Impact of a Rigid Backbone on the Structure of an Agostically-Stabilized Dialkylstannylene: Isolation of an Unusual Bridged Stannyl-Stannylene

Keith Izod, *a Casey M. Dixon, a Ross W. Harrington, a Michael R. Proberta

SUPPLEMENTARY INFORMATION

Contents:

- 1.1 Experimental procedures
- 1.2 Crystal structure determination of 5
- 2.1 DFT calculations
- 2.2 Atomic coordinates and energy of 5'
- 2.3 Atomic coordinates and energy of *rac-6*'
- 2.4 Atomic coordinates and energy of *meso-6'*

1.1 Experimental procedures

All manipulations were carried out using standard Schlenk techniques under an atmosphere of dry nitrogen. Toluene, THF and light petroleum (b.p. 40-60 °C) were dried prior to use by distillation under nitrogen from sodium, potassium or sodium/potassium alloy, respectively. THF was stored over activated 4A molecular sieves; all other solvents were stored over a potassium film. Deuterated THF was distilled from potassium and was deoxygenated by three freeze-pump-thaw cycles and stored over activated 4A molecular sieves. $1,2-C_6H_4\{CH_2P(BH_3)Cy_2\}_2^{S1}$ and Cp_2Sn^{S2} were prepared by previously published procedures; *n*-butyllithium was purchased from Aldrich as a 2.5 M solution in hexanes. All other compounds were used as supplied by the manufacturer.

¹H NMR spectra were recorded on a JEOL ECS500 spectrometer operating at 500.16 MHz, respectively and chemical shifts are quoted in ppm relative to tetramethylsilane. ³¹P{¹H}, ¹¹B{¹H} and ¹¹⁹Sn{¹H} NMR spectra were recorded on a JEOL ECS400 spectrometer operating at 202.47, 160.47 and 186.51 MHz, respectively; chemical shifts are quoted in ppm relative to external 85% H₃PO₄, BF₃.Et₂O, and Me₄Sn, respectively. Elemental analyses were obtained by the Elemental Analysis Service of London Metropolitan University.

Synthesis of 5: To a solution of $1,2-C_6H_4\{CH_2PCy_2(BH_3)\}_2$ (0.50 g, 1.17 mmol) in THF (20 ml) was added *n*-BuLi (0.94 ml of a 2.5M solution in hexanes, 2.34 mmol) and this solution was stirred for 30 mins at room temperature. The solvent was removed *in vacuo* to yield a dark orange oil, which was dissolved in toluene (20 ml) and added, dropwise, to a solution of Cp₂Sn (0.29 g, 1.17 mmol) in toluene (20 ml); this mixture was stirred for 45 mins at room temperature. The pale solids were removed by filtration and the filtrate was concentrated to approx. 10 ml and cooled to -20°C. After one week yellow crystals of **5** were isolated and washed with light petroleum (3 x 5ml). Isolated yield: 0.23 g, 28%. The solvent of crystallisation is gradually lost under vacuum and so is diminished in intensity in the ¹H NMR spectrum; this solvent was not observed in the elemental analyses of **5**, the sample for which was exposed to vacuum for an extended period. Anal. Calcd. for C₆₄H₁₁₂B₄P₄Sn₂ (1286.1; molecular formula without solvent of crystallisation): C 59.77, H 8.78%. Found: C 59.68, H 8.88%. ¹H NMR (*d*₈-THF): $\delta \sim 0.5-2.67$ (m, ca. 107H, Cy+BH₃+CHSn+Ph*Me*), 6.58 (m, 1H, ArH), 6.79 (m, 1H, ArH), 7.00 (m, 2H, ArH), 7.07-7.19 (m, ca. 5H, *Ph*Me), 7.28 (m, 2H, ArH), 7.96 (m, 1H, ArH), 8.03 (m, 1H, ArH). ¹¹B{¹H} NMR (*d*₈-THF): δ

-43.5, -38.8. ³¹P{¹H} NMR (d_8 -THF): δ 27.4, 28.6, 30.0, 35.4. ¹¹⁹Sn{¹H} (d_8 -THF): δ -103 (br, FWHM = 770 Hz), 339 (br, FWHM = 480 Hz).

