Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

for

Diastereoselective synthesis of propargylic N-hydroxylamines via NHC-copper(I) halide-catalyzed reaction of terminal alkynes with chiral nitrones on water

Łukasz Woźniak, Olga Krajewska-Staszewska and Michał Michalak

Institute of Organic Chemistry, Polish Academy of Sciences

Kasprzaka 44/52, 01-224 Warsaw, Poland

General remarks	S2
General procedure for synthesis of propargylic N-hydroxylamines	S2
References	S14
Copies of spectra	S15

General remarks

NMR spectra were recorded in CDCl₃ or DMSO- d_6 solutions (unless indicated otherwise); chemical shifts are quoted on the δ scale, ppm, with the solvent signal as the internal standard (CHCl₃, 1 H NMR 7.26 ppm; CDCl₃, 13 C NMR 77.00 ppm, DMSO- d_6 2.50 ppm, 13 C NMR 39.40 ppm). High resolution mass spectra (HRMS) were taken using EI technique or electrospray ionisation (ESI). Column chromatography was performed on Merck silica gel 60, 230-400 mesh. TLC was performed on aluminum sheets, Merck 60F 254. Anhydrous solvents were obtained by distillation over CaCl₂ (CH₂Cl₂) or Na/benzophenone (THF, hexane).

Air-sensitive reactions were performed in flame-dried glassware under argon. Organic extracts were dried and solvents were evaporated in a rotary evaporator. Reagents were used as they were purchased unless otherwise indicated. Phenylacetylene (2a), 1-ethynyl-4-fluorobenzene (2b), 1-ethynyl-4-methoxybenzene (2c), 1-ethynyl-2-methoxybenzene (2d), 4-ethynyl-*N*,*N*-dimethylaniline (2e) and 3-ethynylthiophene (2f) were commercially available from Aldrich. 1-Ethynyl-4-nitrobenzene (2h)¹ and benzyl but-3-yn-1yl ether (8)² were prepared followed by literature procedures. [IMes]₂CuPF₆ were commercially available from Aldrich and used as received. SIMesCuCl,³ SIMesCuBr,⁴ IMesCuCl,³ IMesCuBr,⁵ SIPrCuCl,³ SIPrCuBr,⁶ SIPrCuCl,³ IPrCuCl,³ IPrCuBr,⁶ IPrCuI,⁶ [ICy]₂CuPF₆,² and [IPr]₂CuPF₆⁸ were prepared followed by literature procedures. Nitrones 1a, 9 1b, 10 1c¹¹ and 1d¹² were prepared followed by literature procedures.

General procedure for synthesis of propargylic *N*-hydroxylamine: To a solution (or suspension) of nitrone (1 eq.) in degassed water (0.2 M), acetylene (1.2 eq.), copper catalyst (5 mol%) and Et_3N or TMG (N,N,N',N'-tetramethylguanidine, 1.0 eq.) were added at rt as follows. The biphasic mixture was stirred for indicated time. Then reaction mixture was diluted with EtOAc (15 mL per 1 mmol of used nitrone), and the aqueous phase was separated and extracted with two additional portions of EtOAc. The combined extracts were washed with brine, dried over Na_2SO_4 and evaporated. The residue was chromatographed on silica (silica : crude reaction mixture = 30 : 1 w/w) using an appropriate eluting system to afford product.

(25,35,45)-3,4-di-*tert*-Butoxy-2-(phenylethynyl)pyrrolidin-1-ol (3a) was obtained according to general procedure using nitrone 1a (229. 3 mg, 1.0 mmol), phenylacetylene (130 μ L, 1.2 mmol), Et₃N (130 μ L, 1.0 mmol) and SIPrCuI (29.1 mg, 0.05 mmol, 5 mol%). The crude product was chromatographed (10 g of silica, 15% EtOAc/*n*-hexanes) to give a colourless oil (318.7 mg, 96%). [α]_D²⁵ = 39.4 (c 1.2, CHCl₃); IR (film): 3373, 2975, 2933, 2871, 1599 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): 7.47-7.40 (m, 2H), 7.32-7.27 (m, 3H), 4.06 (dd, J = 6.0, 5.6 Hz, 1H), 3.99-3.95 (m, 1H), 3.73 (br s, 1H), 3.23-3.17 (m, 2H), 1.26 (s, 9H), 1.18 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): 131.7, 128.2, 128.1, 123.0, 86.9, 85.5, 82.8, 77.2, 77.0, 76.8, 76.0, 74.6, 74.0, 66.4, 62.9, 28.8, 28.5; HRMS (ESI) m/z calcd for C₂₀H₂₉NO₃Na [M+Na]⁺ 354.2040; found 354.2023. To further confirm the structure of **3a**, propargylic N-hydroxylamine was transformed to respective dihydroisoxazole by gold-catalyzed cyclization¹³ (see below).

$$Ph \xrightarrow{H = 0^{f}Bu} O^{f}Bu$$

(15,25,7aS)-1,2-Di-tert-butoxy-6-phenyl-2,3,5,7a-tetrahydro-1H-pyrrolizine To a solution of propargylic N-hydroxylamine 3a (149.2 mg, 0.45 mmol) in DCM (4.5 mL), AuCl₄·2H₂O (9.1 mg, 0.023 mmol, 5 mol%) and DMAP (16.5 mg, 30 mol%, 0.135 mmol) were added sequantially and the reaction mixture was heated under reflux for 2h under atmosphere of argon. Then solvent was evaporated and the residue was chromatographed on silica (20% Et2O/n-pentane) to give a light-yellow oil (118.5 mg, 79%). [α]_D²⁵ = 59.7 (c 1.2, CHCl₃); IR (film): 3438, 2974, 1685, 1651 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): 7.51-7.46 (m, 2H), 7.34-7.27 (m, 3H), 5.26 (d, J = 1.8 Hz, 1H), 4.10-4.07 (m, 1H), 4.42-4.39 (m, 1H), 3.95-3.90 (m, 1H), 3.89 (dd, J = 5.9, 4.1 Hz, 1H), 3.62 (dd, J = 9.7, 5.6 Hz, 1H), 3.06 (dd, J = 9.4, 9.7 Hz, 1H), 1.21 (s, 9H), 1.16 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): 152.8, 129.0, 128.8, 128.3, 125.6, 94.4, 80.9, 76.3, 74.0, 73.8, 61.1, 28.1, 28.5; HRMS (ESI) m/z calcd for C₂₀H₃₀NO₃ [M+H]⁺ 332.2220; found 322.2217.

(25,35,45,55)-3,4-Bis(benzyloxy)-2-[(benzyloxy)methyl]-5-(phenylethynyl)pyrrolidin-1-ol (3b) was obtained according to general procedure using nitrone (1b) (208.8 mg, 0.5 mmol), phenylacetylene (2a) (66 μL, 0.6 mmol), Et₃N (70 μL, 0.5 mmol) and SIPrCuI (14.5 mg, 0.025)

mmol). The crude product was chromatographed on silica (15% EtOAc/n-hexanes) to give a colourless oil (244.5 mg, 94%). [α] $_D^{25}$ = -26.2 (c 1.2, CHCl₃); IR (film): 3370, 3031, 2865, 1953 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): 8.30 (s, 1H), 7.42-7.24 (m, 20H), 4.67-4.47 (m, 6H), 4.29 (d, J = 4.3 Hz, 1H), 4.10-4.07 (m, 1H), 3.92 (dd, J = 5.8, 2.2 Hz, 1H), 3.70 (dd, J = 10.2, 3.7 Hz, 1H), 3.65 (dd, J = 10.2, 5.1 Hz, 1H), 3.30-3.26 (m, 1H); ¹³C NMR (100 MHz, DMSO- d_6): 138.9, 138.6, 138.2, 131.8, 129.1, 128.9, 128.7, 128.6, 128.6, 128.3, 128.1, 128.0, 127.9, 127.9, 127.8, 122.9, 87.5, 86.4, 86.0, 83.3, 79.6, 72.9, 71.4, 71.0, 69.5, 68.4, 62.0; HRMS (ESI) m/z calcd for C₃₄H₃₃NO₄Na [M+Na]⁺ 542.2302; found 542.2282.

(2S,3S,4S,5S)-3,4-bis(benzyloxy)-2-[(benzyloxy)methyl]-5-[(4-fluorophenyl)

ethynyl]pyrrolidin-1-ol (3c) was obtained according to general procedure I using nitrone 1b (208.8 mg, 0.5 mmol), 1-ethynyl-4-fluorobenzene (2b) (69 μL, 0.6 mmol, 1.2 eq.), Et₃N (70 μL, 0.5 mmol, 1.0 eq.) and SIPrCuI (14.5 mg, 0.025 mmol, 5 mol%). The crude product was chromatographed on silica (DCM) to give a colourless oil (263.9 mg, 98%). $[\alpha]_D^{25}$ = -27.0 (c 0.7, CHCl₃); IR (film): 3371, 3064, 3031, 2923, 2865, 1600, 1506 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): 8.32 (s, 1H), 7.48-7.44 (m, 2H), 7.38-7.26 (m, 15H), 7.24-7.18 (m, 2H), 4.67-4.47 (m, 6H), 4.29 (br s, 1H), 4.11-4.08 (m, 1H), 3.95-3.91 (m, 1H), 3.73-3.69 (m, 1H), 3.68-3.64 (m, 1H), 3.31-3.27 (m, 1H); ¹³C NMR (150 MHz, DMSO- d_6): 162.2 (d, J_{CF} = 247.2 Hz), 138.9, 138.6, 138.2, 134.1 (d, J_{CF} = 8.5 Hz), 128.7, 128.6, 128.3, 128.1, 127.9, 127.9, 127.8, 119.4 (d, J_{CF} = 3.0 Hz), 116.3 (d, J_{CF} = 22.1 Hz), 87.3, 86.4, 85.0, 83.3, 79.6, 71.4, 71.1, 69.5, 68.4, 62.0; ¹⁹F NMR (470 MHz, CDCl₃): -110.7. HRMS (ESI) m/z calcd for C₃₄H₃₂FNO₄Na [M+Na]⁺ 560.2208; found 560.2188.

(2S,3S,4S,5S)-3,4-bis(benzyloxy)-2-[(benzyloxy)methyl]-5-[(4-

methoxyphenyl)ethynyl]pyrrolidin-1-ol (3d) was obtained according to general procedure

using nitrone **1b** (208.8 mg, 0.5 mmol), 1-ethynyl-4-methoxybenzene (**2c**) (78 μ L, 0.6 mmol), Et₃N (70 μ L, 0.5 mmol) and SIPrCuI (14.5 mg, 0.025 mmol). The crude product was chromatographed on silica (2% Et₂O/DCM) to give a colourless oil (266.5 mg, 97%). [α]_D²⁵ = -28.8 (c 1.0, CH₃Cl); IR (film): 3392, 2923, 2222, 1606, 1510 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): 8.26 (s, 1H), 7.38-7.24 (m, 17H), 6.96-6.90 (m, 2H), 4.64 (d, J = 12Hz, 1H), 4.59-4.46 (m, 5H), 4.26 (d, J = 2.4 Hz, 1H), 4.10-4.05 (m, 1H), 3.91 (dd, J = 5.4, 2.4 Hz, 1H), 3.77 (s, 3H), 3.70 (dd, J = 10.2, 3.6 Hz, 1H), 3.65 (dd, J = 10.2, 4.8 Hz, 1H), 3.30-3.25 (m, 1H); ¹³C NMR (150 MHz, DMSO) δ 159.7, 138.9, 138.6, 138.3, 133.3, 128.7, 128.6, 128.3, 128.0, 127.9, 127.9, 127.8, 115.0, 114.6, 86.5, 85.9, 85.8, 83.3, 79.6, 72.9, 71.3, 71.0, 69.4, 68.4, 62.1, 55.6; HRMS (ESI) m/z calcd for C₃₅H₃₅NO₅Na [M+Na]⁺ 572.2407; found: 572.2398.

(2S,3S,4S,5S)-3,4-bis(benzyloxy)-2-[(benzyloxy)methyl]-5-[(2-

methoxyphenyl)ethynyl]pyrrolidin-1-ol (3e) was obtained according to general procedure I using nitrone **1b** (104.4 mg, 0.25 mmol), 1-etynyl-2-methoxybenzene (**2d**) (39 μL, 0.30 mmol), Et₃N (35 μL, 0.25 mmol) and SIPrCuI (7.6 mg, 0.013 mmol, 5 mol%). The crude product was chromatographed on silica (35% Et₂O/n-pentane) to give a colourless oil (126.5 mg, 92%). [α]_D²⁵ = -41.8 (c 1.0, CHCl₃); IR (film): 3352, 3062, 3030, 2919, 2866, 1596, 1576, 1494, 1454 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): 8.22 (s, 1H), 7.35-7.21 (m, 17H), 7.00 (d, J = 8.4 Hz, 1H), 6.91-6.86 (m, 1H), 4.65-4.43 (m, 6H), 4.25 (d, J = 3.0 Hz, 1H), 4.08-4.04 (m, 1H), 3.89 (dd, J = 6.0, 2.4 Hz, 1H), 3.75 (s, 3H), 3.67 (dd, J = 10.2, 3.8 Hz, 1H), 3.62 (dd, J = 10.2, 5.1 Hz, 1H), 3.35-3.29 (m, 1H); ¹³C NMR (150 MHz, DMSO- d_6): 160.2, 138.9, 138.6, 138.3, 133.7, 130.4, 128.7, 128.6, 128.6, 128.4, 128.1, 128.0, 127.9, 127.8, 120.8, 112.0, 111.8, 91.2, 86.5, 83.4, 72.9, 71.4, 71.0, 69.4, 68.4, 62.3, 56.0; HRMS (ESI) m/z calcd for C₃₅H₃₅NO₅Na [M+Na]⁺ 572.2407; found: 572.2431.

