Supporting Information for

Enantioselective Gold Catalyzed Dearomative [2+2]-Cycloadditions between Indoles and Allenamides

Minqiang Jia, Magda Monari, Qing-Qing Yang and Marco Bandini*

Department of Chemistry "G. Ciamician" Alma Mater Studiorum – University of Bologna Via Selmi 2, 40126 Bologna, Italy Fax: (+) 39-051-20995456 E-mail: marco.bandini@unibo.it

Table of contents:

General methods	S2
Optimization of other reaction conditions	S3
General procedure for the protection of indoles with Boc	S4
General procedure for the [2+2] cycloaddition reaction	S 8
General procedures for the synthetic transformations	S16
X-ray crystallography	S19
HPLC spectra	S24
NMR spectra	S45

General Methods.

¹H-NMR spectra were recorded on Varian 200 (200 MHz) or Varian 400 (400 MHz) spectrometers. Chemical shifts are reported in ppm from TMS with the solvent resonance as the internal standard (deuteron chloroform: 7.27 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, brs = broad singlet, d = duplet, t = triplet, q = quartet, p = pseudo, b = broad, m = multiplet), coupling constants (Hz). ¹³C-NMR spectra were recorded on a Varian 200 (50 MHz), Varian 400 (100 MHz) spectrometers with complete proton decoupling. Chemical shifts are reported in ppm from TMS with the solvent as the internal standard (deuteron chloroform: 77.0 ppm). GC-MS spectra were taken by EI ionization at 70 eV on a Hewlett-Packard 5971 with GC injection. They are reported as: m/z (rel. intense). LC-electrospray ionization mass spectra were obtained with Agilent MSD1100 single-quadrupole mass Technologies spectrometer. Chromatographic purification was done with 240-400 mesh silica gel. Anhydrous THF and DCM were distilled respectively from sodium-benzophenone and P₂O₅ prior to use. Elemental analyses were carried out by using a EACE 1110 CHNOS analyzer. Other anhydrous solvents were supplied by Fluka or Sigma Aldrich in Sureseal® bottles and used without any further purification. Commercially available chemicals were purchased from Sigma Aldrich, Stream and TCI and used without any further purification. Melting points were measured using open glass capillaries in a Bibby Stuart Scientific Melting Point Apparatus SMP 3 and are calibrated by comparison with literature values (Aldrich). The indoles unavailable in commercial were synthesized according to the general procedure for Fisher indole synthesis.^[1]Allenamide**2a-e**,^[2a-c] **2f-h** ^[2d-e] were obtained following the known procedure.

^[1] K. S. MacMillan, J. Naidoo, J. Liang, L. Melito, N. S. Williams, L.Morlock, P. J. Huntington, S. Jo Estill, J. Longgood, G. L. Becker, S. L. McKnight, A. A. Pieper, J. K. De Brabander, J. M. Ready, *J. Am. Chem. Soc.*, 2011, **133**, 1428-1437.

^[2] a)L.-L. Wei, J. A. Mulder, H. Xiong, C. A. Zificsak, C. J. Douglas, R. P. Hsung, *Tetrahedron*, 2001, 57, 459-466;
b)S.Suárez-Pantiga,C.Hernández-Díaz,M.Piedrafita, E.Rubio, J. M. González, *Adv. Synth. Catal.*, 2012, 354, 1651-1657;
c) H.Faustino, F.López,L.Castedo, J. L.Mascareñas, *Chem. Sci.*, 2011, 2, 633-637;
d) H. Xiong, R. P. Hsung, L.-L. Wei, C. R. Berry, J. A. Mulder, B. Stockwell, *Org. Lett.*, 2000, 2, 2869-2871;
e) T. Lu, R. Hayashi, R. P. Hsung, K. A. DeKorver, A. G. Lohse, Z. Song, T. Tang, *Org. Biomol. Chem.*, 2009, 7, 3331–3337.

Table S1. Optimization of other reaction conditions.^a

^{*a*}All reactions were carried out under nitrogen atmosphere in anhydrous solvents (1a:2a:cat = 1.2:1:0.05). ^{*b*} After flash chromatography (*c*Hex:AcOEt:85:15). ^{*c*}Determined by HPLC. ND = not determined.

Table S2. List of substrates that were proved unsuccessful under the optimized conditions of the [2+2] reaction:

General procedure for the synthesis of *N*-Boc-indoles 1.^[3]

Under nitrogen atmosphere, $(Boc)_2O$ (2.2mmol) was added to a solution of indole (2 mmol) and 4-(*N*,*N*-dimethylamino)pyridine (DMAP) (12 mg, 0.1mmol) in dry acetonitrile (1 ml).The solution was stirred at room temperature for 6h, and then was evaporated under reduced pressure. After water was added, the resulting mixture was extracted twice with EtOAc. The combined organic layer was washed with brine, dried with Na₂SO₄, and evaporated under reduced pressure. The residue was purified via flash chromatography (*c*Hex:AcOEt = 98:2) to give the desired product as a white solid or colorless oil.

	1a . ^[3,5] White solid. Yield = 95% (<i>c</i> Hex:AcOEt = 98:2). ^{<i>1</i>} <i>H</i> - <i>NMR</i>
	(400 MHz, CDCl ₃) δ 8.11-8.03 (m, 1H), 7.43-7.34 (m, 1H), 7.23-
Boc	7.15 (m, 2H), 2.51 (d, $J = 0.8$ Hz, 3H), 2.17 (d, $J = 0.8$ Hz, 3H),
	1.66 (s, 9H).
	1b . ^[4] White solid. Yield = 92% (<i>c</i> Hex:AcOEt = 98:2). ^{<i>I</i>} <i>H</i> - <i>NMR</i>
	(400 MHz, CDCl ₃) δ 8.16 (d, J = 7.2 Hz, 1H), 7.42-7.33 (m, 1H),
Boc	7.25-7.14 (m, 2H), 3.15-3.02 (m, 2H), 2.82-2.70 (m, 2H), 2.55-2.40
	(m, 2H), 1.65 (s, 9H).

^[3] R.Kuwano, M. Kashiwabara, Org. Lett., 2006, **8**, 2653-2655.

^[4] H. Zaimoku, T. Hatta, T. Taniguchi, H. Ishibashi, Org. Lett., 2012, 14, 6088-6091.

^[5] D. Dhanak, C. B. Reese, J. Chem. Soc., Perkin Trans. 1, 1986, 2181-2186.

	(C ₁₆ H ₂₁ NO ₂ : 259.16): C, 74.10; H, 8.16, N, 5.40; Found: C, 74.00, H, 8.21, N, 5.28.
MeO	1k . White solid. Yield = 86% (<i>c</i> Hex:AcOEt = 98:2). Mp = 71- 73 °C. ¹ <i>H</i> - <i>NMR</i> (400 MHz, CDCl ₃) δ 7.98 (d, J = 8.8 Hz, 1H), 6.96-6.74 (m, 2H), 3.88 (s, 3H), 2.52 (s, 3H), 2.16 (s, 3H), 1.67 (s, 9H). ¹³ <i>C</i> - <i>NMR</i> (100 MHz, CDCl ₃) δ 155.6, 150.6, 133.5, 131.5, 130.1, 115.9, 113.5, 111.1, 100.8, 82.9, 55.5, 28.2, 13.9, 8.6. <i>LC</i> - <i>MS</i> (m/z): 276 [M+H] ⁺ . <i>Anal. calcd</i> for (C ₁₆ H ₂₁ NO ₃ : 275.15): C, 69.79; H, 7.69, N, 5.09; Found: C, 69.65, H, 7.55, N, 5.00.
Boc	11 . ^[4] White solid. Yield = 94% (<i>c</i> Hex:AcOEt = 98:2). Mp = 54- 56 °C. ¹ <i>H-NMR</i> (400 MHz, CDCl ₃) δ 8.12 (d, <i>J</i> = 7.6 Hz,1H), 7.43 (d, <i>J</i> = 6.8 Hz, 1H), 7.35-7.15 (m, 2H), 3.04 (q, <i>J</i> = 7.2 Hz, 2H), 2.21 (s, 3H), 1.70 (s, 9H), 1.23 (t, <i>J</i> = 7.2 Hz, 3H). ¹³ <i>C-NMR</i> (100 MHz, CDCl ₃) δ 150.5, 138.6, 135.8, 130.7, 123.3, 122.2, 117.8, 115.4, 113.3, 83.2, 28.2, 20.1, 14.5, 8.5. <i>LC-MS</i> (m/z): 258 [M+H] ⁺ .
N Boc	1m . Colorless oil. Yield = 94% (<i>c</i> Hex:AcOEt = 98:2). ^{<i>I</i>} <i>H-NMR</i> (400 MHz, CDCl ₃) δ 8.15-8.05 (m, 1H), 7.50-7.41 (m, 1H), 7.26- 7.18 (m, 2H), 2.68 (q, <i>J</i> = 7.6 Hz, 2H), 2.54 (s, 3H), 1.69 (s, 9H), 1.19 (t, <i>J</i> = 7.6 Hz, 3H). ^{<i>I3</i>} <i>C-NMR</i> (100 MHz, CDCl ₃) δ 150.5, 138.6, 135.8, 130.7, 123.3, 122.2, 117.8, 115.4, 113.3, 83.2, 28.2, 20.1, 14.5, 8.5. <i>LC-MS</i> (m/z): 260 [M+H] ⁺ . <i>Anal. calcd</i> for (C ₁₆ H ₂₁ NO ₂ : 259.16): C, 74.10; H, 8.16, N, 5.40; Found: C, 74.19, H, 8.21, N, 5.43.

