρo in the nanoparticle core to
0 outside, a density distribution function, Γ(r) is implemented. For spherical particle, Γ(r) has
the form:

Γ(r) =
ρo
2

erfc
(
|r| −RP

ξ

)
, (S.5)

where RP is the nanoparticle radius and ξ is the interfacial width. The interaction between A
and B segments has the standard Flory repulsive potential form characterized by χAB and the
local total density in the systems are assumed weakly compressible with a quadratic penalty on
the deviations from mean segment density ρo given as
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U =
κ

2ρo

∫
dr

(∑
i

ρ̂i(r)− ρo

)2

, (S.6)

where i goes over the matrix, grafted polymer, and the nanoparticle (P) species, and κ controls
the incompressibility strength.

The model with the above-mentioned interactions between the segments and the nanopar-
ticles then undergoes a particle-to-field transformation, where the particle-particle interactions
are decoupled through Hubbard-Stratonovich transformations3,4and replaced with interactions
between particles and auxiliary fields. As a result, the model is now a functional of chemical
potential fields and no longer a function of the explicit polymer and nanoparticle coordinates.
After the transformation, the canonical ensemble partition function becomes a functional inte-
gral over a set of chemical fields( [{w}]),

Z = zo

∫
D{w} exp (−H[{w}]) , (S.7)

where zo contains numerical prefactors (e.g. the thermal de Broglie wavelengths), andH is the
effective Hamiltonian.

In the particle-to-field transformation, we can choose to leave a single nanoparticle and its
grafted chains out for the sake of calculating the local brush density of the single nanoparticle
near the interface. To achieve this, we adopted the hybrid particle-field theory method5 (HPFT)
where a nanoparticle with a fixed orientation and position are described explicitly through a
chosen density distribution Γ(r). At the same time, grafted chains are grafted onto the explicit
nanoparticle surface by following the manner in a previous study.6 The effective Hamiltonian
is now given by

H[rEP ; {w}] =

∫
dr
[ ρ0

2κ
w2

+ − i (ρ0 − ρ̂EP (rEP )) w+

]
(S.8)

+

∫
dr

[
ρo
χAB

(
[w

(+)
AB ]2 + [w

(−)
AB ]2

)]
−
∫
dr⊥σEgA(r⊥) ln qEgA[r⊥;µA]−

∫
dr⊥σEgB(r⊥) ln qEgB[r⊥;µB]

−nA lnQA[µA]− nB lnQB[µB]− nP lnQP [µP ],

where i is the imaginary unit and the terms with the notation E in the subscript are related to
the explicit nanoparticle and its grafted chains. For example, ρ̂EP is the explicit particle density
distribution and rEP is the coordinates of the explicit particle. σEgA(r⊥) is the distribution of
grafting sites at every position r⊥ on the explicit nanoparticle surface, and qEgK is the partition
function of a single K type grafted chain with one end fixed at r⊥. Each chemical potential field,
w, depends on r but this dependence is suppressed in the above equation for brevity. Lastly,
we note that in our sutdy, the partition function does not depend on rEP because we keep the
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explicit particle fixed at the center of the box. Here in eqn (S.8), µA and µB are the chemical
fields experienced by the A and B segments defined as

µA(r) = [h ∗ (iw(+) + iw
(+)
AB − w

(−)
AB)](r), (S.9)

µB(r) = [h ∗ (iw(+) + iw
(+)
AB + w

(−)
AB)](r).