(2S,3S,4S,5S)-3,4-Bis(benzyloxy)-2-[(benzyloxy)methyl]-5-{[4-

(dimethylamino)phenyl]ethynyl}cpyrrolidin-1-ol (3f) was obtained according to general procedure I using nitrone **1b** (208.8 mg, 0.5 mmol), 4-ethynyl-N,N-dimethylaniline (**2e**) (87.1 mg, 0.6 mmol), Et₃N (70 μ L, 0.5 mmol) and SIPrCuI (14.5 mg, 0.025 mmol, 5 mol%). The crude product was chromatographed on silica (1% Et₃N in 40% Et₂O/n-hexanes to 50% Et₂O/hexanes) to give colourless oil (206.7 mg, 73%). [α] $_D^{25}$ = -40.0 (c 0.9, CHCl₃); IR (film): 3222, 3062, 3030, 2863, 2217, 1609, 1522 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): 8.18 (s, 1H), 7.33-7.24 (m, 15H), 7.20-7.17 (m, 2H), 6.65-6.61 (m, 2H), 4.63-4.44 (m, 6H), 4.21 (d, J = 2.8 Hz, 1H), 4.04-4.01 (m, 1H), 3.87 (dd, J = 5.8, 2.2 Hz, 1H), 3.67 (dd, J = 10.3, 3.7 Hz, 1H), 3.61 (dd, J = 10.3, 5.1 Hz, 1H), 3.26-3.22 (m, 1H), 2.89 (s, 6H); ¹³C NMR (150 MHz, DMSO- d_6): 150.3, 132.8, 128.7, 128.6, 128.3, 128.0, 127.9, 127.9, 127.8, 112.2, 109.4, 87.0, 86.6, 84.7, 83.3, 72.9, 71.3, 71.0, 69.4, 68.4, 62.2. HRMS (ESI) m/z calcd for C₃₆H₃₈N₂O₄Na [M+Na]+ 585.2724; found: 585.2736.

(2S,3S,4S,5S)-3,4-Bis(benzyloxy)-2-[(benzyloxy)methyl]-5-(thiophen-3-ylethynyl)pyrrolidin-

1-ol (3g) was synthesized according to general procedure using nitrone **1b** (104.4 mg, 0.25 mmol), 3-ethynylthiophene (**2f**) (33 μL, 0.30 mmol), Et₃N (35 μL, 0.25 mmol) and SIPrCuI (7.6 mg, 0.013 mmol). The crude product was chromatographed on silica (40% Et₂O/*n*-pentane) to give a colourless oil (111.8 mg, 85%). $[\alpha]_D^{25}$ = -13.9 (c 2.0, DCM); IR (film): 3373, 2924, 2856, 2221, 1598, 1490, 1454 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): 8.26 (s, 1H), 7.70-7.67 (m, 1H), 7.57-7.54 (m, 1H), 7.35-7.21 (m, 15H), 7.11-7.07 (m, 1H), 4.63-4.44 (m, 6H), 2.24 (d, *J* = 2.5 Hz, 1H), 4.06-4.02 (m, 1H), 3.88 (dd, *J* = 5.8, 2.1 Hz, 1H), 3.67 (dd, *J* = 10.2, 3.7 Hz, 1H), 3.62 (dd, *J* = 10.2, 5.0 Hz, 1H), 3.26-3.20 (m, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆): 138.9, 138.6, 138.2, 130.1, 129.9, 128.7, 128.6, 128.3, 128.1, 127.9, 127.9, 127.8, 127.1, 121.8, 86.8, 86.4, 83.2, 81.4, 72.9, 71.4, 71.1, 69.4, 68.4, 62.1. HRMS (ESI) *m/z* calcd for C₃₂H₃₁SNO₄Na [M+Na]⁺ 548.1866; found 548.1882.

(25,35,45,55)-3,4-bis(Benzyloxy)-2-[(benzyloxy)methyl]-5-(hex-1-yn-1-yl)pyrrolidin-1-ol (3h) was obtained according to modified general procedure using nitrone **1b** (208.8 mg, 0.5 mmol), hex-1-yn (**2i**) (230 μL, 2.0 mmol, 4.0 eq), TMG (63 μL, 0.5 mmol, 1.0 eq) and SIPrCuI (14.5 mg, 0.025 mmol, 5 mol%). The crude product was chromatographed on silica (15% Et₂O/n-hexanes) to give a colourless oil (204.3 mg, 82%). [α] $_D^{25}$ = -5.2 (c 1.4, CHCl₃); IR (film): 3377, 3063, 3030, 2955, 2930, 2869, 1496, 1454 cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆): 8.05 (s, 1H), 7.35-7.20 (m, 15H), 4.58-4.42 (m, 6H), 3.98 (d, J = 1.8 Hz, 1H), 3.91-3.88 (m, 1H), 3.81 (dd, J = 6.0, 2.0 Hz, 1H), 3.64 (dd, J = 10.2, 3.7 Hz, 1H), 3.58 (dd, J = 10.2, 5.1 Hz, 1H), 3.19-3.14 (m, 1H), 2.20-2.14 (m, 2H), 1.42-1.31 (m, 4H), 0.82 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, DMSO-d₆): 139.0, 138.7, 138.3, 128.7, 128.6, 128.6, 128.3, 128.0, 128.0, 127.9, 127.8, 86.7, 86.4, 83.3, 77.6, 72.9, 71.2, 71.1, 69.1, 68.4, 61.7, 30.8, 21.7, 18.3, 13.9; HRMS (ESI) m/z calcd. for C₃₂H₃₇NO₄Na [M+Na] $^+$ 522.2615; found: 522.2613.

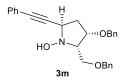
(2S,3S,4S,5S)-3,4-bis(benzyloxy)-2-[(benzyloxy)methyl]-5-(3-phenylprop-1-yn-1-

yl)pyrrolidin-1-ol (3i) was obtained according to general procedure I using nitrone **1b** (104.4 mg, 0.25 mmol), prop-2-yn-1-ylbenzene (**2j**) (37 μL, 0.30 mmol), TMG (31 μL, 0.25 mmol) and SIPrCuI (7.6 mg, 0.013 mmol). The crude product was chromatographed on silica (35% Et₂O/*n*-pentane) to give a colourless oil (106.0 mg, 79%). $[\alpha]_D^{25}$ = 1.9 (c 1.2, CHCl₃); dr >95:5 based on HPLC (40% MTBE/hexanes; 1 mL/min., IA column, DAD detector, 244 nm): major peak 12.8 min (purity >95% based on HPLC); IR (film): 3376, 3062, 3030, 2922, 2865, 1549, 1453 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): 8.16 (s, 1H), 7.37-7.16 (m, 20H), 4.59-4.43 (m, 6H), 4.08 (d, *J* = 1.9 Hz, 1H), 3.98-3.96 (m, 1H), 3.84 (dd, *J* = 6.0, 1.9 Hz, 1H), 3.68 (s, 2H), 3.65 (dd, *J* = 10.3, 3.1 Hz, 1H), 3.60 (dd, *J* = 10.3, 5.0 Hz, 1H), 3.24-3.19 (m, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆): 138.9, 138.6, 138.2, 137.2, 128.7, 128.7, 128.6, 128.6, 128.6, 128.3, 128.2, 128.0, 127.9, 127.9, 127.9, 127.8, 126.8,

86.5, 84.2, 83.4, 79.7, 72.9, 71.2, 71.1, 69.3, 68.4, 61.7, 24.7; HRMS (ESI) *m/z* calcd for C₃₅H₃₅NO₄Na [M+Na]⁺ 556.2458; found 556.2456.

(2S,3S,4S,5S)-3,4-bis(benzyloxy)-2-[(benzyloxy)methyl]-5-[3-(benzyloxy)prop-1-yn-1-

yl]pyrrolidin-1-ol (3j) was obtained according to general procedure using nitrone **1b** (104.4 mg, 0.25 mmol), ((prop-2-yn-1-yloxy)methyl)benzene (**2k**) (43.9 mg, 0.30 mmol, 1.2 eq.), TMG (31 μL, 0.25 mmol, 1.0 eq.) and SIPrCul (7.6 mg, 0.013 mmol, 5 mol%). The crude product was chromatographed on silica (40% Et₂O/*n*-pentane) to give a colourless oil (86.8 mg, 62%). [α]_D²⁵ = -4.2 (c 0.9, DCM); dr >95:5 based on HPLC (40% MTBE/hexanes; 1 mL/min., IA column, DAD detector): major peak 19.4 min (purity >95% based on HPLC, DAD detector 206 nm); IR (film): 3380, 3062, 3030, 2864, 1496, 1454 cm⁻¹; ¹H NMR (600 MHz, benzene-*d*₆): 7.29-7.18 (m, 7H), 7.14-6.98 (m, 13H), 6.94 (br s, 1H), 4.51-4.47 (m, 3H), 4.46-4.34 (m, 4H), 4.30-4.21 (m, 3H), 4.16 (dd, J = 6.0, 2.4 Hz, 1H), 4.00 (d, J = 1.9 Hz, 2H), 3.78-3.70 (m, 2H), 3.66 (dd, J = 9.6, 3.6 Hz, 1H); ¹³C NMR (150 MHz, benzene-*d*₆): 138.4, 138.4, 138.0, 138.0, 128.2, 128.2, 128.1, 128.0, 127.8, 127.6, 127.4, 127.3, 127.3, 86.8, 83.3, 83.1, 82.7, 73.0, 71.7, 71.0, 69.6, 67.9, 62.2, 57.2. HRMS (ESI) m/z calcd for C₃₆H₃₇NO₅Na [M+Na]⁺ 586.2564; found 586.2581.


(25,35,45)-3,4-di-*tert*-butoxy-2-(5-chloropent-1-yn-1yl)pyrrolidin-1-ol (3k) was obtained according to general procedure (procedure A) using nitrone 1a (229.0 mg, 1.0 mmol), 5-chloropen-1-yne (2l) (127 μL, 1.2 mmol), TMG (126 μL, 1.0 mmol, 1.0 mmol) and SIPrCuI (29.0 mg, 0.05 mmol, 5 mol%). The crude product was chromatographed on silica (30% Et₂O/*n*-pentane) to give a colourless oil (208.9 mg, 63%). [α]_D²⁵ = 54.1 (c 0.6, CH₃Cl); IR (film): 3381, 2975, 2934, 2871cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): 8.13 (s, 1H), 3.81-3.76 (m, 1H), 3.74-3.69 (m, 3H), 3.17 (br s, 1H), 2.88 (br d, J = 4.6 Hz, 2H), 2.35 (t, J = 6.6 Hz, 1H), 2.35 (t, J = 6.6 Hz, 1H), 1.90-1.83 (m, 2H), 1.16 (s, 9H), 1.10 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): 82.9, 75.8, 73.9, 73.6, 65.6, 63.6, 44.5, 31.6, 29.1, 28.7, 25.6, 23.9, 16.1; HRMS (ESI) m/z calcd for C₁₇H₃₀NO₃ClNa [M+Na]+354.1812; found 354.1816.

Procedure B To a soultion of alane [prepared by heating trimethylaluminum (0.2 mL, 2.09 mmol); alkyne 2a (221 μ L mg, 2.09 mmol) and Et_3N (29 μ L, 10 mol%, 0.01 mmol) at 60 °C for 6h in hexanes (3 mL), as previously described¹⁴] in anhydrous hexane (4 mL), a solution of nitrone (114.7 mg, 0.5 mmol) in anhydrous THF (8 mL) was added dropwise at rt, and stirred at this temperature for 16 h. Then reaction mixture was quenched with sat. solution of Rochelle salt (10 mL) and extracted with DCM (3 x 10 mL). The combined organic extracts were dried over Na_2SO_4 and evaporated. The residue was chromatographed on silica (40% Et_2O/n -pentane) to give colourless oil (142.6 mg, 85%). Dr 87:13 based on 1H NMR: major isomer 3.33 ppm(t), minor isomer 3.48 ppm (t).

(25,35,45)-2-[(2-Bromophenyl)ethynyl]-3,4-di-*tert*-butoxypyrrolidin-1-ol (3I) was obtained according to general procedure (procedure A) using nitrone **1a** (917.3 mg, 4.0 mmol), 1-ethynyl-2-bromobenzene (**2m**) (869.0 mg, 4.8 mmol), Et₃N (0.56 mL, 4.0 mmol) and SIPrCul (46.5 mg, 0.08 mmol, 2 mol%). The crude product was chromatographed on silica (35% Et₂O/n-pentane) to give a light-yellow oil (1.51 g, 92%). [α]_D = 36.7 (c 1.1, CH₃Cl); dr >95:5 based on HPLC (40% MTBE/hexanes; 1 mL/min., IA column, DAD detector, 204 nm): major peak 6.6 min., minor peak 7.7 min (purity >95% based on HPLC); IR (film): 3369, 2975, 2933, 2871, 1471cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): 8.32 (br s, 1H), 7.70-7.67 (m, 1H), 7.55-7.52 (m, 1H), 7.41-7.37 (m, 1H), 7.32-7.28 (m, 1H), 3.93-3.86 (m, 2H), 3.51 (br d, J = 4.2 Hz, 1H), 3.02-2.95 (m, 2H), 1.20 (s, 9H), 1.12 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): 134.1, 132.9, 130.6, 128.2, 124.9, 124.8, 94.1, 82.9, 79.6, 76.0, 74.2, 73.8, 66.3, 63.7, 29.1, 28.7. HRMS (ESI) m/z calcd for C₂₀H₂₈NO₃BrNa [M+Na]⁺: 432.1145; found: 432.1128.