N Boc	1n . ^[6] Colorless oil. Yield = 95% (<i>c</i> Hex:AcOEt = 98:2). ^{<i>I</i>} <i>H-NMR</i> (400 MHz, CDCl ₃) δ 8.15-8.03 (m, 1H), 7.50-7.38 (m, 1H), 7.25- 7.14 (m, 2H), 2.64 (t, <i>J</i> = 7.2 Hz, 2H), 2.54 (s, 3H), 1.69 (s, 9H), 1.62 (q, <i>J</i> = 7.2 Hz, 2H), 0.96 (t, <i>J</i> = 7.2 Hz, 3H). ^{<i>I</i>3} <i>C-NMR</i> (100 MHz, CDCl ₃) δ 150.8, 135.7, 132.9, 130.2, 123.0, 122.2, 118.5, 117.9, 115.3, 83.2, 28.3, 25.9, 23.2, 14.0, 13.9. <i>LC-MS</i> (m/z): 296 [M+Na] ⁺ .
Boc	1p . White solid. Yield = 90% (<i>c</i> Hex:AcOEt = 98:2). <i>Mp</i> = 168- 170 °C. ^{<i>I</i>} <i>H-NMR</i> (400 MHz, CDCl ₃) δ 8.39 (d, <i>J</i> = 8.0 Hz, 1H), 8.17-8.06 (m, 1H), 7.61-7.53 (m, 1H), 7.51 (d, <i>J</i> = 7.6 Hz, 1H), 7.35 (t, <i>J</i> = 7.6 Hz, 1H), 7.31-7.17 (m, 3H), 3.69 (s, 2H), 1.77 (s, 9H). ^{<i>I3</i>} <i>C-NMR</i> (100 MHz, CDCl ₃) δ 150.4, 147.2, 143.7, 139.9, 135.7, 127.5, 126.7, 126.3, 125.1, 124.9, 123.7, 123.0, 122.6, 118.9, 116.5, 84.3, 29.9, 28.4. <i>LC-MS</i> (m/z): 306 [M+H] ⁺ . <i>Anal.</i> <i>calcd</i> for (C ₂₀ H ₁₉ NO ₂ : 305.14): C, 78.66; H, 6.27, N, 4.59; Found: C, 78.72, H, 6.23, N, 4.52.
N Cbz	1q , synthesized from the known procedure for the protection of Cbz. ^[7] White solid. Yield = 61% (<i>c</i> Hex:AcOEt = 98:2). ^{<i>I</i>} <i>H-NMR</i> (400 MHz, CDCl ₃) δ 8.14-8.04 (m, 1H), 7.50 (d, <i>J</i> = 7.6 Hz, 2H), 7.46-7.34 (m, 4H), 7.25-7.16 (m, 2H), 5.47 (s, 2H), 2.54 (s, 3H), 2.19 (s, 3H).

General procedure for the [2+2] cycloaddition reaction.

AuCl[·]DMS (1.5 mg, 5/10mol%) and (*R*)-DTBM-Segphos (3.0 mg, 2.5/5mol%) were dissolved in CH_2Cl_2 (0.5 mL), the solution was stirred at room temperature for 20 min. Then the CH_2Cl_2 was evaporated under reduced pressure, and leave the complex under high vacuum for 20 min. Then, CH_2Cl_2 (1.0 mL) was added and the solution was protected from light by aluminum foil. AgOTf

^[6] S. Coulton, S. Gilchrist, K. Graham, *Tetrahedron*, 1997, **53**, 791-798.

^[7] a) H.-C. Hsu, D.-R. Hou, *Tetrahedron Lett.*, 2009, **50**, 7169-7171; b) I.-K. Park, S.-E. Suh, B.-Y. Lim, C.-G. Cho, *Org. Lett.*, 2009, **11**, 5454-5456.

(1.3 mg, 5/10 mol%) was added and the solution was stirred at room temperature for 20 min. Then the mixture was cooled to -60 °C, then substrate **1** (0.12/0.06mmol), and **2a** (0.1/0.05 mmol) were added in sequence and the mixture stirred at the same temperature for 16 hours. Removed the solvent under reduced pressure and the crude was purified by flash column chromatography to give the desired product.

3a. Colorless oil. Yield = 95% (*c*Hex:AcOEt = 85:15). *Ee*= 93%. *HPLC*: Chiralcel-AD: eluent: *n*Hex:IPA = 95:5, flow = 1.0 mL/min, T = 40 °C, Rt_{minor} (9.8 min), Rt_{major} (10.6 min). [α]_D = 122.2 (*c* = 1.25, CHCl₃). ¹*H*- *NMR* (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.0 Hz, 1H), 7.22-7.08 (m, 2H), 6.99 (t, *J* = 7.0 Hz, 1H), 6.19 (s, 1H), 4.68-4.55 (m, 1H), 4.42-4.32 (m, 2H), 3.87 (dd, *J* = 17.2, 8.8 Hz, 1H), 2.77 (d, *J* = 14.4 Hz, 1H), 2.58 (d, *J* = 14.4 Hz, 1H), 1.70 (s, 3H), 1.58 (s, 9H), 1.38 (s, 3H). ¹³*C*-*NMR*(100 MHz, CDCl₃) δ 156.9, 151.9, 142.6, 138.0, 127.6, 122.9, 122.8, 119.2, 116.5, 81.6,77.2,75.0, 62.5, 47.6, 45.5, 42.2, 28.5, 18.4, 18.2. *LC-MS* (m/z): 371[M+H]⁺. *Anal. calcd* for (C₂₁H₂₆N₂O₄: 370.19): C, 68.09; H, 7.07, N, 7.56; Found: C, 68.21, H, 6.59, N, 7.41.