1.2 Crystal Structure determination of 5:

Measurements were made at 150 K on an Oxford Diffraction (Agilent Technologies) Gemini A Ultra diffractometer, using MoK α radiation ($\lambda = 0.71073$ Å). Cell parameters were refined from the observed positions of all strong reflections. Intensities were corrected semiempirically for absorption, based on symmetry-equivalent and repeated reflections. The structures were solved by direct methods and refined on F^2 values for all unique data. All non-hydrogen atoms were refined anisotropically, and C-bound H atoms were constrained with a riding model, while B-bound H atoms were freely refined; U(H) was set at 1.2 (1.5 for methyl groups) times U_{eq} for the parent C atom. Disorder in the solvent of crystallization was successfully modeled with the aid of restraints and constraints on geometry and displacement parameters. Data were collected and processed using CrysAlisPro and the structure was solved and refined using the Olex2 interface to the SHELXTL suite of programs.^{S3}

Chemical formula Formula weight Temperature Radiation, wavelength Crystal system, space group Unit cell parameters	C ₆₄ H ₁₁₂ B ₄ P ₄ Sn ₂ ·1.5C 1424.36 150(2) K MoK α , 0.71073 Å monoclinic, <i>P</i> 2 ₁ / <i>c</i> a = 14.08850(10) Å b = 26.5770(2) Å c = 20.0509(2) Å	$\alpha = 90^{\circ}$
Cell volume	7475.89(11) Å ³	
Z	2	
Absorption coefficient µ	0.793 mm ⁻¹	
Crystal colour and size	yellow, $0.30 \times 0.30 \times$	0.10 mm ³
Reflections collected	108054	
Independent reflections	$17595 (R_{int} = 0.0359)$)
Reflections with $F^2 > 2\sigma$	15111	
Absorption correction	semi-empirical from	equivalents
Min. and max. transmission	0.7970 and 0.9250	
Structure solution	direct methods	
Refinement method	Full-matrix least-squa	ares on F ²
Data / restraints / parameters	17595 / 0 / 767	
Final R indices $[F^2>2\sigma]$	R1 = 0.028, WR2 = 0	
R indices (all data)	R1 = 0.039, WR2	.060
Goodness-of-fit on F ²	1.051	
Largest diff. peak and hole	0.67 and $-0.55 \text{ e} \text{ Å}^{-3}$	

2.1 DFT calculations:

Geometry optimizations on the gas-phase molecules were performed with the Gaussian09 suite of programs (revision D.01).^{S4} Ground state optimizations were performed using the hybrid B3LYP functional;^{S5} the 6-31G(2d,p) all-electron basis set^{S6} was used for all C, H, B and P atoms, while a LanL2DZ effective core potential basis set^{S7} was used for Sn [default parameters were used throughout]. The identity of minima was confirmed by the absence of imaginary vibrational frequencies in each case. The stabilization energy associated with the B-H...Sn interactions was calculated using the NBODel routine, in which the elements affording this interaction were selectively deleted.^{S8} Natural Bond Orbital analyses were performed using the NBO 3.1 module of Gaussian09.^{S9}

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	50	0	-0.520509	0.044212	0.140892
2	50	0	1.778635	-1.335642	1.395920
3	15	0	-2.682663	0.676651	2.611073
4	15	0	-1.428626	-3.002961	-0.915483
5	15	0	-0.256493	2.772255	-2.128879
6	15	0	4.556608	-1.023596	-0.652267
7	5	0	-2.615688	-1.129347	3.287930
8	1	0	-2.713899	-1.002777	4.488084
9	1	0	-1.533318	-1.575507	2.960268
10	1	0	-3.553028	-1.716677	2.796702
11	5	0	0.479971	-3.347373	-0.802185
12	1	0	0.666699	-4.536606	-0.809680
13	1	0	0.996257	-2.749201	-1.714014
14	1	0	0.870003	-2.925813	0.311827
15	5	0	-1.522167	4.028379	-1.352413
16	1	0	-2.452147	3.364589	-0.952288
17	1	0	-0.984278	4.682433	-0.491583
18	1	0	-1.827146	4.690532	-2.322820
19	5	0	5.658411	-1.561039	0.848354
20	1	0	6.036773	-0.571369	1.429827
21	1	0	4.949005	-2.276686	1.525513
22	1	0	6.564548	-2.168965	0.318811
23	6	0	-2.431772	0.916424	0.801448
24	1	0	-2.383976	1.999026	0.637931
25	6	0	-3.485271	0.325038	-0.131091
26	6	0	-4.778906	0.873122	-0.147257
27	1	0	-5.008935	1.695151	0.520538
28	6	0	-5.761054	0.420637	-1.021383
29	1	0	-6.748713	0.870867	-1.005328
30	6	0	-5.458881	-0.587993	-1.933081
31	1	0	-6.207483	-0.939360	-2.636451
32	6	0	-4.174340	-1.119881	-1.958517
33	1	0	-3.926247	-1.863851	-2.708458
34	6	0	-3.174798	-0.691352	-1.068581
35	6	0	-1.756545	-1.222702	-1.193386
36	1	0	-1.376346	-1.057092	-2.210002