Procedure B To a soultion of alane [prepared by heating trimethylaluminum (0.2 mL, 2.09 mmol); alkyne (377.6 mg, 2.08 mmol) and Et₃N (29 μ L, 10 mol%, 0.01 mmol) at 60 °C for 6h in hexane (3 mL), as previously described¹⁴] in anhydrous hexanes (4 mL), a solution of nitrone (114.7 mg, 0.5 mmol) in anhydrous THF (8 mL) was added dropwise at rt, and stirred at this temperature for 10 h (TLC analysis indicated presence of two product R_f = 0.40 and 0.36, 40% Et₂O/n-pentane). Then reaction mixture was quenched with sat. solution of Rochelle salt (10 mL) and extracted with DCM (3 x 10 mL). The combined organic extracts were dried over

 Na_2SO_4 and evaporated. The residue was chromatographed on silica (35% Et_2O/n -pentane) to give light yellow oil (159.6 mg, 78%). Dr 88:12 based on HPLC (40% MTBE/hexanes; 1 mL/min., IA column, DAD detector, 204 nm): major peak 6.6 min. (Purity 94% based on HPLC).

(25,35,5*R*)-3-(benzyloxy)-2-[(benzyloxy)methyl]-5-(phenylethynyl)pyrrolidin-1-ol (3m) was obtained according to general procedure (procedure A) using nitrone 1d (155.7 mg, 0.5 mmol), phenylacetylene (2a) (61.3 mg, 0.6 mmol), Et₃N (70 μL, 0.5 mmol) and SIPrCuI (12.2 mg, 0.025 mmol, 5 mol%). The crude product was chromatographed on silica (35% Et₂O/*n*-pentane) to give a light-yellow oil (195.2 mg, 94%). $[\alpha]_D^{25}$ = 48.8 (c 1.3, CH₃Cl); dr >95:5 based on HPLC (40% MTBE/hexanes; 1 mL/min., IA column, DAD detector, 244 nm): major peak 29.0 min., minor peak 34.5 min. (purity >95% based on HPLC) IR (film): 3364, 3031, 2866, 2229 1490 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): 7.44-7.39 (m, 2H), 7.36-7.25 (m, 13H), 5.15 (br s, 1H), 4.62-4.46 (m, 5H), 4.34-4.28 (m, 1H), 3.96 (dd, *J* = 9.3, 7.3 Hz, 1H), 3.84 (dd, *J* = 9.3, 5.5 Hz, 1H), 3.54-3.48 (m, 1H), 2.44 (ddd, *J* = 13.3, 7.7, 2.6 Hz, 1H), 2.27-2.18 (m, 1H); ¹³C NMR (151 MHz, cdcl₃) δ 138.2, 138.2, 131.8, 128.4, 128.3, 128.2, 127.8, 127.6, 127.5, 127.4, 125.6, 122.5, 86.6, 86.2, 75.6, 73.6, 71.1, 68.1, 67.9, 57.4, 36.9.; HRMS (ESI) *m/z* calcd for C₂₇H₂₇NO₃Na [M+Na]⁺ 436.1883; found 436.1862.

Procdure B: To a solution of alkynylalane [prepared by heating trimethylaluminum (0.2 mL, 2.09 mmol); alkyne 2a (229.1 μ L, 2.09 mmol) and Et_3N (29 μ L, 10 mol%, 0.01 mmol) at 60 °C for 6h in hexane (3 mL), as previously described¹⁴] in hexane (3 mL), the solution of nitrone 1d (155.7 mg, 0.5 mmol) in anhydrous THF (10 mL) was added dropwise at rt, and stirred for 16h at this temp. Then reaction mixture was quenched with sat. solution of NH_4Cl (20 mL) and extracted with DCM (3 x 15 mL). The combined organic extracts were dried over Na_2SO_4 and evaporated. The residue was chromatographed on silica (35% Et_2O/n -pentane) to give a colourless oil (157.1 mg, 76%). dr >95:5 based on HPLC (40% MTBE/hexanes; 1 mL/min., IA column, DAD detector, 244 nm): major peak 29.0 min., minor peak 34.5 min. (purity >95% based on HPLC).

3-[benzyl(hydroxy)amino]-3,4,5-trideoxy-1,2-*O*-(1-methylethylidene)-5-phenyl-D-*erythro*-pent-4-ynitol (3n) was obtained according to general procedure using nitrone 1c (188.2 mg, 0.80 mmol), phenylacetylene (2a) (105 μ L, 0.96 mmol), Et₃N (112 μ L, 0.80 mmol, 1.0 eq.) and SIPrCul (23.2 mg, 0.04 mmol, 5 mol%). The crude product was chromatographed on silica (40% Et₂O/*n*-pentane) to give a colourless oil (255.1 mg, 95%). [α]_D²⁵ = 55.8 (c 1.0, CHCl₃); IR (film): 3403, 3061, 3031, 2986, 2933, 2886, 1598, 1491, 1455 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): 8.06 (s, 1H), 7.49-7.48 (m, 2H), 7.40-7.28 (m, 7H), 7.26-7.21 (m, 1H), 4.32-4.27 (m, 1H), 4.09 (dd, *J* = 8.6, 6.3 Hz, 1H), 4.03-3.98 (m, 3H), 3.89 (d, *J* = 13.1 Hz, 1H), 1.33 (s, 3H), 1.29 (s, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆): 138.4, 131.9, 129.7, 129.1, 129.0, 128.5, 127.5, 122.9, 108.6, 87.2, 85.2, 76.7, 67.1, 62.1, 62.0, 26.9, 26.3; HRMS (ESI) *m/z* calcd. for C₂₁H₂₄NO₃ [M+H]⁺ 338.1751; found 338.1757.

(25,35,45)-2-[4-(2-benzyloxy)but-1-yn-1yl]-3,4-di-tert-butoxypyrrolidin-1-ol (4) Procedure A To a suspension of nitrone 1a (458.6 mg, 2.0 mmol) in degassed water (10 mL), alcohol 8 (640.9 mg, 4.0 mmol), SIPrCuI (116.2 mg, 10 mol%, 0.2 mmol), and TMG (0.25 mL, 2.0 mmol) were added as follow and stirred for 16 h at 50 °C (temp. oil bath). Then reaction mixture was extracted with Et_2O (3 x 10 mL). The combined extracts were washed with brine (1 x 20 mL), dried over Na_2SO_4 and the solvent was evaporated. The residue was chromatographed on silica (50 g, 45% Et_2O/n -pentane) to give a yellow oil (514.5 mg, 66%). [α] $_D^{25}$ = 28.7 (c 2.1, CH₃Cl); IR (film): 3381, 2975, 1455 cm⁻¹; dr 89:11 (based on ¹H NMR, major diasteromer 3.51 ppm (t), 3.59 ppm (t); ¹H NMR (500 MHz, DMSO- d_6): 8.14 (s, 1H), 7.38-7.26 (m, 5H), 4.50 (s, 2H), 3.82-3.77 (m, 1H), 3.73 (dd, J = 6.5, 3.5 Hz, 1H), 3.51 (t, J = 6.8 Hz, 2H), 3.20-3.12 (m, 1H), 2.92-2.85 (m, 2H), 2.48 (dd, J = 6.5, 1.9 Hz, 1H), 1.14 (s, 9H), 1.10 (s, 9H); ¹³C NMR (125 MHz, DMSO- d_6): 138.8, 128.6, 127.9, 127.8, 82.9, 75.8, 73.9, 73.7, 72.2, 68.4, 65.7, 29.1, 28.7, 20.0; HRMS (ESI) m/z calcd for $C_{23}H_{35}NO_4Na$ [M+Na] $^+$ 412.2458; found 412.2464.

Table 1. Optimization of the addtion of alcohol 8 to nitrone 1a

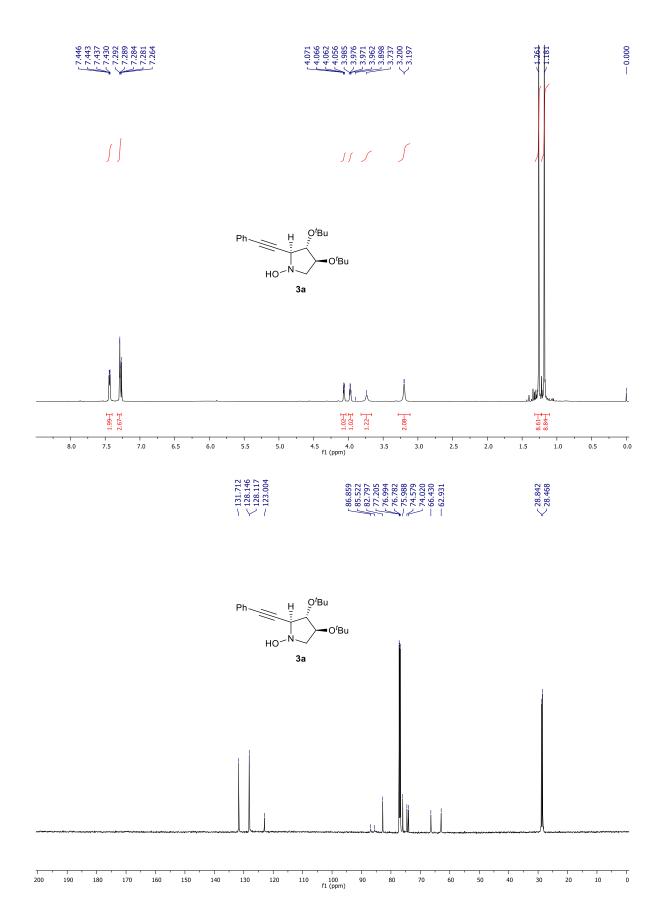
Alcohol 8 (eq.)	SIPrCuI (mol%)	Base	Temp. (°C), time (16h)	Yield (%)
1	5	Et₃N	rt	11
1	10	Et₃N	rt	18
1	10	TMG	rt	27
2	10	TMG	65	39
2	10	TMG	50	66

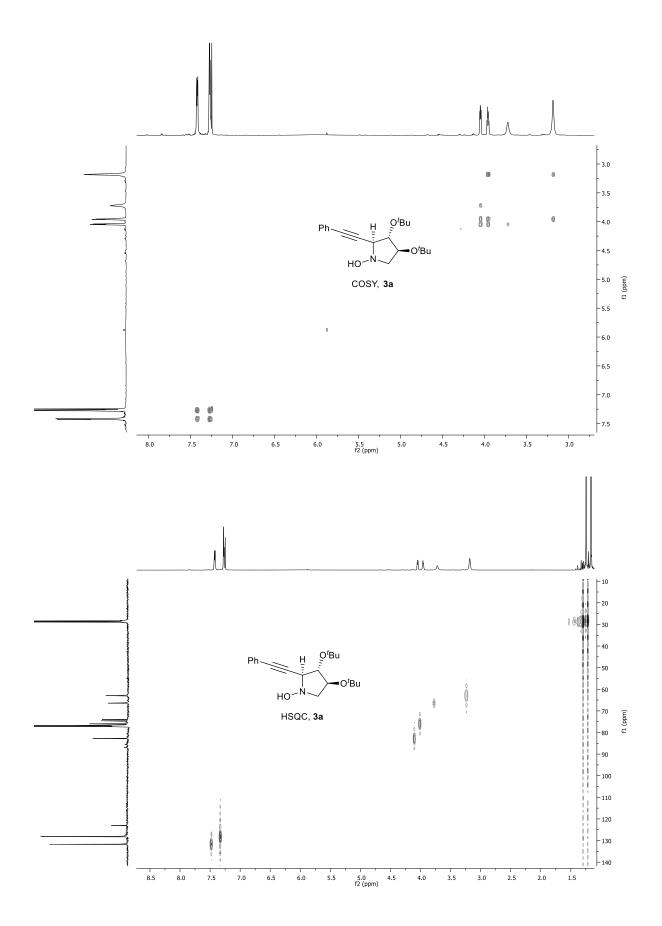
Procedure B To a solution of alkyne **8** (240.0 mg, 1.5 mmol, 3.0 eq.) in THF (10 mL), cooled to -40 °C, a solution of n-BuLi (0.6 mL, 1.5 mmol) was added dropwise within 5 min. and stirred for 30 min. at this temp. Then solution of nitrone **1a** (114.7 mg, 0.5 mmol) in anhydrous THF (5 mL) was added dropwise. After 1h, cooling bath was removed and the reaction mixture was allowed to warm to rt. Then reaction was quenched with sat. solution of NH₄Cl (20 mL), and extracted with Et₂O (3 x 10 mL). The combined organic extracts were washed with brine (1 x 20 mL), dried over Na₂SO₄, and evaporated to give a light-yellow oil (176.1 mg, 90%, dr >95:5 based ¹H NMR).