The molecular partition function, QK , for the K type matrix homopolymer is obtained by first
calculating the chain propagator qK(r, j), where the dependence on µK is dropped for the sake
of simplicity. The chain propagator can be obtained by iterating the corresponding Chapman-
Kolmogorov equation

qK(r, j) = e−µK(r)

∫
dr′ Φ(|r− r′|) qK(r′, j − 1), (S.10)

where Φ(r) = ( 3
2πb2

)3/2 exp(−3r2

2b2
) is the normalized bond transition probability and the initial

condition at j = 1 has the form qK(r, j = 1) = exp[−µK(r)] . Then QK is in turn obtained as

QK =
1

V

∫
drqK(r, P ). (S.11)

After obtaining both qK and QK , the matrix homopolymer segment center density operator is
given as4

ρ̃K(r) =
nK
V QK

P∑
j=1

qK(r, j) eµK(r) qK(r, P − j), (S.12)

and the distribution of the total segment mass is then defined as

ρ̆K(r) = (h ∗ ρ̃K)(r). (S.13)

The chemical potential field µP that is conjugate with the grafted nanoparticle centers has
different forms depending on the architecture of grafted chains and the distribution of grafting
sites. For the case of the homogenously grafted A−B diblock copolymer, µP has the form

µP,diblock(r) = (Γ ∗ iw+)(r)− ngD
nP

(Γσ ∗ ln qgD) (r), (S.14)

where ngD is the total number of grafted A − B diblock copolymer chains in the system and
qgD(r) is the partition function of single grafted A − B diblock copolymer and Γσ(r) imposes
the homogenous distribution of grafting sites. The first term in eqn (S.14) accounts for the
penalty from density overlap between the neutral particle core and the other components, and
remains the same regardless of the distribution of grafting sites. The grafting sites are Rp + ξ
away from the nanoparticle center with a thickness controlled by ξ,

Γσ(r) =
1

σ0
exp

[
−
(
|r| −RP − ξ

ξ

)2
]
, (S.15)
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where σ0 in the prefactor normalizes Γσ such that
∫
drΓσ(r) = 1. Therefore the total nor-

malized distribution of grafting sites can be defined as the convolution between Γσ and the
nanoparticle center distribution ρP,c(r),

σg(r) =
1

nP
(Γσ ∗ ρP,c) (r). (S.16)

The second term in eqn (S.14) varies when an A/B mixed homopolymer brush is grafted as
follows:

µP,mixed(r) = (Γ ∗ iw+)(r) (S.17)

− ng
nP

[Γσ ∗ (fA ln qgA + (1− fA) ln qgB)] (r),

where fA is the overall volume fraction of the grafted chains that is component A and ng is the
total number of grafted chains. The normalized distribution of grafting sites for both A and B
grafted chains have the same form and given as

σgA(r) = σgB(r) =
1

nP
(Γσ ∗ ρP,c) (r). (S.18)

For the case of Janus grafting, µP needs to be reconstructed and the final result has the form
given as

µP,Janus(r,u) = (Γ ∗ iw+)(r)− ng
nP

[
fA(Γ̃σA ∗ ln qgA)(r,u) (S.19)

+(1− fA)(Γ̃σB ∗ ln qgB)(r,u)

]
,

where Γ̃σA(r,u) and Γ̃σB(r,u) are the symmetrical functions of the distributions of Janus graft-
ing sites, ΓσA(r,u) and ΓσB(r,u), about the origin and have the relationship, Γ̃σK(r,u) =
ΓσK(−r,u). The detailed description of eqn (S.19) follows in section 3. According to the
inclusion of orientation dependence in ΓσK , σgK is in turn redefined to integrate over the ori-
entation space as follows:

σgK(r) =

∫
du (ρP,c ∗ ΓσK)(r,u). (S.20)

The definitions of ΓσK and Γ̃σK functions and the derivation for µp in the Janus grafting case
are included in the following section.

Then, the partition function of a single nanoparticle has the form

QP,Janus =
1

4πV

∫
dr

∫
du exp [−µP,Janus(r,u)] , (S.21)
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The nanoparticle center density operator is now dependant on both r and u and is constructed
by

ρ̆P,c(r,u) =
nP exp[−µP,Janus(r,u)]

4πV QP

, (S.22)

The total nanoparticle density is given as a integral of the convolution between ρ̆P,c and Γ

ρ̆P (r) =

∫
du (ρ̆P,c ∗ Γ)(r,u). (S.23)

The total distribution of grafting sites is also given as a integral of a similar convolution,