3b. White solid. The Z configuration of alkene was determined by NOE experiment. Yield = 96% (*c*Hex:AcOEt = 85:15). *Ee* = 94%. *MP* = 139-141 °C. *HPLC*: Chiralcel-AD: eluent: *n*Hex:IPA = 95:5, flow = 1.0 mL/min, T = 40 °C, Rt_{minor} (9.4 min), Rt_{major} (13.2 min).[α]_D = 5.2 (*c* = 0.5, CHCl₃). ¹*H*-*NMR* (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.6 Hz, 1H), 7.25-7.07 (m, 2H), 7.00 (t, *J* = 7.2 Hz, 1H), 6.14 (s, 1H), 4.82 (s, 1H), 4.51-4.26 (m, 2H), 3.70 (q, *J* = 8.8 Hz, 1H), 2.85-2.50 (m, 3H), 2.32-1.90 (m, 4H), 1.81-1.64 (m, 1H), 1.59 (s, 9H). ¹³*C*-*NMR* (100 MHz, CDCl₃) δ 157.1, 152.4, 144.2, 136.3, 127.7, 123.9, 123.2, 121.0, 116.4, 81.7, 80.1, 77.2, 62.8, 54.8, 45.8, 39.2, 38.1, 36.7, 28.38, 28.36. *LC-MS* (m/z): 787 [2M+Na]⁺. *Anal. calcd* for (C₂₂H₂₆N₂O₄: 382.19): C, 69.09; H, 6.85, N, 7.32; Found: C, 68.90, H, 6.69, N, 7.44.

3c.White solid. Yield = 96% (*c*Hex:AcOEt = 85:15). *Ee* = 93%. *MP* = 116-118 °C. *HPLC*: Chiralcel-AD: eluent: *n*Hex:IPA = 95:5, flow = 1.0 mL/min, T = 40 °C, Rt_{minor} (11.5 min), Rt_{major} (17.2 min). $[\alpha]_{D} = 25.4$ (*c* = 0.85, CHCl₃). ^{*I*}*H-NMR* (400 MHz,

CDCl₃) δ 7.39 (d, J = 6.4 Hz, 1H), 7.09-6.85 (m, 2H), 6.14 (s, 1H), 4.84 (s, 1H), 4.46-4.27 (m, 2H), 3.71 (q, J = 8.8 Hz, 1H), 2.75 (d, J = 16.0 Hz, 1H), 2.67 (dd, J = 16.0, 2.0 Hz, 1H), 2.65-2.54 (m, 1H), 2.31 (s, 3H), 2.15-1.97 (m, 4H), 1.78-1.68 (m, 1H), 1.58 (s, 9H). ¹³*C-NMR* (100 MHz, CDCl₃) δ 157.1, 152.5, 142.1, 136.4, 132.8, 128.3, 124.5, 120.9, 116.2, 81.5, 80.2, 77.2, 62.8, 54.9, 45.7, 39.2, 38.1, 36.7, 28.5, 28.4, 20.8.*LC-MS* (m/z): 435 [M+K]⁺.*Anal. calcd* for (C₂₃H₂₈N₂O₄: 396.20): C, 69.67; H, 7.12, N, 7.07; Found: C, 69.55, H, 7.01, N, 7.21.

MeO MeO NeO NeO

28.30.*LC-MS* (m/z): 499 [M+K]⁺. *Anal. calcd* for (C₂₂H₂₅BrN₂O₄: 460.10): C, 57.27; H, 5.46, N, 6.07; Found: C, 57.15, H, 5.35, N, 6.17.

3f. White solid. The Z configuration of alkene was determined by NOE experiment. Yield = 95% (*c*Hex:AcOEt = 85:15). *Ee* = 98%. MP = 178-180 °C. *HPLC*: Chiralcel-AD: eluent: *n*Hex:IPA = 95:5, flow = 1.0 mL/min, T = 40 °C, Rt_{minor}(9.4 min), Rt_{maior}(11.6 min).

[α]_D = 107.0 (c = 0.57, CHCl₃). ¹*H-NMR* (400 MHz, CDCl₃) δ 7.59 (d, J = 8.0 Hz, 1H), 7.17 (t, J = 7.6 Hz, 1H), 7.07 (d, J = 7.6 Hz, 1H), 7.00 (t, J = 7.2 Hz, 1H), 6.04 (s, 1H), 4.61 (s, 1H), 4.46-4.24 (m, 2H), 3.72 (dd, J = 17.2, 8.8 Hz, 1H), 3.09 (q, J = 7.2 Hz, 1H), 2.71 (d, J = 15.2 Hz, 1H), 2.62 (d, J = 15.2 Hz, 1H), 2.20 (q, J = 7.2 Hz, 1H), 1.94 (t, J = 12.8 Hz, 2H), 1.79-1.61 (m, 3H), 1.59 (s, 9H), 1.25-0.95 (m, 3H). ¹³*C-NMR* (100 MHz, CDCl₃) δ 157.2, 152.0, 144.0, 136.7, 127.6, 122.83, 122.77, 119.7, 116.2, 81.6, 78.7, 77.2, 62.5, 52.1, 46.3, 42.0, 36.1, 32.7, 31.6, 28.4, 25.6, 24.6. *LC-MS* (m/z): 843 [2M+Na]⁺. *Anal. calcd* for (C₂₄H₃₀N₂O₄: 410.22): C, 70.22; H, 7.37, N, 6.82; Found: C, 70.01, H, 7.21, N, 6.70.

3g. Colorless oil. Yield = 96% (*c*Hex:AcOEt = 85:15). *Ee* = 98%. *HPLC*: Chiralcel-AD: eluent: *n*Hex:IPA = 95:5, flow = 1.0 mL/min, T = 40 °C, Rt_{minor} (9.0 min), Rt_{major} (14.1 min).[α]_D = 101.7 (*c* = 0.29, CHCl₃). ¹*H*-*NMR* (400 MHz, CDCl₃) δ 7.47 (d, *J*

= 7.6 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H), 6.87 (s, 1H), 6.03 (s, 1H), 4.60 (s, 1H), 4.44-4.26 (m, 2H), 3.72 (q, J = 8.8 Hz, 1H), 3.08 (q, J = 7.2 Hz, 1H), 2.69 (dd, J = 15.2, 1.6 Hz, 1H), 2.61 (dd, J = 15.2, 1.6 Hz, 1H), 2.31 (s, 3H), 2.19 (q, J = 7.2 Hz, 1H), 2.00-1.85 (m, 2H), 1.78-1.62 (m, 3H), 1.58 (s, 9H), 1.24-0.92 (m, 3H). ¹³*C*-*NMR* (100 MHz, CDCl₃) δ 157.2, 152.0, 141.7, 136.8, 132.3, 128.1, 123.3, 119.6, 116.0, 81.3, 78.7, 77.2, 62.5, 52.2, 46.2, 42.0, 36.2, 32.6, 31.6, 28.4, 25.6, 24.7, 20.8. *LC-MS* (m/z): 425 [M+H]⁺. *Anal. calcd* for (C₂₅H₃₂N₂O₄: 424.24): C, 70.73; H, 7.60, N, 6.60; Found: C, 70.59, H, 7.45, N, 6.41.

3h. White solid. Yield = 92% (*c*Hex:AcOEt 85:15). *Ee* = 95%. MP = 124-126 °C. *HPLC*: Chiralcel-AD: eluent: *n*Hex:IPA = 95:5, flow = 1.0 mL/min, T = 40 °C, Rt_{minor} (8.0 min), Rt_{major} (10.8

min). [α]_D = 59.3 (c = 0.29, CHCl₃). ¹*H-NMR* (400 MHz, CDCl₃) δ 7.51 (s, 1H), 6.72 (dd, J = 8.8, 2.4 Hz, 1H), 6.63 (d, J = 2.4 Hz, 1H), 6.04 (s, 1H), 4.63 (s, 1H), 4.44-4.25 (m, 2H), 3.79 (s, 3H), 3.72 (q, J = 8.8 Hz, 1H), 3.25-2.96 (m, 1H), 2.71 (d, J = 15.2 Hz, 1H), 2.62 (d, J = 15.2 Hz, 1H), 2.25-2.11 (m, 1H), 1.99-1.84 (m, 2H), 1.81-1.61 (m, 4H), 1.58 (s, 9H), 1.15-0.92 (m, 2H). ¹³*C-NMR* (100 MHz, CDCl₃) δ 157.2, 155.8, 151.8, 138.2, 137.8, 119.7, 116.8, 112.2, 108.8, 81.3, 78.9, 77.2, 62.5, 55.6, 52.4, 46.2, 41.9, 36.1, 32.7, 31.6, 28.4, 25.6, 24.7. *LC-MS* (m/z): 441 [M+H]⁺. *Anal. calcd* for (C₂₅H₃₂N₂O₅: 440.23): C, 68.16; H, 7.32, N, 6.36; Found: C, 68.01, H, 7.16, N, 6.25.