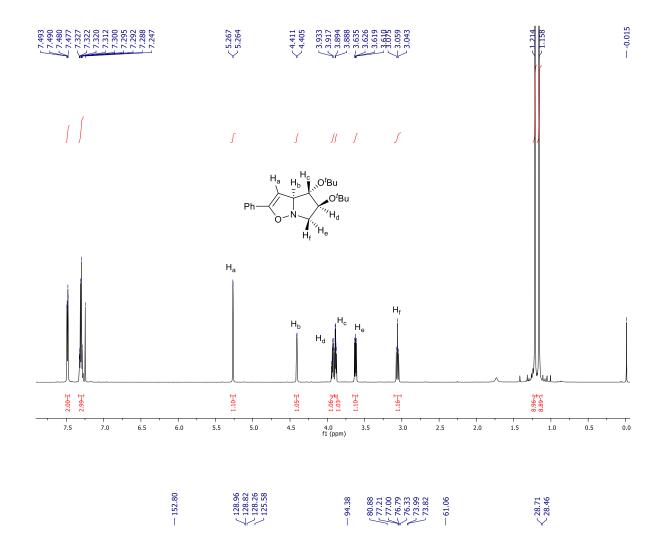
Procedure C To a solution of alkynylalane [prepared by heating trimethylaluminum (0.2 mL, 2.09 mmol); alkyne **8** (302.2 mg, 1.88 mmol) and Et₃N (29 μ L, 10 mol%, 0.01 mmol) at 60 °C for 6h in hexane (3 mL), as previously described¹⁴], the solution of nitrone **1a** (114.7 mg, 0.5 mmol) in anhydrous THF (10 mL) was added dropwise at rt, and stirred for 6h at this temp. Then reaction mixture was quenched with sat. solution of NH₄Cl (20 mL) and extracted with DCM (3 x 10 mL). The combined organic extracts were dried over Na₂SO₄ and evaporated. The residue was chromatographed on silica (40% Et₂O/n-pentane) to give a colourless oil (57.2 mg, 29% dr >92:8 based ¹H NMR).

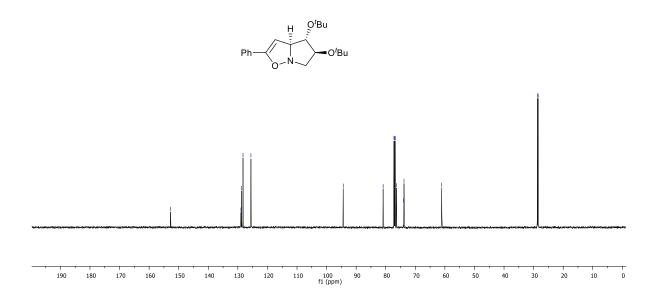
(1S,2S,8aS)-1,2-di-tert-Butoxyoctahydroindolizine (6)

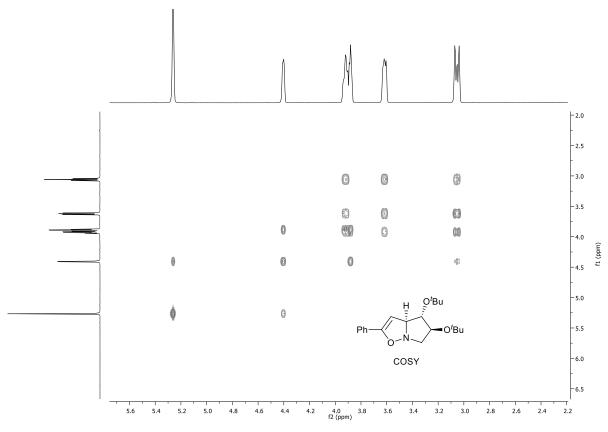
A solution of propargylic N-hydroxyl amine **4** (109.9 mg, 0.28 mmol) in MeOH (20 mL) and $Pd(OH)_2/C$ (39.3 mg, 20% Degussa type) was stirred under hydrogen (50 bar) for 16h at rt. Then reaction mixture was filtered through a small pad of celite, washed with MeOH, and

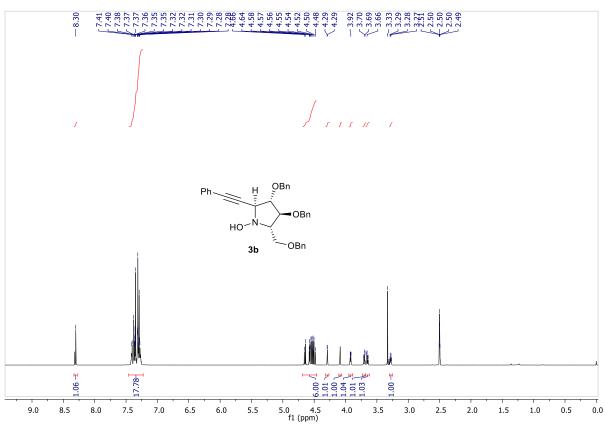

evaporated. The crude aminoalcohol **5** (74.3 mg) was used in the next step without further purification.

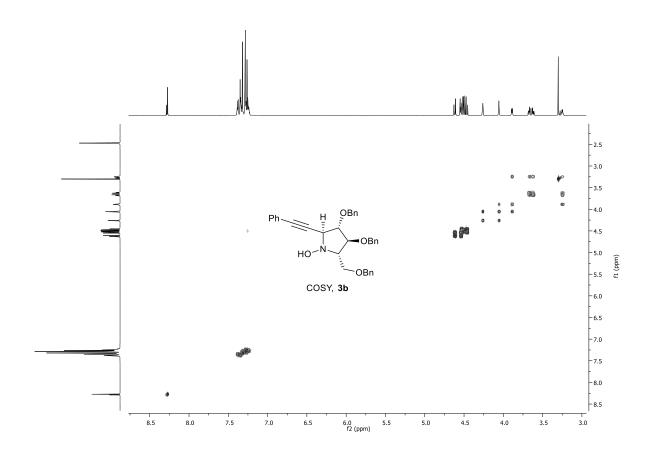

To a solution of crude aminoalcohol **5** (74.3 mg) in a mixture of anhydrous CCl₄ (2.4 mL) and DCM (2.4 mL), Et₃N (70 μ L) and plymer-supported PPh₃ (306 mg, 0.49 mmol, 1.6 mmol/g, 200-400 mesh) were added and vigorously shaken under atmosphere of argon for 24h at rt. Then reaction mixture was filtered through Schott funnel (porosity G3) and the residual resin was successively washed with DCM (2 × 4 mL), MeOH (2 × 4 mL), DCM (2 × 4 mL) and MeOH (2 × 4 mL). Then solvents were evaporated and the crude product was chromatographed on silica (50% Et₂O/ hexanes) to give a colourless oil (49.4 mg, 75% after two steps). [α]_D²⁵ = 42.0 (c 0.54, CH₃Cl) lit. [α]_D²⁵ = 42.8 (c 0.48, CH₃Cl); IR (film): 2975, 2934, 1648 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): 3.78-3.73 (m, 1H), 3.60 (dd, J = 8.4, 4.2 Hz, 1H), 2.95-2.84 (m, 2H), 2.54-2.33 (m, 1H), 1.93-1.81 (m, 2H), 1.79-1.45 (m, 6H), 1.17 (s, 9H), 1.14 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): 83.7, 76.8, 73.7, 73.5, 67.0, 62.1, 53.6, 29.2, 29.0, 28.7, 28.5, 24.8, 24.1; HRMS (ESI) m/z calcd for C₁₆H₃₁NO₂Na [M+Na]⁺ 292.2247; found 292.2253. The ¹H NMR, ¹³C NMR and optical rotation were in agreement with those reported.¹⁵

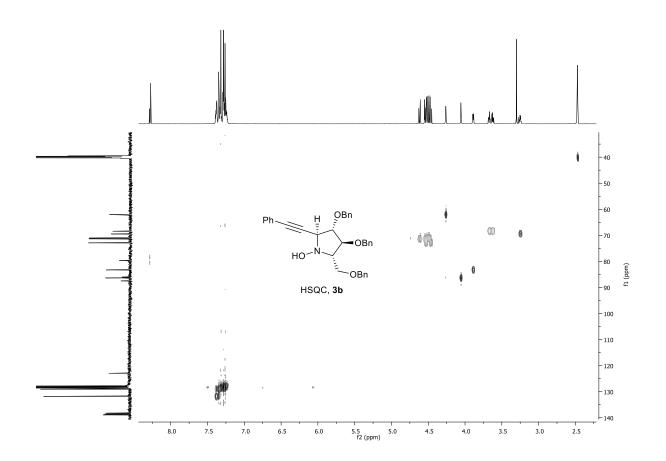

4-Ethynylphenyl 4-methylbenzenesulfonate (**2h**) To a suspension of K₂CO₃ (2.21 g, 16.0 mmol, 2.0 eq) in anhydrous MeOH (30 mL), cooled to 0 °C, tosyl-protected 4-hydroxybenzaldehyde (2.21 mmol, 8.0 mmol) was added. Next, Bestmann-Ohira reagent (1.68 g, 9.6 mmol, 1.2 mmol) was added dropwise by means of syringe, and the reaction mixture was stirred for 16h at rt. Then reaction mixture was diluted with Rochelle salt sat. solution (30 mL) and water (50 mL). After 15 min. of stirring, the aqueous phase was separated and extracted with EtOAc (3 x 30 mL). The combined organic extracts were washed with brine (2 x 30 mL), dried over MgSO4, and evaporated. The residue was chromatographed on silica (5% EtOAc/*n*-hexanes) to give alkyne **2h** as a white solid (1.38 g, 62%). 7.71-7.76 (m, 2H), 7.42-7.37 (m, 2H), 7.33-7.28 (m, 2H), 7.02-6.80 (m, 2H), 3.09 (s, 1H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 149.6, 145.6, 133.4, 132.0, 129.8, 128.5, 122.5, 121.1, 82.2, 78.3, 21.7.

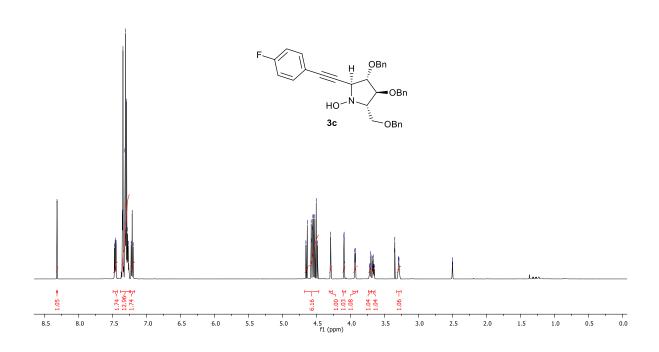

References:

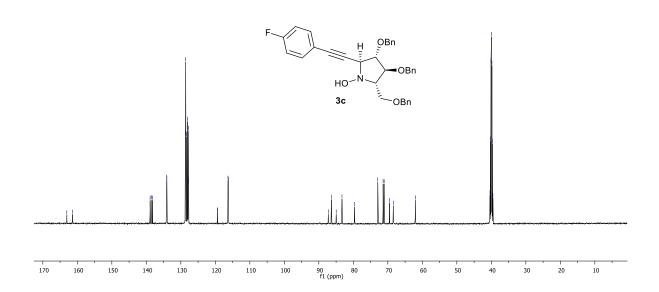

- 1. B. P. Machin and B. L. Pagenkopf, Synlett, 2011, 2799.
- 2. I. N. Michaelides, B. Darses and D. J. Dixon, *Org. Lett.*, 2011, **13**, 664.
- 3. O. Santoro, A. Collado, A. M. Z. Slawin, S. P. Nolan and C. S. J. Cazin, *Chem. Commun.*, 2013, **49**, 10483.
- 4. S. Díez-González, A. Correa, L. Cavallo and S. P. Nolan, *Chem. Eur. J.*, 2006, **12**, 7558.
- 5. J. Broggi, S. Díez-González, J. L. Petersen, S. Berteina-Raboin, S. P. Nolan and L. A. Agrofoglio, *Synthesis*, 2008, 141.
- 6. S. Diez-Gonzalez, E. C. Escudero-Adan, J. Benet-Buchholz, E. D. Stevens, A. M. Z. Slawin and S. P. Nolan, *Dalton Trans.*, 2010, **39**, 7595.
- 7. S. Díez-González and S. P. Nolan, *Angew. Chem. Int. Ed.*, 2008, **47**, 8881.
- 8. S. Díez-González, N. M. Scott and S. P. Nolan, *Organometallics*, 2006, **25**, 2355.
- 9. S. Cicchi, I. Hold and A. Brandi, *J. Org. Chem.*, 1993, **58**, 5274.
- 10. W.-B. Wang, M.-H. Huang, Y.-X. Li, P.-X. Rui, X.-G. Hu, W. Zhang, J.-K. Su, Z.-L. Zhang, J.-S. Zhu, W.-H. Xu, X.-Q. Xie, Y.-M. Jia and C.-Y. Yu, *Synlett*, 2010, 488.
- 11. S. Stecko, M. Michalak, M. Stodulski, Ł. Mucha, K. Parda, B. Furman and M. Chmielewski, *Synthesis*, 2012, **44**, 2695.
- 12. M. Maciejko, S. Stecko, O. Staszewska-Krajewska, M. Jurczak, B. Furman and M. Chmielewski, *Synthesis*, 2012, **44**, 2825.
- 13. O. Debleds, C. D. Zotto, E. Vrancken, J.-M. Campagne and P. Retailleau, *Adv. Synth. Catal.*, 2009, **351**, 1991.
- 14. C. Pillard, V. Desvergnes and S. Py, *Tetrahedron Lett.*, 2007, **48**, 6209.
- 15. A. Goti, F. Cardona and A. Brandi, Synlett, 1996, 761.