σ̆gK(r) =

∫
du (ρ̆P,c ∗ ΓσK)(r,u). (S.24)

After the construction of σ̆gK , the grafted chain segment center density operator can be
calculated in a similar manner as in eqn (S.12)

ρ̃gK(r) =
N∑
j=1

qgK(r, j) eµK(r) q†gK(r, N − j), (S.25)

where qgK and q†gK are the grafted chain propagators from the free end and the grafted end,
respectively. The initial conditions for the two propagators used in solving the corresponding
Chapman-Kolmogorov equations are given as

qgK(r, 0) = exp[−µK(r)], (S.26)

q†gK(r, 0) =
σ̆gK(r)

qgK(r, N)
exp[−µK(r)]. (S.27)

3 Janus Grafted Nanoparticle
For the case of Janus grafted particles, each particle is given an unit orientation vector, u, so that
the nanoparticles can rotate and the grafting sites for theA andB chains can properly be defined
based on the particle’s preferred orientation. Here we provide the key steps of the derivation of
the orientation-dependent chemical potential field, µP,Janus(r,u).

For a Janus grafted nanoparticle, Γσ for A and B type grafted chains is taken as

ΓσA(r,u) =
1

σ0
exp

[
−
(
|r| −RP − ξ

ξ

)2
]

(S.28)

erfc
(

1− 2fA − r · u/|r|
ξu

)
,

ΓσB(r,u) =
1

σ0
exp

[
−
(
|r| −RP − ξ

ξ

)2
]

erfc
(
r · u/|r| − 1 + 2fA

ξu

)
,
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where the second term in each distribution confines the grafting sites to an area, which consists
of a fraction of the total nanoparticle surface area valued at fA and 1 − fA for A and B type
grafted chains, respectively. Here, ξu is the boundary width of the confined areas, and the
orientation u is a unit vector pinned at the nanoparticle center and pointing to the center of the
A type chain grafting area. From a geometric point of view, 1−2fA in the second term gives the
cosine of the angle between u and the grafting area boundary, while r · u/|r| gives the cosine
of the angle between r and u. Thus, the second term in ΓσK controls how the grafting density
decays from the bulk value in the corresponding grafting area to 0 in cosine space (Figure S7).

Figure S7: Schematic for the Janus grafted nanoparticle showing the setup for the orientation u,
the fraction of grafting area for each type of chain, and the angle θ between u and the directions
long the grafting area boundaries ( dashed lines ), which has the value at θ = cos−1(1− 2fA)

Next, in order to derive the chemical field conjugate with the Janus grafted nanoparticle, we
need to start the deviation from the system’s partition function from the step after the particle-
to-field transformation where the dependence on the coordinates of matrix polymers has been
integrated out, leaving the explicit dependence on the coordinates of the grafted chains and the
nanoparticles

Z = z0

∫
D{w}

∫
drnP

∫
dunP

∫
drngAN exp

[
−Hw±,Q

−i
∫
dr [Γ ∗ w+](r) ρ̂P,c(r)

−
∫
dr µA(r) ρ̂gA,c(r)

]
, (S.29)

where Hw±,Q consists of the first two integrals in eqn (S.8) plus nA lnQA and nB lnQB. To
keep our derivation concise, in eqn (S.29) we only kept the terms associated withA type grafted
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chains but dropped the terms associated with the explicit particles and B type grafted chains,
the latter of which could be treated in a similar manner. Following the Appendix in our previous
work1 and using eqn (S.20) , the coordinates of grafted chains are integrated out giving rise to
the partition function of single grafted chain, qgA(rg). The last term in eqn (S.29) can then be
rewritten to show the explicit dependence on the nanoparticle coordinates as the follows,

Z = z0

∫
D{w}

∫
drnP

∫
dunP exp

[
−Hw±,Q

−i
∫
dr [Γ ∗ w+](r) ρ̂P,c(r)

+ngA

∫
du

∫
drg

∫
dr′ΓσA(rg − r′,u) (S.30)