3i. White solid. Yield = 41% (*c*Hex:AcOEt 85:15). *Ee* = 99%. *MP* = 148-150 °C. *HPLC*: Chiralcel-AD: eluent: *n*Hex:IPA = 95:5, flow = 1.0 mL/min, T = 40 °C, Rt_{minor} (11.2 min), Rt_{major} (18.9

min). [α]_D = 133.9 (c = 0.28, CHCl₃). ¹*H-NMR* (400 MHz, CDCl₃) δ 7.46 (d, J = 8.4 Hz, 1H), 7.31-7.23 (m, 1H), 7.15 (s, 1H), 6.05 (s, 1H), 4.56 (s, 1H), 4.45-4.26 (m, 2H), 3.70 (q, J = 8.8 Hz, 1H), 3.20-2.96 (m, 1H), 2.72 (d, J = 15.2 Hz, 1H), 2.62 (d, J = 15.2 Hz, 1H), 2.15 (dd, J = 7.2 Hz, 1H), 2.00-1.84 (m, 2H), 1.79-1.61 (m, 3H), 1.58 (s, 9H), 1.38-1.24 (m, 1H), 1.21-0.91 (m, 2H). ¹³*C-NMR* (100 MHz, CDCl₃) δ 157.2, 151.7, 143.2, 139.1, 130.4, 125.8, 120.0, 117.7, 115.0, 82.0, 79.2, 77.2, 62.5, 52.0, 46.2, 42.0, 36.0, 32.7, 31.5, 28.4, 25.6, 24.6. *LC-MS* (m/z): 527 [M+K]⁺. *Anal. calcd* for (C₂₄H₂₉BrN₂O₄: 488.13): C, 58.90; H, 5.97, N, 5.72; Found: C, 58.72, H, 5.81, N, 5.88.

3j. Colorless oil. Yield = 90% (*c*Hex:AcOEt 85:15). *Ee* = 81%. *HPLC*: Chiralcel-AD: eluent: *n*Hex:IPA = 95:5, flow = 1.0 mL/min, T = 40 °C, Rt_{minor} (8.7 min), Rt_{major} (12.5 min). $[\alpha]_D$ = 117.3 (*c* = 0.48, CHCl₃). ¹*H*-*NMR* (400 MHz, CDCl₃) δ 7.40 (d,

J = 8.0 Hz, 1H), 6.98 (d, *J* = 8.8 Hz, 1H), 6.94 (s, 1H), 6.18 (s, 1H), 4.59 (dd, *J* = 14.8, 8.4 Hz, 1H), 4.46-4.30 (m, 2H), 3.88 (dd, *J* = 17.2, 8.4 Hz, 1H), 2.74 (d, *J* = 14.4 Hz, 1H), 2.57 (d, *J* = 14.4 Hz, 1H), 2.31 (s, 3H), 1.70 (s, 3H), 1.57 (s, 9H), 1.36 (s, 3H). ^{*I3*}*C*-*NMR*(100 MHz, CDCl₃) δ 156.8, 151.9, 140.3, 138.1, 132.5, 128.1, 123.4, 119.1, 116.3, 81.4,77.2,75.0, 62.5, 47.7, 45.4,

42.0, 28.5, 20.8, 18.4, 18.3.*LC-MS* (m/z): 385 [M+H]⁺. *Anal. calcd* for (C₂₂H₂₈N₂O₄: 384.20): C, 68.73; H, 7.34, N, 7.29; Found: C, 68.58, H, 7.21, N, 7.35.

Boc Boc Boc

31. Colorless oil. Yield = 72% (*c*Hex:AcOEt 85:15). *Ee* = 92%. *HPLC*: Chiralcel-AD: eluent: *n*Hex:IPA = 95:5, flow = 1.0 mL/min, T = 40 °C, Rt_{minor} (7.6 min), Rt_{major} (9.0 min).[α]_D = 110.5 (*c* = 0.21, CHCl₃).¹*H*-*NMR* (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.0 Hz, 1H), 7.15 (t, *J* = 7.2 Hz, 1H), 7.07 (d, *J* = 7.2 Hz, 1H), 6.96 (t, *J* = 7.2 Hz, 1H), 6.14 (s, 1H), 4.57 (dd, *J* = 14.8, 8.8 Hz, 1H), 4.46-4.31 (m, 2H), 3.87 (dd, *J* = 16.8, 8.4 Hz, 1H), 2.82-2.65 (m, 2H), 2.51 (dd, *J* = 14.4, 1.2 Hz, 1H), 1.98-1.82 (m, 1H), 1.60 (s, 9H), 1.50 (s, 3H), 0.74 (t, *J* = 7.2 Hz, 3H).¹³*C*-*NMR* (100 MHz, CDCl₃) δ 157.3, 151.9, 143.7, 138.6, 127.5, 122.5, 121.7, 119.5, 115.5, 81.5, 79.2, 77.2, 62.6, 47.1, 46.3, 43.0, 28.4, 24.3, 18.1, 8.2. *LC-MS* (m/z): 407 [M+Na]⁺, 423 [M+K]⁺. *Anal. calcd* for (C₂₂H₂₈N₂O₄: 384.20): C, 68.73; H, 7.34, N, 7.29; Found: C, 68.44, H, 7.50, N, 7.21.

3m. Colorless oil. Yield = 94% (*c*Hex:AcOEt 85:15). *Ee* = 82%. *HPLC*: Chiralpak-IC: eluent: *n*Hex:IPA = 60:40, flow = 0.7 mL/min, T = 40 °C, Rt_{mino} (16.5 min), Rt_{major} (17.7 min). $[\alpha]_D = 27.7$ (*c* = 0.47, CHCl₃). ^{*I}</sup><i>H-NMR* (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.4 Hz, 1H), 7.24-7.11 (m, 2H), 7.03 (t, *J* = 7.2 Hz, 1H), 6.06 (s, 1H), 4.52-4.15 (m, 3H), 3.89 (dd, *J* = 15.6, 8.4 Hz, 1H), 2.67 (d, *J* = 14.4 Hz, 1H), 2.61 (d, *J* = 14.4 Hz, 1H), 1.89 (s, 3H), 1.88-1.77 (m, 2H), 1.57 (s, 9H), 0.82 (t, *J* = 7.2 Hz, 3H). ^{*I3*}*C-NMR* (100 MHz, CDCl₃) δ 156.6, 152.0, 143.5, 136.7, 127.5, 123.9, 123.2, 118.6, 117.3, 81.5, 77.2, 74.2, 62.3, 52.5, 45.3, 39.7, 28.4, 26.6, 18.5, 9.3. *LC-MS* (m/z): 407 [M+Na]⁺, 423 [M+K]⁺. *Anal. calcd* for (C₂₂H₂₈N₂O₄: 384.20): C, 68.73; H, 7.34, N, 7.29; Found: C, 68.51, H, 7.49, N, 7.36.</sup>

3n. Colorless oil. Yield = 96% (*c*Hex:AcOEt 85:15). *Ee* = 84%. *HPLC*: Chiralcel-AD: eluent: *n*Hex:IPA = 90:10, flow = 0.5 mL/min, T = 40 °C, Rt_{minor} (13.7 min), Rt_{major} (14.6 min). $[\alpha]_D$ = 30.0 (*c* = 0.34, CHCl₃). ^{*1*}*H-NMR* (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.4 Hz, 1H), 7.24-7.12 (m, 2H), 7.02 (t, *J* = 7.2 Hz, 1H), 6.05 (s, 1H), 4.45-4.18 (m,

3H), 3.89 (dd, J = 16.0, 8.8 Hz, 1H), 2.67 (d, J = 14.4 Hz, 1H),2.60 (d, J = 14.4 Hz, 1H), 1.89 (s, 3H), 1.79-1.69 (m, 2H), 1.57 (s, 9H), 1.22-1.01 (m, 2H), 0.88 (t, J = 7.2 Hz, 3H). ¹³*C-NMR* (100 MHz, CDCl₃) δ 156.6, 152.0, 143.4, 137.1, 127.5, 124.0, 123.3, 118.5, 117.3, 81.5, 77.2, 74.2, 62.3, 52.2, 45.3, 40.0, 36.4, 28.4, 18.6, 18.2, 14.7. *LC-MS* (m/z): 399 [M+H]⁺. *Anal. calcd* for (C₂₃H₃₀N₂O₄: 398.22): C, 69.32; H, 7.59, N, 7.03; Found: C, 69.20, H, 7.41, N, 6.81.