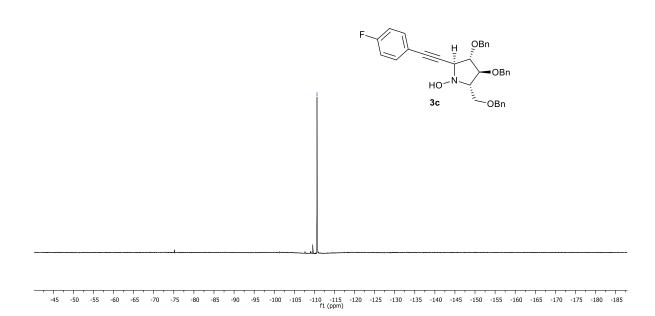


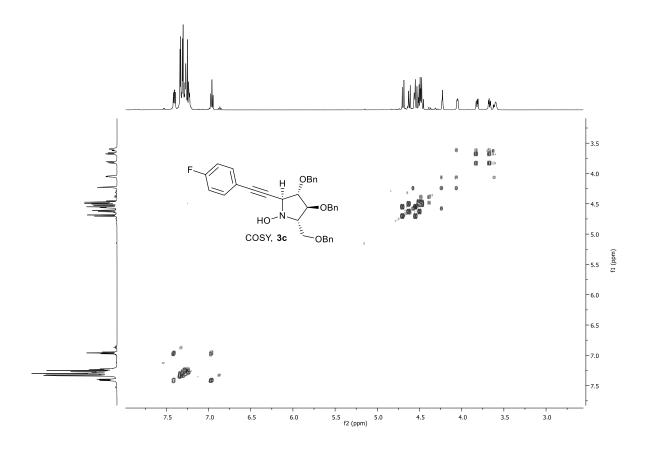


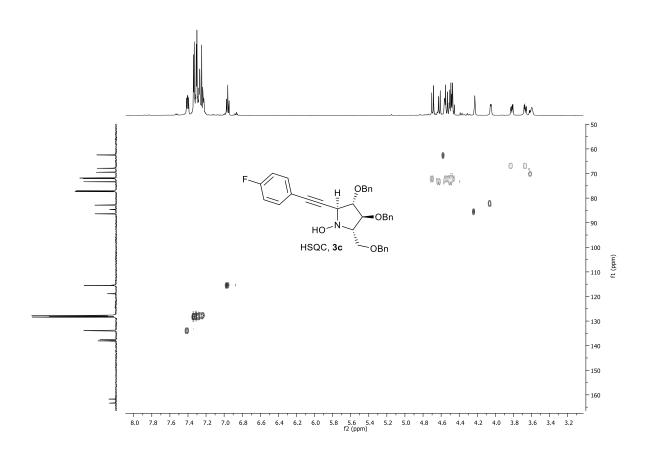


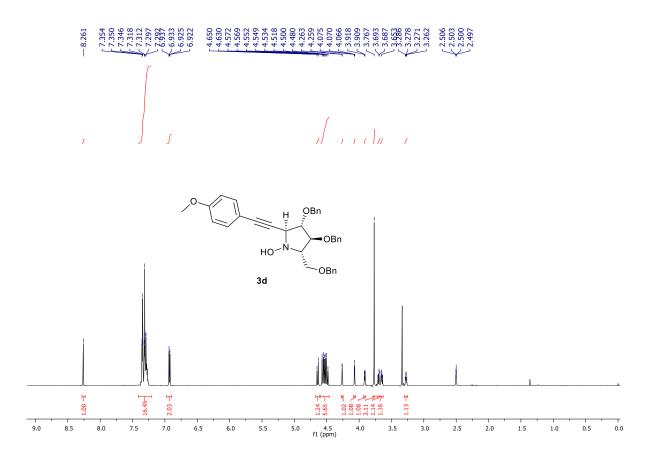


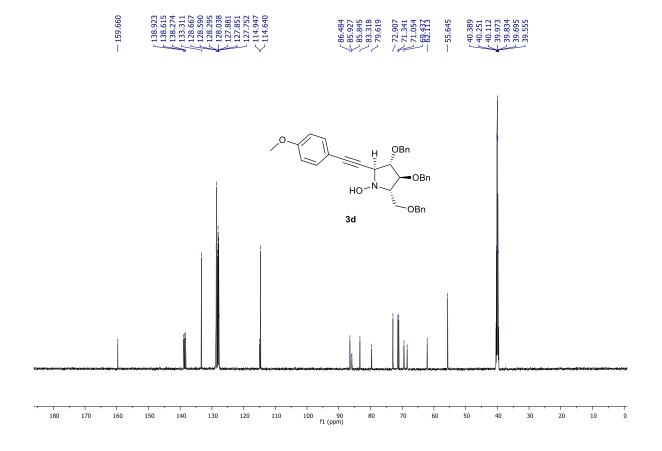


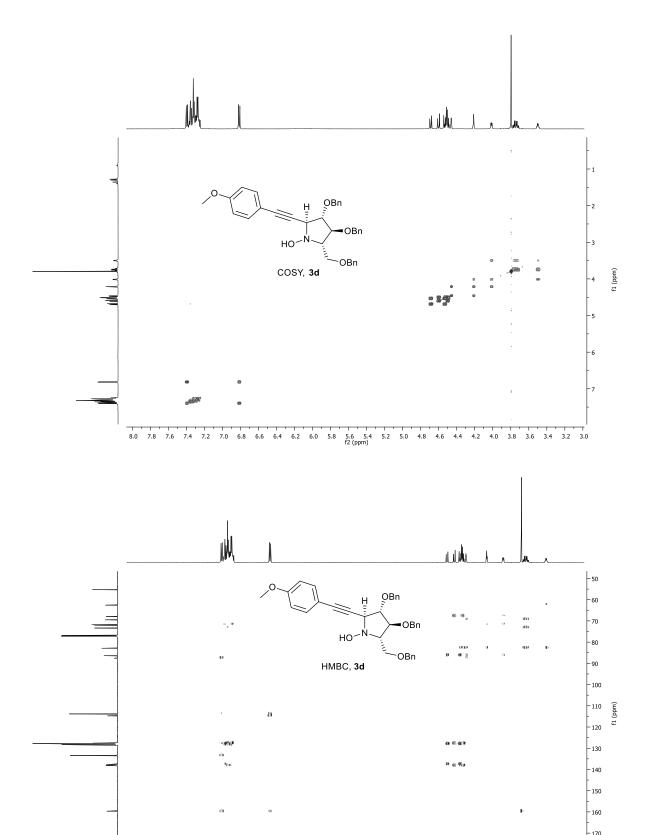


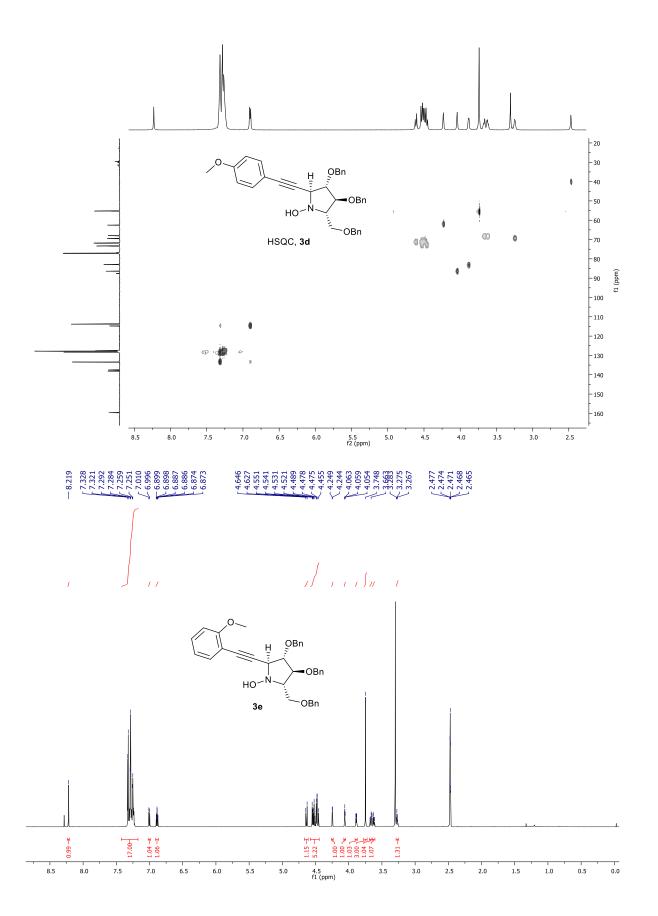


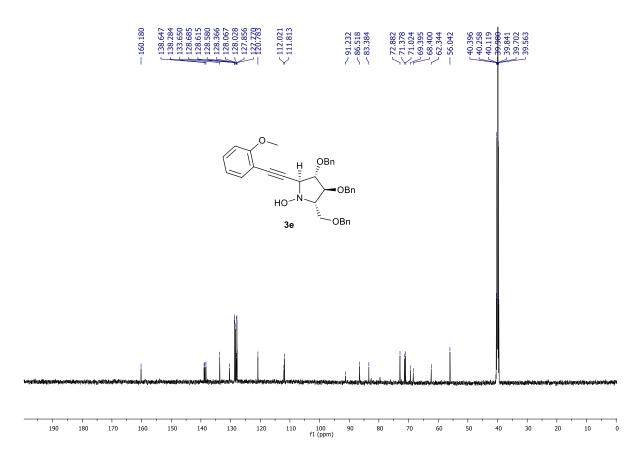


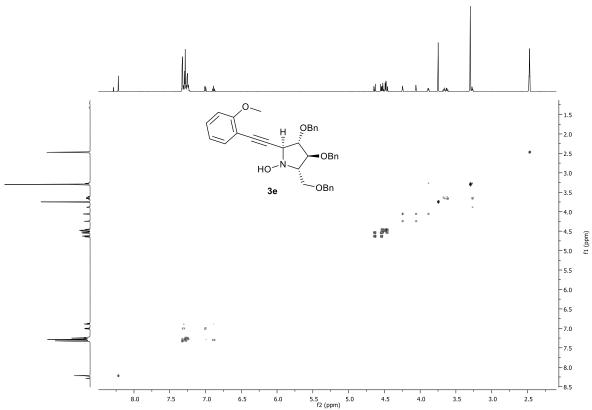


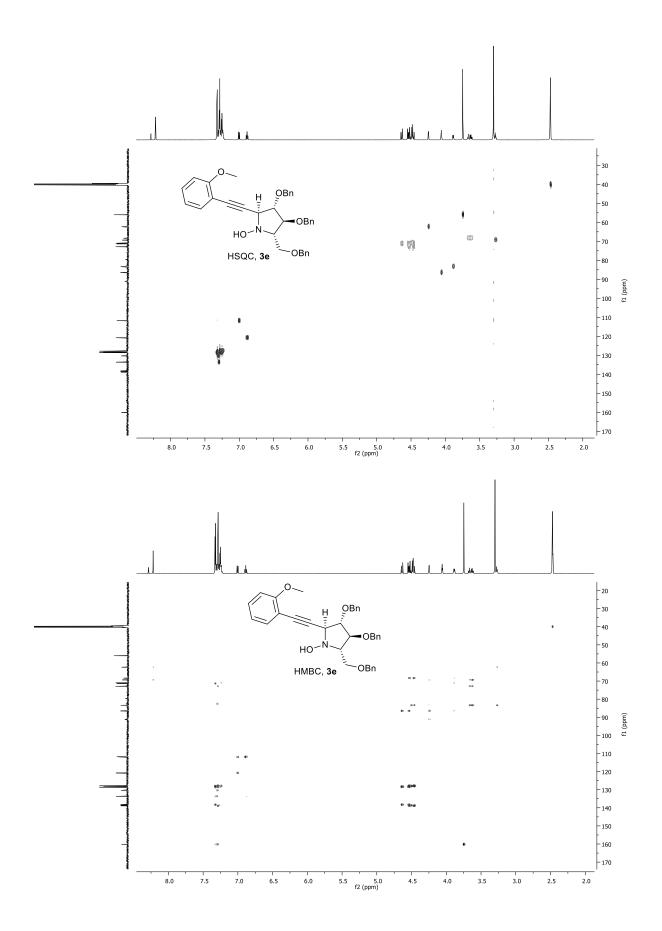


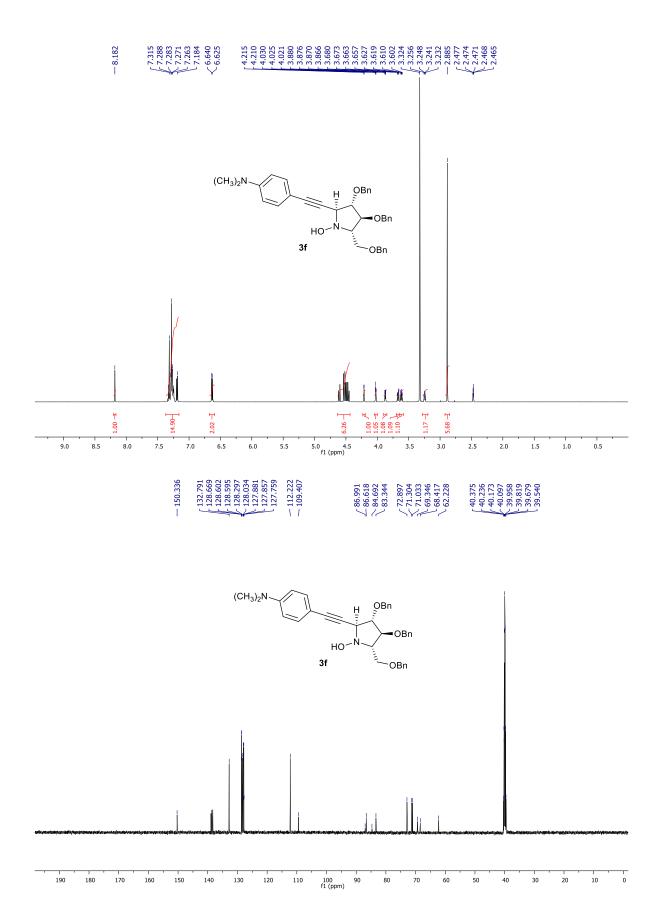


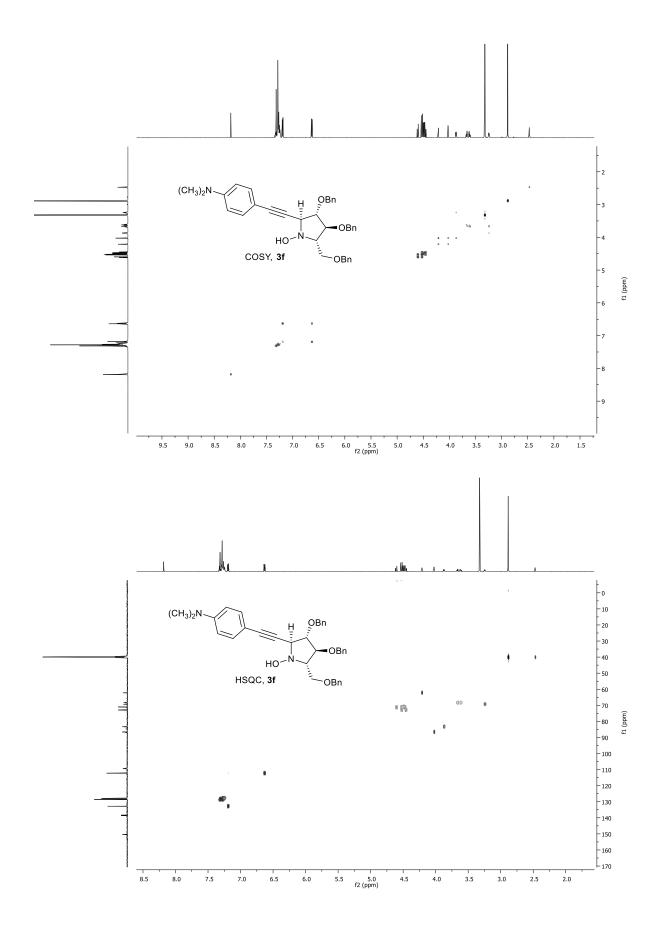


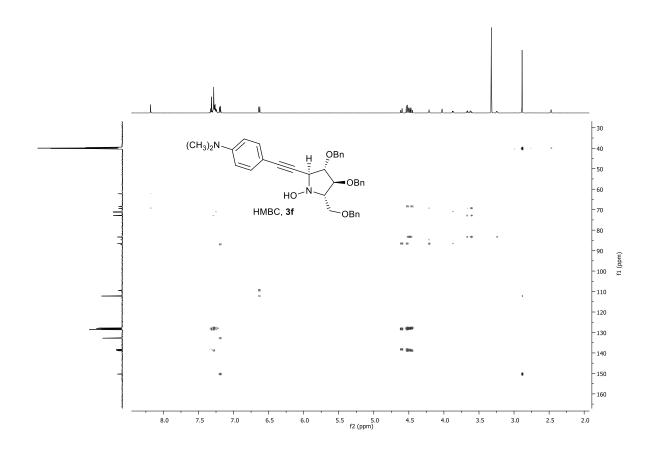


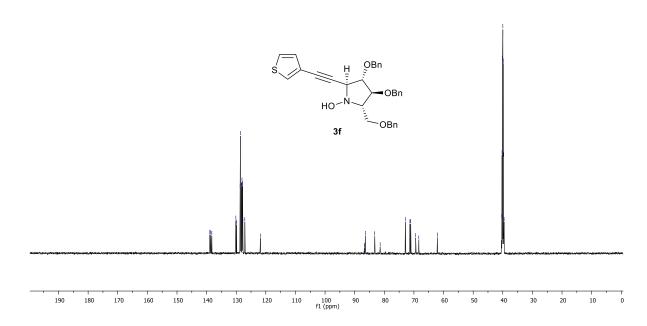

6.0 5.5 f2 (ppm)