2.2 Final atomic coordinates for 5':

37	6	0	-4.237564	1.516459	3.112296
38	1	0	-4.275848	2.551206	2.760251
39	6	0	-1.398543	1.756123	3.351930
40	1	0	-1.560744	1.795752	4.432264
41	6	0	-2.080225	-3.980190	-2.328043
42	1	0	-3.167817	-3.911094	-2.396690
43	6	0	-2.403736	-3.581097	0.509170
44	1	0	-2.125659	-3.037180	1.414055
45	6	0	0.633678	1.498083	-1.137632
46	1	0	1.050480	0.824859	-1.896838
47	6	0	1.736986	1.978280	-0.219915
48	6	0	1.687015	3.257065	0.356614
49	1	0	0.865113	3.917805	0.103108
50	6	0	2.647274	3.700398	1.263222
51	1	0	2.572077	4.700323	1.679283
52	6	0	3.682360	2.850601	1.637489
53	1	Ő	4.433371	3.170871	2.352883
54	6	0	3.749240	1.570425	1.095231
55	1	0	4.553856	0.909441	1.401115
56	6	0	2.809185	1.106151	0.152063
57	6	0	2.889715	-0.312474	-0.341827
58	1	Õ	2.320642	-0.467302	-1.259017
59	6	0	1.061823	3.623185	-3.087044
60	1	0	0.594912	4.322185	-3.785808
61	6	Õ	-1.124507	1.780307	-3.403123
62	1	õ	-1.956183	1.242240	-2.942667
63	6	õ	5.404735	0.141659	-1.792988
64	1	Õ	4.814610	0.316922	-2.696976
65	6	Õ	4.193885	-2.473487	-1.711248
66	1	Õ	5.143890	-2.925691	-2.007102
67	1	Õ	3.625548	-2.195091	-2.602674
68	1	0	3.623147	-3.211778	-1.143674
69	1	0	6.377416	-0.277003	-2.065355
70	1	Õ	5.566499	1.091935	-1.279298
71	1	õ	1.699824	4.186452	-2.403092
72	1	0	1.676594	2.906123	-3.638582
73	1	0	-0.453578	1.074208	-3.901351
74	1	0	-1.538597	2.469291	-4.143691
75	1	0	-1.795892	-5.025921	-2.182881
76	1	0	-1.630247	-3.626212	-3.259285
70	1	0	-2.205018	-4.646430	0.654579
78	1	0	-3.470427	-3.428182	0.327112
79	1	0	-4.283934	1.503245	4.204964
80	1	0	-5.096548	0.962587	2.729377
81	1	0	-0.406140	1.333919	3.175626
82	1	0	-1.438955	2.768302	2.939697
	±				

Final energy for **5'**: -2415.14715465 au

NIMAG = 0

2.3 Final atomic coordinates for *rac*-6':

Center	Atomic	Atomic	Coord	linates (Ang	stroms)
Number	Number	Туре	Х	Y	Ζ
1	50	0	-0.077862	-1.716272	-0.054014
2 3	15 15	0 0	-2.811119 2.893682	-0.158500 -0.279771	0.173719 -0.022148