30. White solid. The Z configuration of alkene was determined by NOE experiment. Yield = 93% (*c*Hex:AcOEt 85:15). *Ee*= 98%. *MP* = 183-185 °C. *HPLC*: Chiralcel-AD: eluent: *n*Hex:IPA = 95:5, flow = 1.0 mL/min, T = 40 °C, Rt_{minor} (12.1 min), Rt_{major} (15.8 min). $[\alpha]_{\rm D}$ =

109.0 (c = 0.42, CHCl₃). ^{*I}</sup><i>H-NMR* (400 MHz, CDCl₃) δ 7.96 (d, J = 7.2 Hz, 1H), 7.48 (d, J = 8.4 Hz, 1H), 7.26-7.18 (m, 4H), 7.15 (t, J = 8.0 Hz, 1H), 6.98 (t, J = 7.2 Hz, 1H), 6.31 (s, 1H), 5.07-4.92 (m, 1H), 4.42 (dd, J = 17.2, 8.8 Hz, 1H), 4.37-4.25 (m, 1H), 3.51 (dd, J = 18.0, 8.8 Hz, 1H), 3.44 (s, 2H), 3.04 (d, J = 14.4 Hz, 1H), 2.85 (d, J = 14.4 Hz, 1H), 1.63 (s, 9H). ^{*I3*}*C-NMR* (100 MHz, CDCl₃) δ 156.9, 152.6, 146.6, 144.0, 142.1, 136.0, 128.6, 128.0, 127.9, 126.8, 125.4, 123.5, 123.0, 120.8, 120.5, 116.3, 84.3, 82.0, 62.7, 53.7, 45.6, 42.4, 40.7, 28.4.*LC-MS* (m/z):</sup>

431 [M+H]⁺.*Anal. calcd* for (C₂₆H₂₆N₂O₄: 430.19): C, 72.54; H, 6.09, N, 6.51; Found: C, 72.41, H, 5.89, N, 6.41.

3p. Colorless oil. Yield = 60% (*c*Hex:AcOEt 85:15). *Ee* = 96%. *HPLC*: Chiralcel-OJ: eluent: *n*Hex:IPA = 70:30, flow = 0.7 mL/min, T = 40 °C, Rt_{minor} (16.4 min), Rt_{major} (18.6 min). $[\alpha]_D$ = 83.8 (*c* = 0.5, CHCl₃). ^{*I*}*H-NMR* (400 MHz, CDCl₃) δ 7.66 (d, *J* = 7.6 Hz, 1H), 7.48-

7.33 (m, 5H), 7.21-7.09 (m, 2H), 7.02 (t, J = 7.2 Hz, 1H), 6.27 (s, 2H), 5.31 (dd, J = 16.0, 12.4 Hz, 2H), 4.60-4.28 (m, 1H), 4.28-4.15 (m, 1H), 4.15-3.86 (m, 1H), 3.85-3.60 (m, 1H), 2.83 (d, J = 14.4 Hz, 1H), 2.56 (d, J = 14.4 Hz, 1H), 1.66 (s, 3H), 1.41 (s, 3H). ¹³*C*-*NMR* (100 MHz, CDCl₃) δ 156.7, 152.9, 137.8, 135.9, 128.7, 128.4, 128.2, 127.9, 123.4, 122.6, 121.9, 119.7, 116.6, 77.2, 75.6, 67.4, 62.2, 47.7, 45.4, 42.4, 18.7, 17.6. *LC-MS* (m/z): 405 [M+H]⁺. *Anal. calcd* for (C₂₄H₂₄N₂O₄: 404.17): C, 71.27; H, 5.98, N, 6.93; Found: C, 71.08, H, 6.07, N, 6.60.

3q. Colorless oil. Yield = 8% (*c*Hex:AcOEt = 85:15).¹*H-NMR* (400 MHz, CDCl₃) δ 8.12 (d, *J* = 7.6 Hz, 1H), 7.53 (d, *J* = 7.6 Hz, 1H), 7.39 (s, 1H), 7.36-7.29 (m, 1H), 7.26-7.20 (m, 1H), 6.86 (d, *J* = 14.4 Hz, 1H), 5.01 (dt, *J* = 14.0, 7.2 Hz, 1H), 4.48-4.39 (m, 2H), 3.70 (t, *J* = 8.0 Hz, 2H), 3.48 (d, *J* = 6.8 Hz, 2H), 1.68 (s, 9H). *LC-MS* (m/z): 381 [M+K]⁺.

3r. Colorless oil. Yield = 5% (*c*Hex:AcOEt= 85:15). ^{*I*}*H*-*NMR* (400 MHz, CDCl₃) δ 8.09-8.00 (m, 1H), 7.47-7.42 (m, 1H), 7.27-7.20 (m, 2H), 6.76 (d, *J* = 14.4 Hz, 1H), 5.04 (dt, *J* = 14.4, 6.8 Hz, 1H), 4.45-4.33 (m, 2H), 3.81 (d, *J* = 6.4 Hz, 2H), 3.67 (t, *J* = 8.0 Hz, 2H), 2.23 (s, 3H), 1.69 (s, 8H). *LC-MS* (m/z): 357 [M+H]⁺.

3s.Colorless oil. Yield = 56% (*c*Hex:AcOEt= 85:15). ^{*I*}*H-NMR* (400 MHz, CDCl₃) δ 8.11 (dd, *J* = 7.2, 1.2 Hz, 1H), 7.51-7.37 (m, 1H), 7.29-7.14 (m, 2H), 6.74 (d, *J* = 14.4 Hz, 1H), 4.90 (dt, *J* = 14.4, 6.4 Hz, 1H), 4.38 (t, *J* = 8.0 Hz, 2H), 3.63 (t, *J* = 8.0 Hz, 2H), 3.45 (dd, *J* = 6.4, 0.8 Hz, 2H), 2.55 (s, 3H), 1.69 (s, 9H). ^{*I3*}*C-NMR* (100 MHz, CDCl₃) δ

155.3, 150.7, 135.7, 133.5, 129.5, 124.4, 123.4, 122.4, 117.7, 115.9, 115.4, 108.9, 83.5, 62.0, 42.5, 28.3, 24.4, 13.9. *LC-MS* (m/z): 357 [M+H]⁺.

4a.White solid. Yield = 8% (*c*Hex-AcOEt: 70:30), *Ee*= 91%, from [2+2] reaction of 2,3-dimethylindole with allenamide **2a**. *HPLC*: Chiralcel-AD: eluent: *n*Hex:IPA = 80:20, flow = 0.8 mL/min, T = 40 °C, Rt_{minor}

(9.9 min), Rt_{major} (10.7 min).