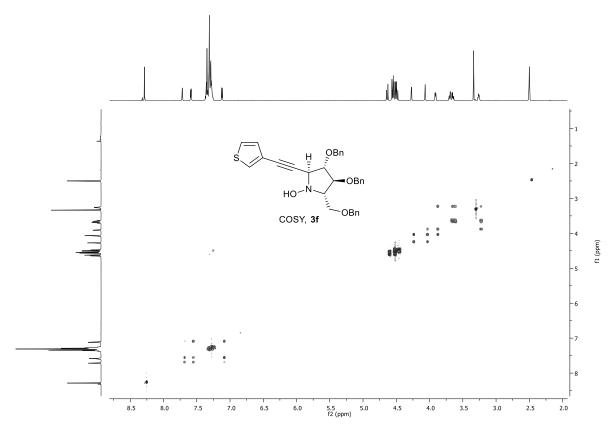

8.5

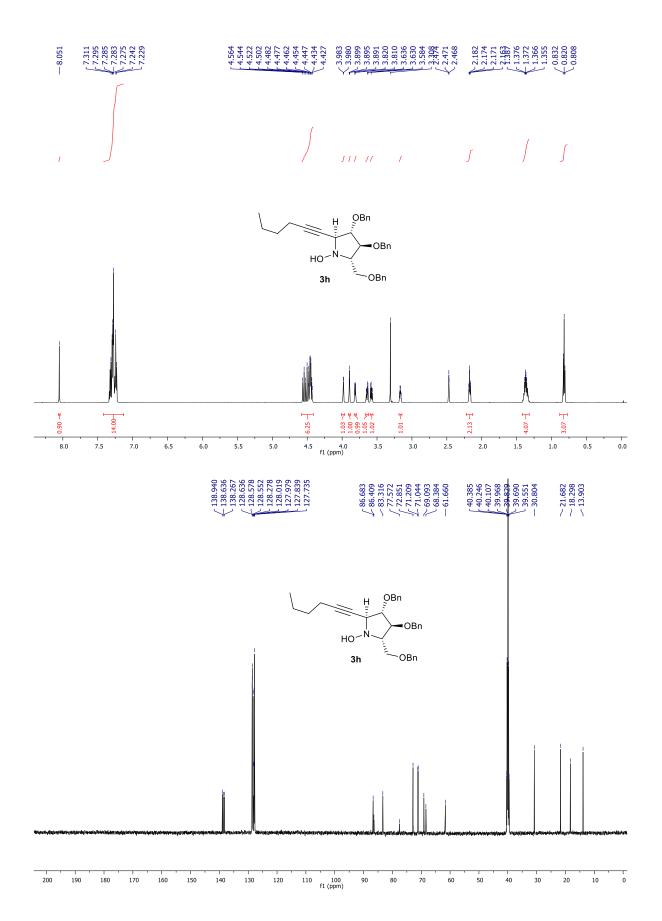

8.0

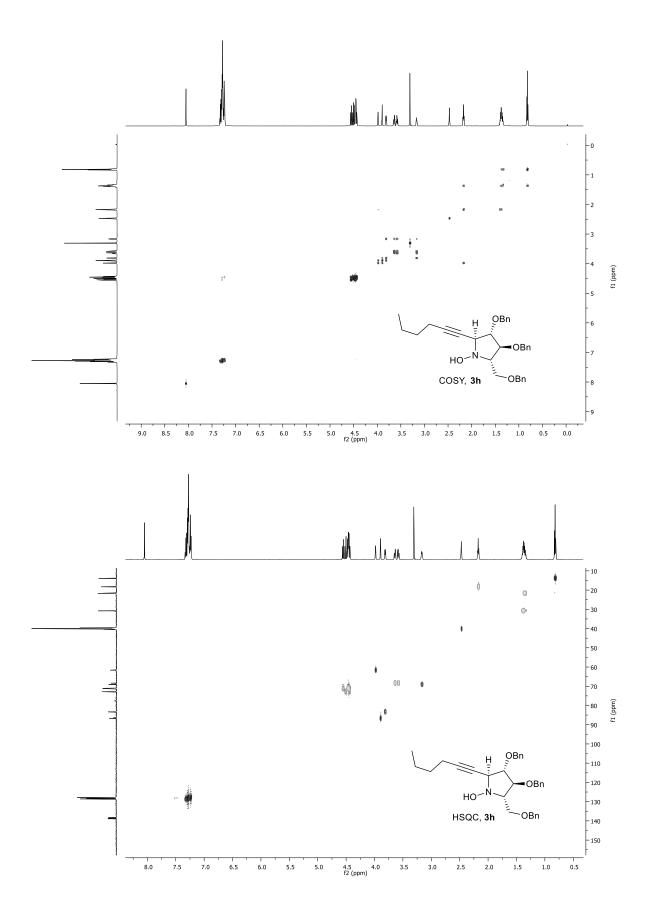


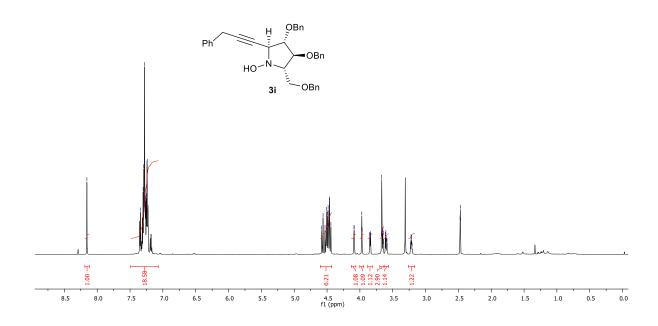


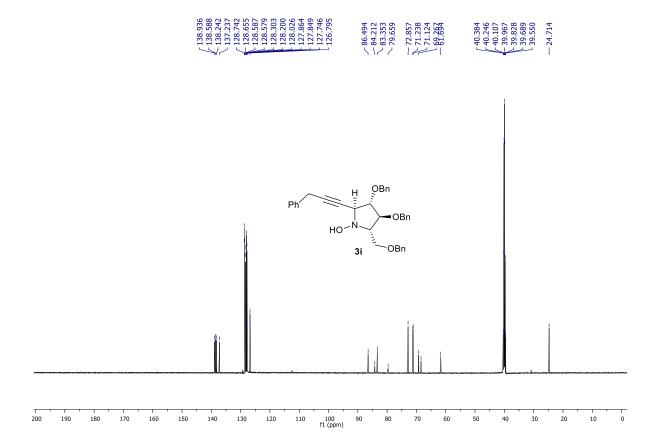


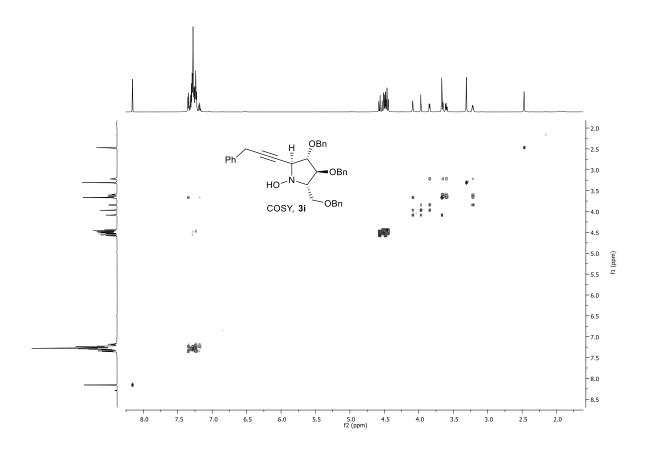


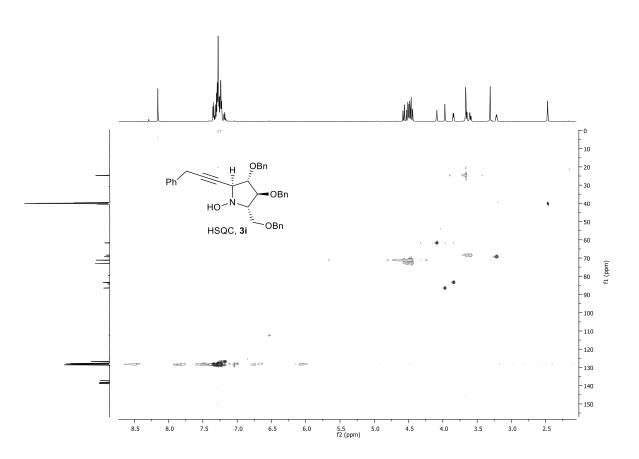


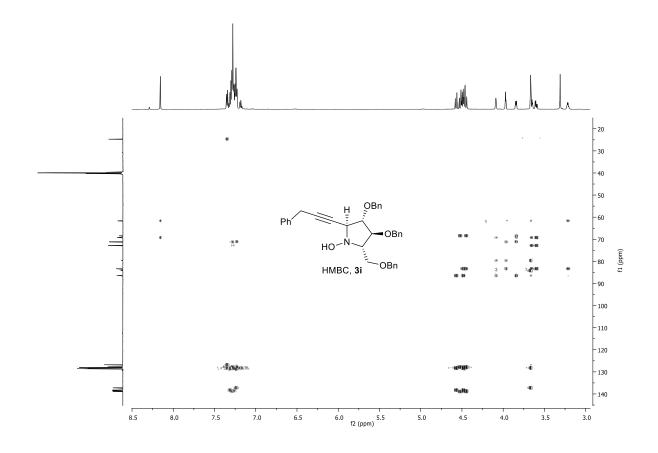


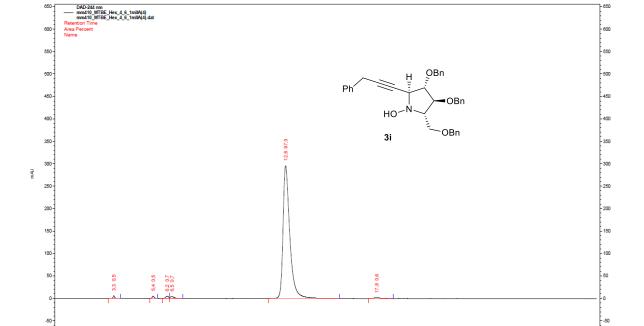


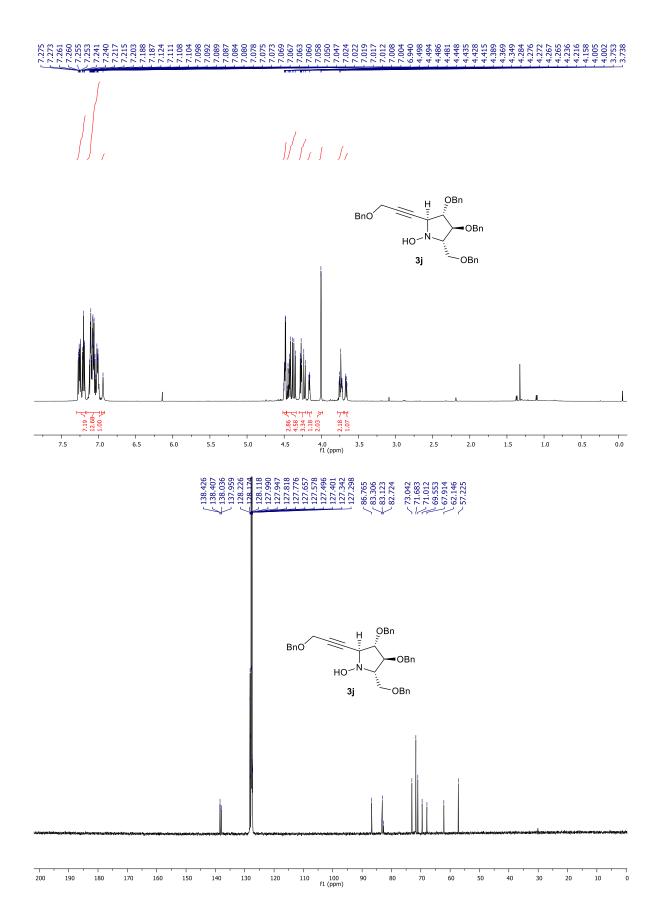