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	5	0	-2.218990	-0.709244	1.932039
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
2660-3.780940-1.458305-0.6790022710-4.026384-1.155515-1.7010012860-3.9365161.2887160.1833412910-4.7923621.0590640.82538830604.0287961.0704550.49258931103.6860432.0538200.16567132602.7033460.017163-1.82467733102.114352-0.789406-2.27250434105.0092920.8601470.05581835104.1326451.0589551.58086136102.2208040.976381-2.0287113810-4.704317-1.637917-0.1221843910-3.209675-2.389485-0.7091894010-3.4101662.1523190.593753						
2710-4.026384-1.155515-1.7010012860-3.9365161.2887160.1833412910-4.7923621.0590640.82538830604.0287961.0704550.49258931103.6860432.0538200.16567132602.7033460.017163-1.82467733102.114352-0.789406-2.27250434105.0092920.8601470.05581835104.1326451.0589551.58086136102.2208040.976381-2.0287113810-4.704317-1.637917-0.1221843910-3.209675-2.389485-0.7091894010-3.4101662.1523190.593753						
2860-3.9365161.2887160.1833412910-4.7923621.0590640.82538830604.0287961.0704550.49258931103.6860432.0538200.16567132602.7033460.017163-1.82467733102.114352-0.789406-2.27250434105.0092920.8601470.05581835104.1326451.0589551.58086136103.692624-0.000818-2.28936637102.2208040.976381-2.0287113810-4.704317-1.637917-0.1221843910-3.209675-2.389485-0.7091894010-3.4101662.1523190.593753	26	6		-3.780940	-1.458305	-0.679002
2910-4.7923621.0590640.82538830604.0287961.0704550.49258931103.6860432.0538200.16567132602.7033460.017163-1.82467733102.114352-0.789406-2.27250434105.0092920.8601470.05581835104.1326451.0589551.58086136103.692624-0.000818-2.28936637102.2208040.976381-2.0287113810-4.704317-1.637917-0.1221843910-3.209675-2.389485-0.7091894010-3.4101662.1523190.593753			0			-1.701001
30604.0287961.0704550.49258931103.6860432.0538200.16567132602.7033460.017163-1.82467733102.114352-0.789406-2.27250434105.0092920.8601470.05581835104.1326451.0589551.58086136103.692624-0.000818-2.28936637102.2208040.976381-2.0287113810-4.704317-1.637917-0.1221843910-3.209675-2.389485-0.7091894010-3.4101662.1523190.593753	28	6	0	-3.936516	1.288716	0.183341
31103.6860432.0538200.16567132602.7033460.017163-1.82467733102.114352-0.789406-2.27250434105.0092920.8601470.05581835104.1326451.0589551.58086136103.692624-0.000818-2.28936637102.2208040.976381-2.0287113810-4.704317-1.637917-0.1221843910-3.209675-2.389485-0.7091894010-3.4101662.1523190.593753	29	1		-4.792362	1.059064	0.825388
32602.7033460.017163-1.82467733102.114352-0.789406-2.27250434105.0092920.8601470.05581835104.1326451.0589551.58086136103.692624-0.000818-2.28936637102.2208040.976381-2.0287113810-4.704317-1.637917-0.1221843910-3.209675-2.389485-0.7091894010-3.4101662.1523190.593753	30	6	0	4.028796	1.070455	0.492589
33102.114352-0.789406-2.27250434105.0092920.8601470.05581835104.1326451.0589551.58086136103.692624-0.000818-2.28936637102.2208040.976381-2.0287113810-4.704317-1.637917-0.1221843910-3.209675-2.389485-0.7091894010-3.4101662.1523190.593753	31	1	0	3.686043	2.053820	0.165671
34105.0092920.8601470.05581835104.1326451.0589551.58086136103.692624-0.000818-2.28936637102.2208040.976381-2.0287113810-4.704317-1.637917-0.1221843910-3.209675-2.389485-0.7091894010-3.4101662.1523190.593753	32	6	0	2.703346	0.017163	-1.824677
35104.1326451.0589551.58086136103.692624-0.000818-2.28936637102.2208040.976381-2.0287113810-4.704317-1.637917-0.1221843910-3.209675-2.389485-0.7091894010-3.4101662.1523190.593753	33	1	0	2.114352	-0.789406	-2.272504
36103.692624-0.000818-2.28936637102.2208040.976381-2.0287113810-4.704317-1.637917-0.1221843910-3.209675-2.389485-0.7091894010-3.4101662.1523190.593753	34	1	0	5.009292	0.860147	0.055818
36103.692624-0.000818-2.28936637102.2208040.976381-2.0287113810-4.704317-1.637917-0.1221843910-3.209675-2.389485-0.7091894010-3.4101662.1523190.593753	35	1	0	4.132645	1.058955	1.580861
37102.2208040.976381-2.0287113810-4.704317-1.637917-0.1221843910-3.209675-2.389485-0.7091894010-3.4101662.1523190.593753			0		-0.000818	-2.289366
3810-4.704317-1.637917-0.1221843910-3.209675-2.389485-0.7091894010-3.4101662.1523190.593753			0			
3910-3.209675-2.389485-0.7091894010-3.4101662.1523190.593753						
40 1 0 -3.410166 2.152319 0.593753						