General procedures for the synthetic transformations

Procedure for the deprotection of the Boc group: To a solution of **3a** (37.0 mg, 0.1 mmol) in anhydrous CH_2Cl_2 (0.75 mL) at 0 °C, TFA (0.25 mL) was added, and stirred at this temperature for 2h. Then saturated NaHCO₃ (10 mL) was added, extracted with CH_2Cl_2 (3×15

mL), dried over Na₂SO₄ and evaporated. The crude were purified by column chromatography (*c*Hex:AcOEt = 70:30) to provide the desired product **4a** as a white solid. Yield = 91%. *Ee* = 93%. *MP* = 136-138 °C. *HPLC*: Chiralcel-AD: eluent: *n*Hex:IPA = 80:20, flow = 0.8 mL/min, T = 40 °C, Rt_{minor} (9.9 min), Rt_{major} (10.6 min). $[\alpha]_D$ = 193.0 (*c* = 1.0, CH₂Cl₂, 93% ee). ¹*H-NMR* (400 MHz, CDCl₃) δ 7.13 (d, *J* = 7.2 Hz,1H), 7.08 (t, *J* = 7.6 Hz, 1H), 6.84 (t, *J* = 7.6 Hz, 1H), 6.71 (d, *J* = 7.6 Hz, 1H), 6.06 (s, 1H), 4.40 (t, *J* = 8.0 Hz, 2H), 4.28 (q, *J* = 8.0 Hz, 1H), 3.89 (q, *J* = 8.4 Hz, 1H), 2.76 (s, 2H), 1.52 (s, 3H), 1.33 (s, 3H). ¹³*C-NMR* (100 MHz, CDCl₃) δ 156.1, 149.8, 138.7, 128.6, 127.7, 123.8, 120.5, 117.6, 112.1, 70.7, 61.9, 50.3, 45.9, 41.5, 20.7, 20.6. *LC-MS* (m/z): 271 [M+H]⁺. *Anal. calcd* for (C₁₆H₁₈N₂O₂: 270.14): C, 71.09; H, 6.71, N, 10.36; Found: C, 71.21, H, 6.55, N, 10.26.

Procedure for the synthesis of N-Me-indoline 5a: To a solution of 4a(16.2 mg, 0.06 mmol) in acetone (1.5 mL), K₂CO₃ (16.8mg, 0.12 mmol) and MeI (19.0 uL, 0.3 mmol) were added. The resulting suspension was stirred at reflux. Upon completion (about 48 h, monitored by TLC), 10 mL of water was added to the reaction mixture. Then the volatiles were removed by evaporation, the aqueous phase was extracted with EtOAc (3×10 mL) and the combined organic phases were washed with brine (20 mL). The organic phase was dried (Na₂SO₄) and concentrated. The residue was purified by flash chromatography (cHex:AcOEt = 80:20) on silica gel to afford the product **5a**as a colorless oil. Yield = 90%. *Ee*= 93%.*HPLC*: Chiralcel-AD: eluent: *n*Hex:IPA = 95:5, flow = 1.0 mL/min, T = 40 °C, Rt_{minor} (18.1 min), Rt_{major} (19.3 min). $[\alpha]_D = 211.6^\circ$ (c = 0.5, CHCl₃). ¹*H*-*NMR* (400 MHz, CDCl₃) δ 7.11 (td, J = 7.6, 1.2 Hz, 1H), 7.05 (dd, J = 7.2, 0.8 Hz, 1H), 6.69 (td, J = 7.6, 0.8 Hz, 1H), 6.43 (d, J = 7.6 Hz, 1H), 5.88 (t, J = 2.4 Hz, 1H), 4.40 (t, J = 1.48.0 Hz, 2H), 3.96 (q, J = 8.4 Hz, 1H), 3.73 (q, J = 8.4 Hz, 1H), 2.86 (s, 3H), 2.72 (dd, J = 4.8, 2.0 Hz, 2H), 1.51 (s, 3H), 1.34 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 156.6, 152.1, 136.4, 134.3, 128.0, 122.9, 117.9, 117.4, 107.3, 74.9, 61.9, 48.7, 46.5, 42.0, 31.0, 20.0, 16.6. *LC-MS* (m/z): 285 [M+H]⁺. *Anal. calcd* for (C₁₇H₂₀N₂O₂: 284.15): C, 71.81; H, 7.09, N, 9.85; Found: C, 71.67, H, 7.01, N, 9.65.

Procedure for the synthesis of indoline 6a: EtOH (1.5mL) was added to a Schlenk tube containing compound **3a** (30.0mg, 0.071 mmol) equipped with a stir bar, then 10% Pd/C (7.5 mg, 25 wt%) was added. The vial was sealed up, and then it was evacuated and filled with

hydrogen (three cycles). The reaction was stirred at room temperature for 48h. After the reaction was complete, the reaction mixture was filtrated over a pad of celite and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (*c*Hex:AcOEt = 85:15) to afford compound **6a** as a colorless oil. The absolute configuration of the new stereocenter was determined by NOE experiment. Yield = 93%. *Ee* = 93%, *dr* = 9:1. *HPLC*: Chiralcel-AD: eluent: *n*Hex:IPA = 95:5, flow = 0.7 mL/min, T = 40 °C, Rt_{minor} (20.3 min), Rt_{major}(23.0 min). ^{*I*}*H-NMR* (400 MHz, CDCl₃) δ 7.81 (brs, 1H), 7.22-7.12 (m, 1H), 7.05 (dd, *J* = 7.2, 1.2 Hz, 1H), 6.96 (td, *J* = 7.2, 1.2 Hz, 1H), 4.25 (td, *J* = 8.0, 2.0 Hz, 2H), 3.72 (brs, 1H), 3.47 (t, *J* = 8.0 Hz, 2H), 3.15 (brs, 1H), 2.82-2.64 (m, 1H), 2.15 (dd, *J* = 12.0, 9.2 Hz, 1H), 1.93 (dd, *J* = 12.0, 8.0 Hz, 1H), 1.61 (s, 9H), 1.60 (s, 3H), 1.39 (s, 3H). ^{*I*}*C*-*NMR* (100 MHz, CDCl₃) δ 158.4,

152.6, 138.3, 127.8, 122.8, 122.0, 115.3, 81.5, 77.2, 70.9, 61.6, 45.8, 44.3, 41.0, 38.2, 28.4, 25.3, 21.8, 20.1. *LC-MS* (m/z): 411 [M+K]⁺.

N Boc

Procedure for the oxidative cleavage of enamide moiety: To a suspension of **3a** (30.0 mg, 0.08 mmol) dissolved in CCl₄ (0.8 mL) and water (0.8 mL) was added RuCl₃·H₂O (1.8 mg, 0.024 mmol) and NaIO₄ (75.0 mg, 0.35 mmol)

Boc at 0 °C. After vigorous stirring for about 12 h, the reaction was quenched with saturated Na₂S₂O₃ (5 mL). The solution was extracted with AcOEt (3×10 mL). The combined extracts were dried (Na₂SO₄) and the concentrated residue was purified by flash chromatography to provide the desired product **7a** as a white solid. Yield = 80% (*c*Hex:AcOEt = 85:15). *Ee* = 93%. *MP* = 174-176 °C. *HPLC*: Lux 5u Cellulose-2: eluent: *n*Hex:IPA = 80:20, flow = 0.8 mL/min, T = 40 °C, Rt_{minor} (8.7 min), Rt_{major} (11.8 min). [α]_D = 30.8° (*c* = 0.52, CHCl₃). ^{*I*}*H*-*NMR* (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.4 Hz, 1H), 7.27-7.22 (m, 1H), 7.16 (d, *J* = 7.2 Hz, 1H), 7.07 (t, *J* = 7.2 Hz, 1H), 2.97 (d, *J* = 17.6 Hz, 1H), 2.78 (d, *J* = 17.6 Hz, 1H), 1.99 (s, 3H), 1.63 (s, 9H), 1.42 (s, 3H). ^{*I*3}*C*-*NMR* (100 MHz, CDCl₃) δ 173.2, 151.8, 140.7, 133.5, 129.1, 123.7, 122.8, 115.8, 104.9, 82.9, 51.4, 41.9, 28.3, 22.9, 20.5. *LC-MS* (m/z): 323 [M+Na]⁺. *Anal. calcd* for (C₁₇H₂₁NO₄: 303.15): C, 67.31; H, 6.98, N, 4.62; Found: C, 67.15, H, 6.80, N, 4.70.

Reaction of 1,2,3-(Me)₃-indole and 2a.