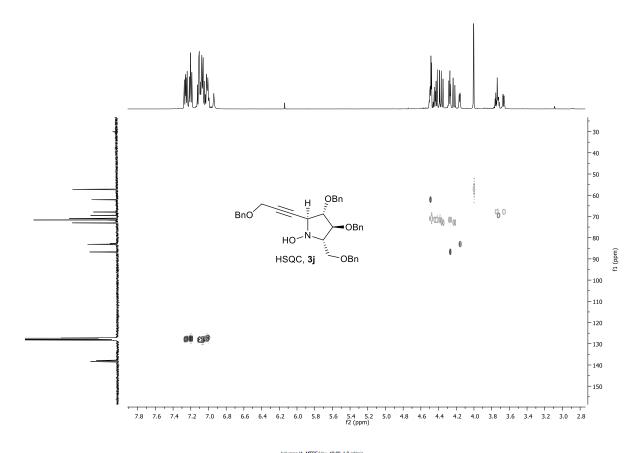


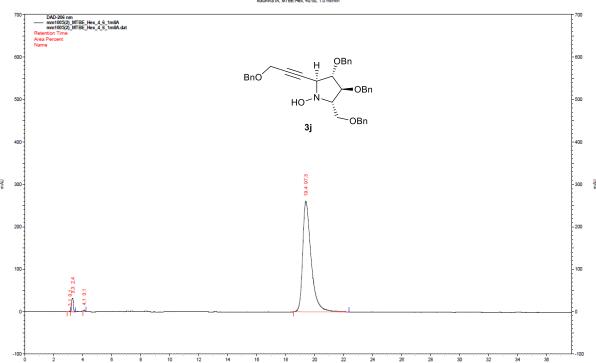


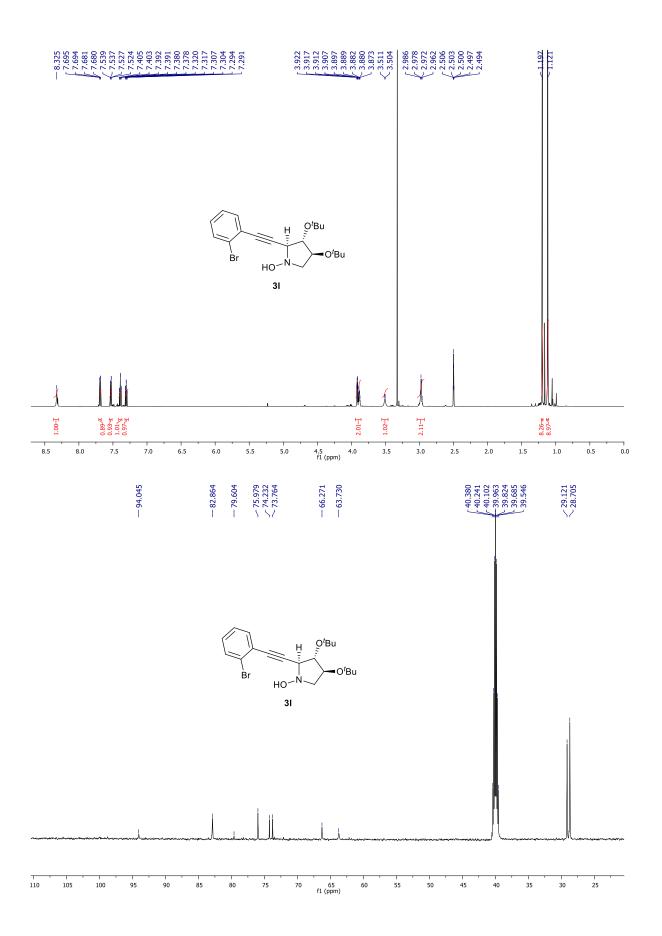


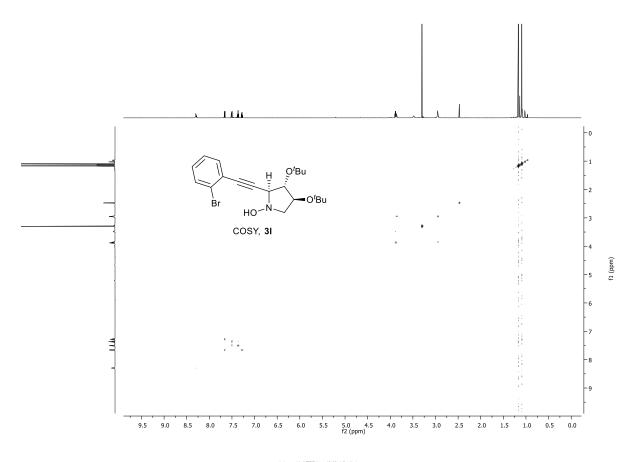


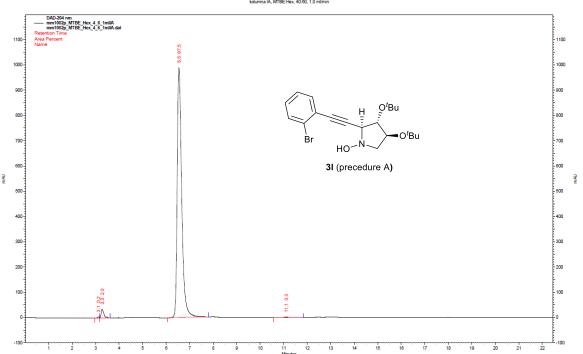


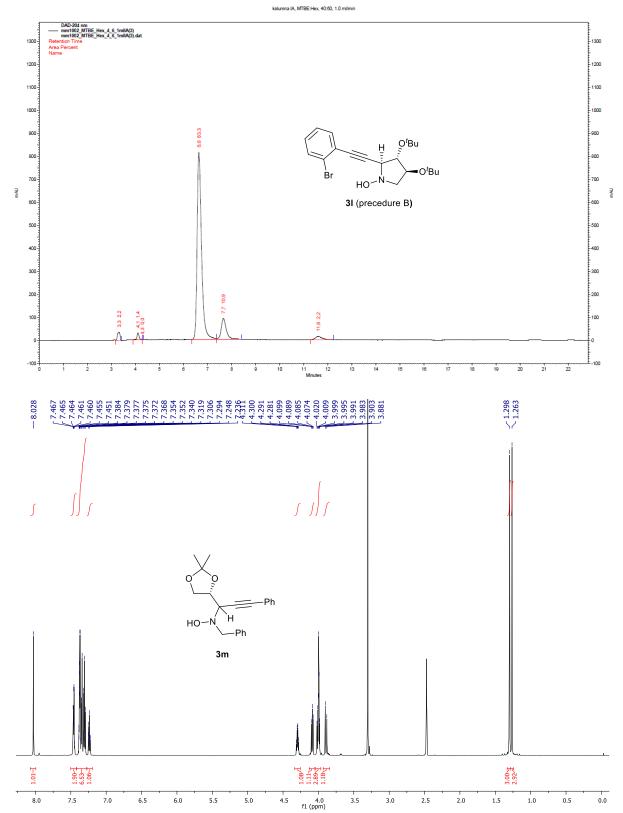


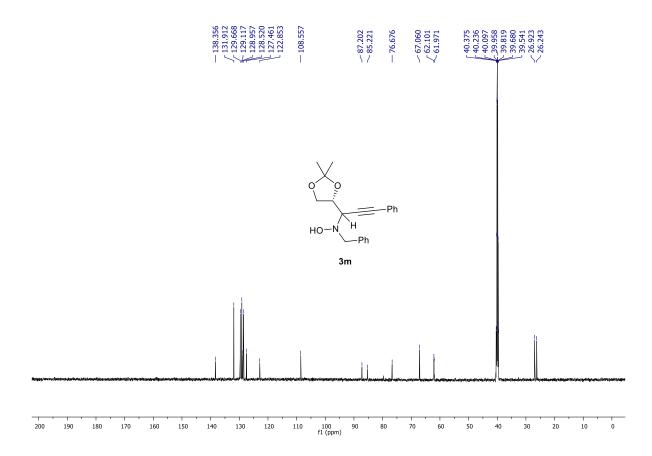


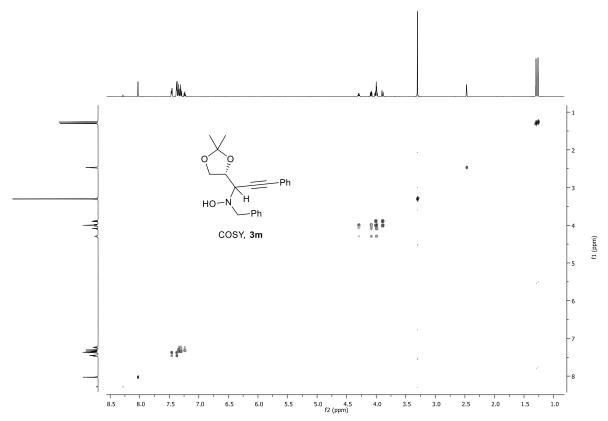


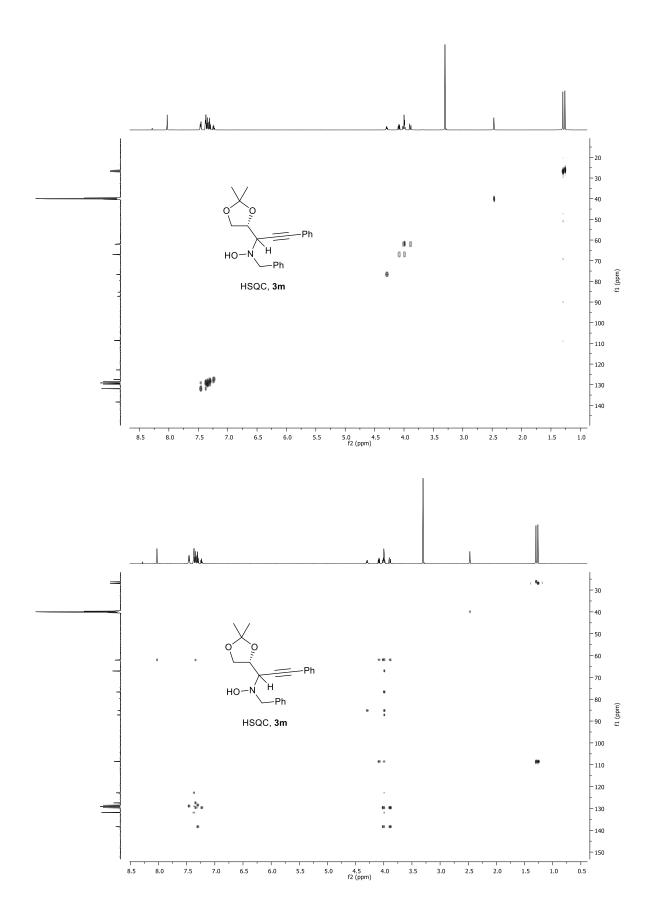