ρ̂P,c(r
′,u) ln qgA(rg)

]
.

where the integral over rg covers the distribution of all grafting sites in the system. Since Γσ
is not an even function about r, we change Γ̃σA(r,u) for ΓσA(−r,u) here and obtain a new
convolution between Γ̃σ and ln qgA. After rearranging the order of the integrals,

Z = z0

∫
D{w}

∫
drnP

∫
dunP exp

[
−Hw±,Q

−i
∫
dr [Γ ∗ w+](r) ρ̂P,c(r)

+ngA

∫
du

∫
dr′ρ̂P,c(r

′,u)(Γ̃σA ∗ ln qgA)(r′,u)

]
. (S.31)

Now, ρ̂P,c in the last two terms can be combined leading to the µP,Janus as in eqn (S.19). Finally,
ρ̂P,c can be integrated out in the partition function giving rise to eqn (S.8).

4 Numerical Methods
The fluctuating chemical fields in our field theoretic model are complex valued, which leads
to the non-positive definite nature of the effective Hamiltonian. This issue precludes the usage
of Monte Carlo method to sample the fluctuating fields. To circumvent the problem, we adopt
the complex Langevin (CL) method,4,7–9 which has been demonstrated capable of efficiently
sampling the complex-valued fluctuating fields and evaluating the functional integrals in eqn
(S.7) that extend over the entire complex plane.1,2,10–13 In the CL method, the fields are updated
according to the following scheme

∂w(r)

∂t
= −λ δH

δw(r)
+ η(r, t), (S.32)
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where t is the pseudo evolution time and η is a real Gaussian white noise with the statistics

< η(r, t) > = 0, (S.33)
< η(r, t)η(r′, t′) > = 2λδ(t− t′)δ(r− r′). (S.34)

It is noted that when the noise term in the CL scheme is dropped, the fields evolve according
to the mean-field approximations which becomes exact as the chain density C → ∞. The
functional derivatives in the CL scheme for each chemical field are listed below

δH

δw+(r)
=

ρo
κ
w+(r)− iρo + i

[
ρ̆A(r) (S.35)

+ρ̆gA(r) + ρ̆B(r) + ρ̆gB(r) + ρ̃P (r)

]
,

δH

δw
(+)
AB

=
2ρo
χAB

w
(+)
AB + i

[
ρ̆A(r) (S.36)

+ρ̆gA(r) + ρ̆B(r) + ρ̆gB(r)

]
,

δH

δw
(−)
AB

=
2ρo
χAB

w
(−)
AB − ρ̆A(r) (S.37)

−ρ̆gA(r) + ρ̆B(r) + ρ̆gB(r).

A predictor-corrector scheme12 was used to evolve the fields according to the CL method
in eqn (S.32) with the step size λ∆t = 5 × 10−5 in all the CL simulations. All the density
distribution quantities are obtained from averaging the results over 5,000 iterations after equili-
bration sampled every 50 iterations. The orientation u in the unit sphere are discretized under
the spherical coordinates by choosing Nu = 12 polar angles and 2Nu = 24 azimuthal angles.
The integrals over angles are determined according to the Gaussian-Legendre quadrature rule.

For the dimension of the 3D simulation boxes, the length of the box in the z−direction is
fixed at Lz = 34Rg across all simulations. The x and y−directions for systems with RP/Rg =
1.0 have sizes valued at Lx = Ly = 15.87Rg in the HPFT simulations and Lx = Ly = 6.8Rg

in fully field theoretic simulations. In systems with RP/Rg = 2.5, Lx and Ly have values of
26.22Rg and 20.4Rg in the HPFT simulation with and without implicit nanoparticle neighbors,
respectively, and in the fully field theoretic simulations Lx = Ly = 11.33Rg.

Other numerical parameter includes the spacial resolution dx fixed at dx = 0.33Rg, the
interfacial width of the nanoparticle density distribution ξ = 0.17Rg, and the boundary width
of the Janus grafting area ξu = 0.13.
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