[JohnPhosAu(CH₃CN)]SbF₆ (3.9 mg, 5 mol%) was added at 0 °C, to a solution of 1,2,3-(Me)₃indole (16 mg, 0.1 mmol) and **2a** (12.5 mg, 0.1 mmol) in CH₂Cl₂ (1.0 mL). The solution was allowed to worm at rt and stirred under nitrogen for 20 h. Removal of the solvent under reduced pressure and purification via by flash column chromatography (*c*Hex:AcOEt = 80:20 -- 75:25) afforded compound **8a** in 73% yield. Viscous oil. ¹*H-NMR* (400 MHz, CDCl₃) δ 2.21 (s, 3H), 2.31 (s, 3H), 3.47 (d, *J* = 7.6 Hz, 2H), 3.60 (s, 3H), 3.65 (t, *J* = 8.0 Hz, 2H), 4.38 (t, *J* = 8.0, Hz, 2H), 4.90-5.04 (m, 1H), 6.76 (d, *J* = 14.4 Hz, 1H), 6.96 (d, *J* = 8.4 Hz, 1H), 7.24 (d, *J* = 4.4 Hz, 1H), 7.26 (s, 1H).

X-ray crystallography: The X-ray intensity data for 3e were measured on a Bruker Apex II CCD diffractometer. Cell dimensions and the orientation matrix were initially determined from a least-squares refinement on reflections measured in three sets of 20 exposures, collected in three different ω regions, and eventually refined against all data. A full sphere of reciprocal space was scanned by 0.3° w steps. The software SMART^[8] was used for collecting frames of data, indexing reflections, and determining the lattice parameters. The collected frames were then processed for integration by the SAINT^[8] program, and an empirical absorption correction was applied by using SADABS.^[9] The structure was solved by direct methods (SIR97)^[10] and subsequent Fourier syntheses, and was refined by full-matrix least-squares calculations on F^2 (SHELXTL), ^[11] using anisotropic thermal parameters for all non-hydrogen atoms. All the hydrogen atoms were located in difference Fourier maps. Those bonded to aromatic carbons were treated as riding atoms in geometrically idealized positions. The absolute configuration has been established by anomalous dispersion effects in diffraction measurements on the crystal (Flack parameter= 0.060(11)). The molecular graphics were generated by using ORTEP^[11]. Color codes for the molecular graphics: blue (N), red (O), grey (C), white (H), olive green (Br). Crystal data and other experimental details for 3eare reported in Table S3, whereas bond lengths [Å] and angles (deg) are shown in Table S4.

X-ray crystal structure of 3e

^[8] SMART&SAINT Software Reference Manuals (Windows NT Version), Version 5.051, Bruker Analytical X-ray Instruments Inc., Madison, 1998.

^[9] G. M. Sheldrick, SADABS, Program for empirical absorption correction, University of Göttingen, Göttingen, 1996.

^[10] A. Altomare, M. C. Burla, M.Cavalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, *J. Appl. Crystallogr.*, 1999, **32**, 115-118.

^[11] L. J. Farrugia, ORTEP-3, J. Appl. Cryst., 2012, 45, 849-854.

Table S3. Crystal data and structure refinement for 3e

Empirical formula	C22 H25 Br N2 O4
Formula weight	461.35
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P2(1)
Unit cell dimensions	$a = 10.417(5) \text{ Å}$ $\alpha = 90^{\circ}.$
b = 10.000(5) Å	β= 106.396(5)°.
c = 11.057(5) Å	$\gamma = 90^{\circ}.$
Volume	1105.0(9) Å ³
Ζ	2
Density (calculated)	1.387 Mg/m ³
Absorption coefficient	1.889 mm ⁻¹
F(000)	476
Crystal size	0.28 x 0.25 x 0.25 mm ³
Theta range for data collection	2.37 to 25.98°.
Index ranges	-12<=h<=12, -11<=k<=12, -13<=l<=13
Reflections collected	9268
Independent reflections	4186 [R(int) = 0.0426]
Completeness to theta = 25.98°	99.1 %
Absorption correction	Empirical
Max. and min. transmission	0.689 and 0.621
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4186 / 1 / 263
Goodness-of-fit on F ²	1.038
Final R indices [I>2sigma(I)]	R1 = 0.0493, wR2 = 0.1308
R indices (all data)	R1 = 0.0595, wR2 = 0.1369
Absolute structure parameter	0.060(11)
Extinction coefficient	0.056(5)
Largest diff. peak and hole	1.024 and -0.512 e.Å ⁻³

Br-C(10)	1.904(4)	C(4)-C(5)-C(6)	128.6(4)
N(1)-C(1)	1.355(6)	C(4)-C(5)-C(14)	139.1(4)
N(1)-C(4)	1.410(5)	C(6)-C(5)-C(14)	92.0(3)
N(1)-C(3)	1.468(6)	C(7)-C(6)-C(5)	90.2(3)
N(2)-C(18)	1.375(4)	C(7)-C(6)-H(6A)	113.6
N(2)-C(13)	1.418(5)	C(5)-C(6)-H(6A)	113.6
N(2)-C(14)	1.477(4)	C(7)-C(6)-H(6B)	113.6
O(2)-C(1)	1.356(7)	C(5)-C(6)-H(6B)	113.6
O(2)-C(2)	1.428(8)	H(6A)-C(6)-H(6B)	110.9
O(1)-C(1)	1.209(7)	C(8)-C(7)-C(6)	116.8(5)
O(3)-C(18)	1.201(5)	C(8)-C(7)-C(17)	117.1(4)
O(4)-C(18)	1.325(5)	C(6)-C(7)-C(17)	117.7(4)
O(4)-C(19)	1.483(4)	C(8)-C(7)-C(14)	103.2(4)
C(2)-C(3)	1.496(8)	C(6)-C(7)-C(14)	90.4(3)
C(2)-H(2A)	0.9700	C(17)-C(7)-C(14)	105.6(4)
C(2)-H(2B)	0.9700	C(9)-C(8)-C(13)	120.0(4)
C(3)-H(3A)	0.9700	C(9)-C(8)-C(7)	128.6(4)
C(3)-H(3B)	0.9700	C(13)-C(8)-C(7)	111.4(4)
C(4)-C(5)	1.314(6)	C(8)-C(9)-C(10)	119.3(3)
C(4)-H(4)	0.9300	C(8)-C(9)-H(9)	120.4
C(5)-C(6)	1.522(6)	C(10)-C(9)-H(9)	120.4
C(5)-C(14)	1.537(5)	C(9)-C(10)-C(11)	121.0(4)
C(6)-C(7)	1.511(9)	C(9)-C(10)-Br	118.6(3)
C(6)-H(6A)	0.9700	C(11)-C(10)-Br	120.4(3)
C(6)-H(6B)	0.9700	C(10)-C(11)-C(12)	120.9(4)
C(7)-C(8)	1.488(6)	C(10)-C(11)-H(11)	119.5
C(7)-C(17)	1.542(5)	C(12)-C(11)-H(11)	119.5

Table S4. Selected bond lengths (Å) and angles (deg) for 3e.