Final energy for *rac-6*′: -1207.56152326 au

NIMAG = 0

2.4 Final atomic coordinates for *meso-6*':

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	50	0	0.133001	-1.586371	-0.857884
2	15	0	2.575517	-0.262686	0.697966
3	15	0	-2.714362	-0.393344	0.554174
4	5	0	1.394390	-1.110133	1.972582
5	1	0	1.975736	-1.897723	2.670613
6	1	0	0.598503	-1.756954	1.236293
7	1	0	0.786204	-0.250563	2.554343
8	5	0	-3.022821	-2.298514	0.499597
9	1	0	-3.956495	-2.524200	1.236190
10	1	0	-3.259122	-2.540782	-0.666658
11	1	0	-1.984138	-2.803644	0.881623

12 13 14 15	6 1 6 6	0 0 0 0	1.573401 2.226353 0.742043 1.365654	0.212705 0.285602 1.473271 2.732476	-0.736162 -1.613963 -0.580745 -0.589014
16	1	0	2.446298	2.781149	-0.689000
17	6	0	0.637858	3.913765	-0.493254
18	1	0	1.148963	4.871709	-0.502317
19	6	0	-0.750955	3.852373	-0.400889
20	1	0	-1.339454	4.762737	-0.337238
21	6	0	-1.386113	2.614538	-0.417766
22	1	0	-2.469377	2.582470	-0.395301
23	6	0	-0.668013	1.409971	-0.503456
24	6	0	-1.373977	0.070000	-0.613543
25	1	0	-1.877680	0.004736	-1.592163
26	6	0	3.570440	1.099382	1.420766
27	1	0	4.289511	1.496699	0.699050
28	6	0	3.832761	-1.420638	0.039835
29	1	0	4.467298	-1.764613	0.860632
30	6	0	-4.257002	0.518081	0.125761
31	1	0	-4.186900	1.593264	0.304286
32	6	0	-2.276493	0.257955	2.205198
33	1	0	-1.371858	-0.237347	2.561372
34	1	0	-5.064588	0.107853	0.739061
35	1	0	-4.503614	0.337164	-0.923836
36	1	0	-3.097527	0.027206	2.889590
37	1	0	-2.111654	1.337919	2.180816
38	1	0	4.107834	0.713011	2.292251
39	1	0	2.902664	1.899127	1.747234
40	1	0	3.338413	-2.289783	-0.401265
41	1	0	4.451802	-0.936111	-0.720773

Final energy of *meso-6*': -1207.55994283 au

NIMAG = 0

References:

- S1 K. Izod, C. M. Dixon, E. McMeekin, L. Rodgers, R. W. Harrington and U. Baisch, *Organometallics*, 2014, **33**, 378.
- S2 E. O. Fischer and H. Grubert, Z. Naturforsch. B, 1956, 11, 423.
- S3 (a) CrysAlisPro; Oxford Diffraction Ltd, Oxford, UK, 2008. (b) G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112. (c), O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst., 2009, 42, 339.
- Gaussian 09, Revisions B.01, C.01 and D.01, M. J. Frisch, G. W. Trucks, H. B.
 Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B.
 Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F.
 Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R.
 Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T.
 Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E.
 Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K.
 Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.
 Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J.
 J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J.
 Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

- S5 (a) A. D. Becke J. Chem. Phys. 1993, 98, 5648. (b) P. J. Stephens, F. J. Devlin, C. F. Chablowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623. (c) R. H. Hertwig, W. Koch, Chem. Phys. Lett. 1997, 268, 345.
- S6 (a) P.C. Hariharan, J.A. Pople, *Theoret. Chim. Acta* 1973, 28, 213. (b) M.M. Francl,
 W.J. Petro, W.J. Hehre, J.S. Binkley, M.S. Gordon, D.J. DeFrees, J.A. Pople, *J. Chem. Phys.* 1982, 77, 3654.
- S7 (a) P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270. (b) W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284. (c) P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299.
- S8 M. W. Wong, Chem. Phys. Lett. 1996, 256, 391.
- (a) NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold. (b)
 J. E. Carpenter, F. Weinhold, *J. Mol. Struct. (Theochem)* 1988, 169, 41. (c) J. E.
 Carpenter, PhD thesis, University of Wisconsin, Madison, WI, 1987. (d) J. P. Foster,
 F. Weinhold, *J. Am. Chem. Soc.* 1980, 102, 7211. (e) A. E. Reed, F. Weinhold, *J. Chem. Phys.* 1983, 78, 4066. (f) A. E. Reed, F. Weinhold, *J. Chem. Phys.* 1983, 81, 1736. (g) A. E. Reed, R. B. Weinstock, F. Weinhold, *J. Chem. Phys.* 1985, 83, 735. (h) A. E. Reed, L. A. Curtiss, F. Weinhold, *Chem. Rev.* 1988, 88, 899.