C(7)-C(14)	1.587(6)	C(11)-C(12)-C(13)	118.6(3)
C(8)-C(9)	1.373(6)	С(11)-С(12)-Н(12)	120.7
C(8)-C(13)	1.411(5)	С(13)-С(12)-Н(12)	120.7
C(9)-C(10)	1.375(6)	C(12)-C(13)-C(8)	120.1(3)
C(9)-H(9)	0.9300	C(12)-C(13)-N(2)	130.0(3)
C(10)-C(11)	1.377(5)	C(8)-C(13)-N(2)	109.9(3)
C(11)-C(12)	1.379(5)	N(2)-C(14)-C(15)	117.5(3)
C(11)-H(11)	0.9300	N(2)-C(14)-C(5)	115.3(3)
C(12)-C(13)	1.388(5)	C(15)-C(14)-C(5)	118.9(3)
C(12)-H(12)	0.9300	N(2)-C(14)-C(7)	105.2(3)
C(14)-C(15)	1.532(6)	C(15)-C(14)-C(7)	106.3(3)
C(15)-C(16)	1.534(6)	C(5)-C(14)-C(7)	86.9(4)
C(15)-H(15A)	0.9700	C(14)-C(15)-C(16)	104.9(3)
C(15)-H(15B)	0.9700	C(14)-C(15)-H(15A)	110.8
C(16)-C(17)	1.5391	С(16)-С(15)-Н(15А)	110.8
C(16)-H(16A)	0.9700	C(14)-C(15)-H(15B)	110.8
C(16)-H(16B)	0.9700	C(16)-C(15)-H(15B)	110.8
С(17)-Н(17А)	0.9700	H(15A)-C(15)-H(15B)	108.8
C(17)-H(17B)	0.9700	C(15)-C(16)-C(17)	104.8(2)
C(19)-C(21)	1.501(8)	C(15)-C(16)-H(16A)	110.8
C(19)-C(20)	1.501(7)	С(17)-С(16)-Н(16А)	110.8
C(19)-C(22)	1.526(9)	С(15)-С(16)-Н(16В)	110.8
C(20)-H(20A)	0.9600	C(17)-C(16)-H(16B)	110.8
C(20)-H(20B)	0.9600	H(16A)-C(16)-H(16B)	108.9
C(20)-H(20C)	0.9600	C(16)-C(17)-C(7)	103.6(2)
C(21)-H(21A)	0.9600	С(16)-С(17)-Н(17А)	111.0
C(21)-H(21B)	0.9600	С(7)-С(17)-Н(17А)	111.1
С(21)-Н(21С)	0.9600	С(16)-С(17)-Н(17В)	111.0
C(22)-H(22A)	0.9600	C(7)-C(17)-H(17B)	111.0

C(22)-H(22B)	0.9600	H(17A)-C(17)-H(17B)	109.0
С(22)-Н(22С)	0.9600	O(3)-C(18)-O(4)	126.4(3)
C(1)-N(1)-C(4)	119.5(4)	O(3)-C(18)-N(2)	122.8(3)
C(1)-N(1)-C(3)	110.2(4)	O(4)-C(18)-N(2)	110.9(3)
C(4)-N(1)-C(3)	124.6(3)	O(4)-C(19)-C(21)	101.4(4)
C(18)-N(2)-C(13)	129.6(3)	O(4)-C(19)-C(20)	110.3(4)
C(18)-N(2)-C(14)	120.1(3)	C(21)-C(19)-C(20)	111.2(6)
C(13)-N(2)-C(14)	110.2(3)	O(4)-C(19)-C(22)	109.3(4)
C(1)-O(2)-C(2)	108.3(4)	C(21)-C(19)-C(22)	113.8(6)
C(18)-O(4)-C(19)	121.4(3)	C(20)-C(19)-C(22)	110.5(5)
O(1)-C(1)-N(1)	127.7(5)	C(19)-C(20)-H(20A)	109.5
O(1)-C(1)-O(2)	122.8(5)	C(19)-C(20)-H(20B)	109.5
N(1)-C(1)-O(2)	109.5(4)	H(20A)-C(20)-H(20B)	109.5
O(2)-C(2)-C(3)	105.5(5)	C(19)-C(20)-H(20C)	109.5
O(2)-C(2)-H(2A)	110.6	H(20A)-C(20)-H(20C)	109.5
C(3)-C(2)-H(2A)	110.6	H(20B)-C(20)-H(20C)	109.5
O(2)-C(2)-H(2B)	110.6	C(19)-C(21)-H(21A)	109.5
C(3)-C(2)-H(2B)	110.6	C(19)-C(21)-H(21B)	109.5
H(2A)-C(2)-H(2B)	108.8	H(21A)-C(21)-H(21B)	109.5
N(1)-C(3)-C(2)	99.7(4)	C(19)-C(21)-H(21C)	109.5
N(1)-C(3)-H(3A)	111.8	H(21A)-C(21)-H(21C)	109.5
C(2)-C(3)-H(3A)	111.8	H(21B)-C(21)-H(21C)	109.5
N(1)-C(3)-H(3B)	111.8	C(19)-C(22)-H(22A)	109.5
C(2)-C(3)-H(3B)	111.8	C(19)-C(22)-H(22B)	109.5
H(3A)-C(3)-H(3B)	109.6	H(22A)-C(22)-H(22B)	109.5
C(5)-C(4)-N(1)	127.8(4)	C(19)-C(22)-H(22C)	109.5
C(5)-C(4)-H(4)	116.1	H(22A)-C(22)-H(22C)	109.5
N(1)-C(4)-H(4)	116.1	H(22B)-C(22)-H(22C)	109.5
		1	

HPLC spectra

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	9.391	BB	0.3364	192.17233	8.74344	3.0192
2	13.152	BB	0.4269	6172.81543	225.82953	96.9808

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	11.462	BB	0.3309	250.23669	11.54213	3.5225
2	17.154	BB	0.5002	6853.77881	211.42206	96.4775

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	16.675	BB	0.4373	121.78708	3.99850	2.7056
2	21.832	BB	0.6323	4379.45459	106.83022	97.2944

 Peak RetTime Type
 Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

 ----|-----|-----|------|------|
 -----|------|
 -----|

 1
 14.181
 BB
 0.4096
 4077.33008
 153.65942
 50.1443

 2
 24.978
 BV
 0.7251
 4053.85669
 86.76254
 49.8557

reak	recitile	туре	WIGCH	ALEd	Hergin	ALEa
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	14.330	BB	0.4089	272.80075	10.30353	2.7628
2	25.269	BB	0.7418	9601.16309	199.36646	97.2372

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	8.861	MM	0.3673	3783.15356	171.65649	50.0822
2	13.858	MM	0.5386	3770.73975	116.68171	49.9178

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	8.983	BB	0.2620	31.31799	1.80890	0.8453
2	14.065	BB	0.4292	3673.44873	131.80640	99.1547

 Peak RetTime Type
 Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

 --- --- --- --- --- >

 1
 7.391
 BB
 0.2633
 6494.52686
 384.02740
 50.0126

 2
 9.887
 BB
 0.3173
 6491.25098
 316.41537
 49.9874

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	8.047	BB	0.2296	250.82452	16.85236	3.2349
2	10.839	BB	0.3254	7502.87842	356.71167	96.7651

S32

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	8.919	MM	0.3136	4257.89941	226.25725	50.0342
2	12.849	MM	0.4069	4252.07422	174.16379	49.9658

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	8.745	BB	0.2688	864.25604	49.22360	9.5512
2	12.469	BB	0.3564	8184.41943	355.77036	90.4488

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	12.728	BB	0.4577	525.40118	18.15183	7.0799
2	17.443	MM	0.6188	6895.67041	185.72357	92.9201

S35

Peak RetTime Type Width Height Area Area # [min] [min] [mAU*s] [mAU] 응 1 15.914 BV 0.3130 5455.87598 270.85373 50.8495 2 17.002 VV 0.3334 5273.57520 246.64899 49.1505

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	16.462	VV	0.3419	2202.20264	99.62859	8.8702
2	17.676	VV	0.3732	2.26249e4	938.71509	91.1298

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	11.752	BB	0.3742	5204.89648	215.15010	49.9378
2	15.459	BB	0.4552	5217.86328	177.35817	50.0622

2 15.810 BB 0.4745 1.19265e4 388.08340 99.2318

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	18.733	BV	0.4966	1035.25757	32.07269	49.5378
2	20.180	VB	0.5325	1054.57544	30.41357	50.4622

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	18.103	BV	0.4876	156.83577	4.97823	3.6236
2	19.317	VB	0.5327	4171.36377	120.25941	96.3764

Area
olo
100.0362
99.9638

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	20.264	BV	0.8407	291.32855	5.37224	7.6001
2	22.963	VB	0.8102	7375.09619	143.83521	192.3999

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	8.758	VB	0.1782	1845.92090	160.52551	50.0586
2	11.886	VB	0.2549	1841.59766	112.56579	49.9414

Реак	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	8.733	BV	0.1866	196.11549	16.51329	3.6706
2	11.843	VB	0.2643	5146.79883	305.96567	96.3294

13C_MJ244 EM 92 bis EM 92 bis EM 92 bis

S65

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