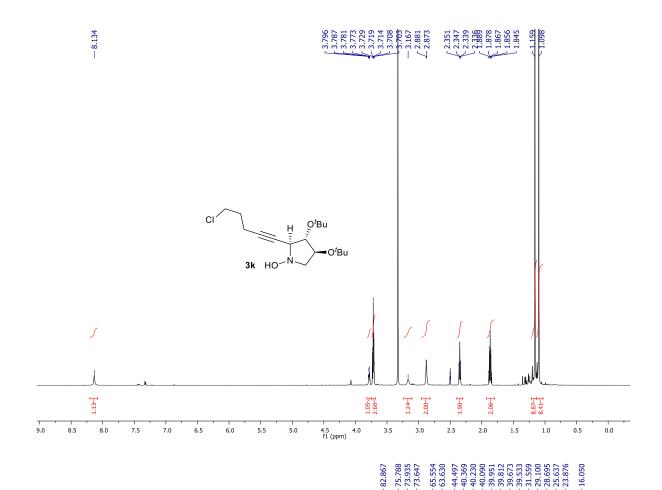


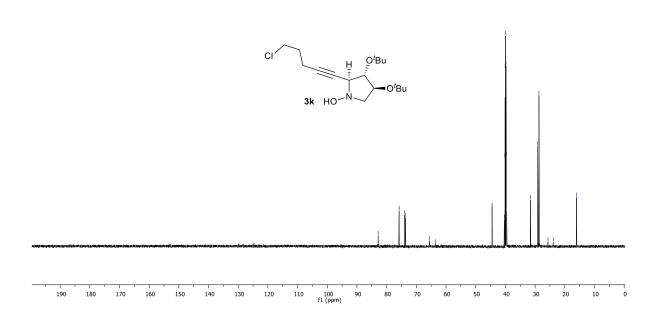


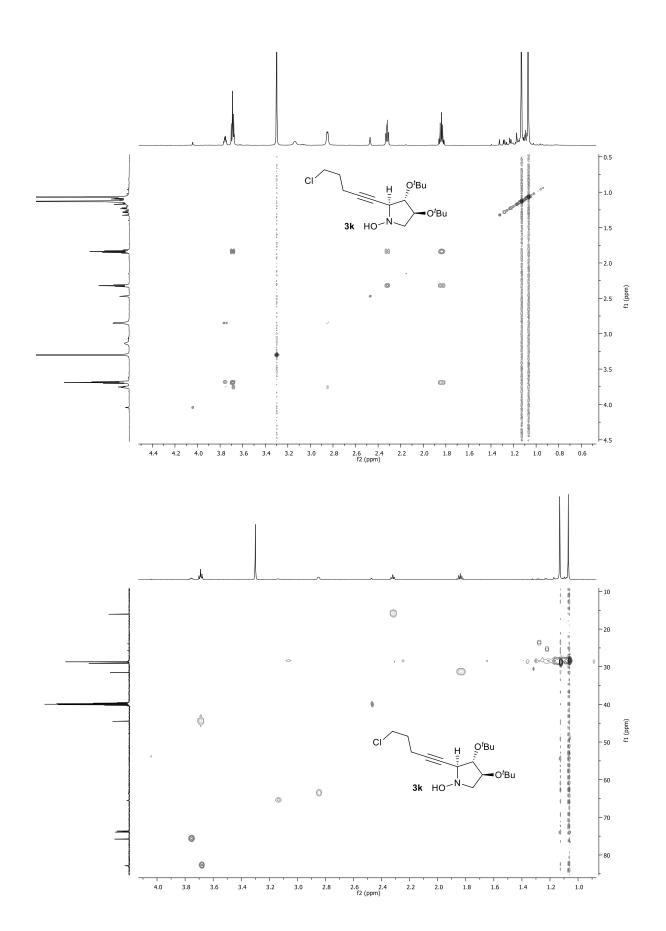


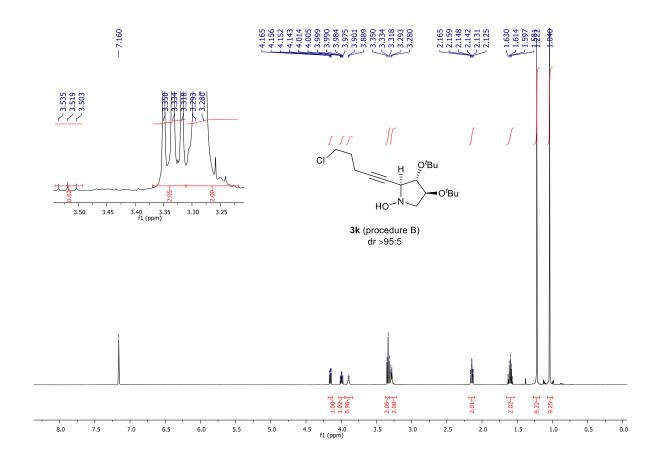


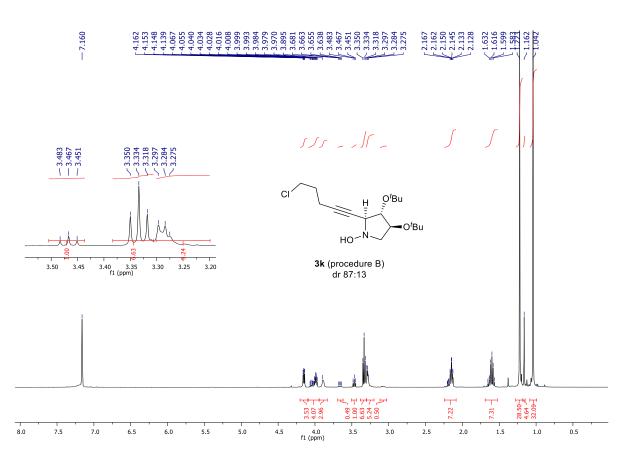


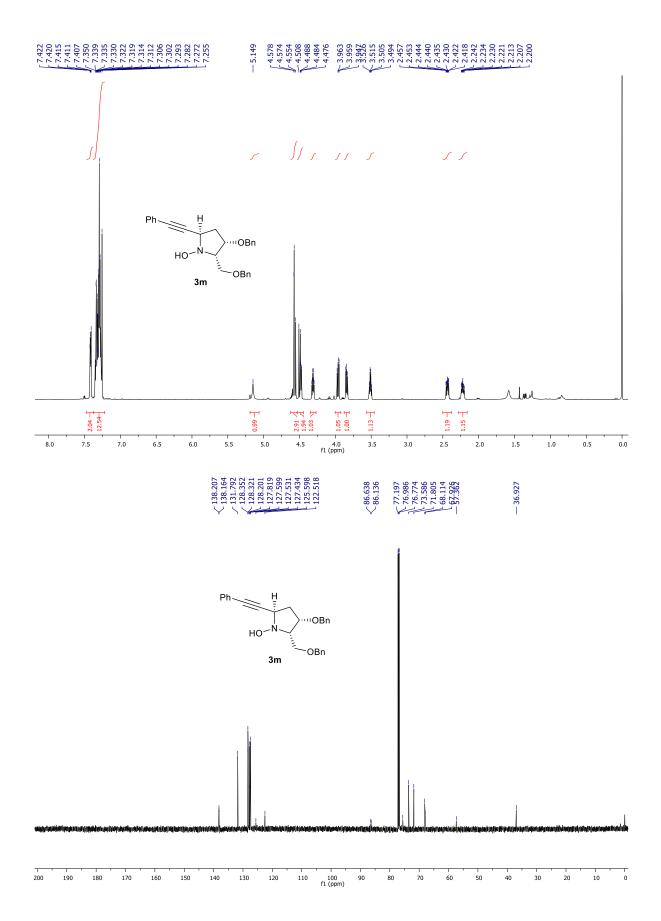


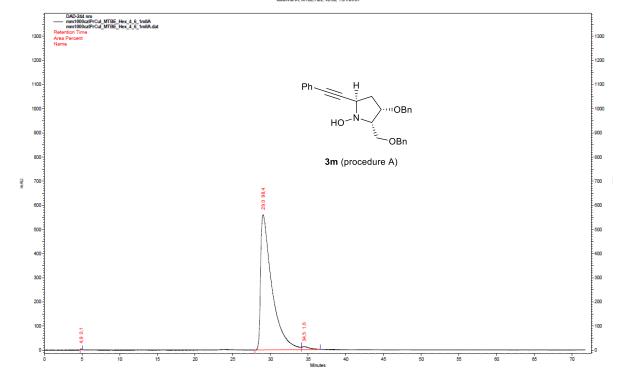


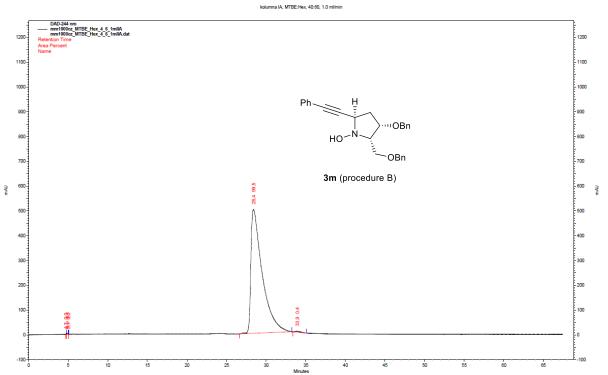


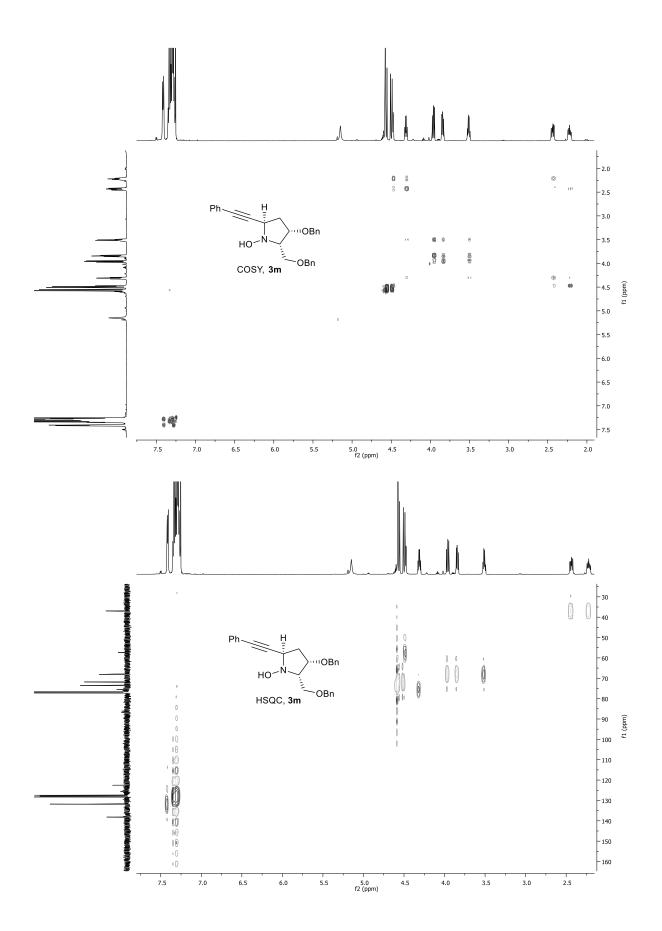


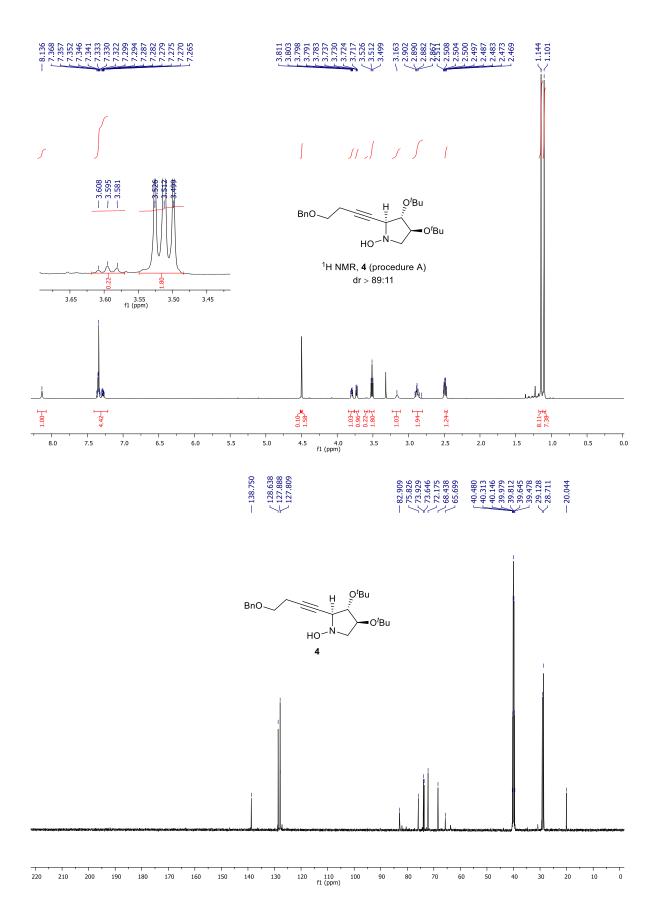


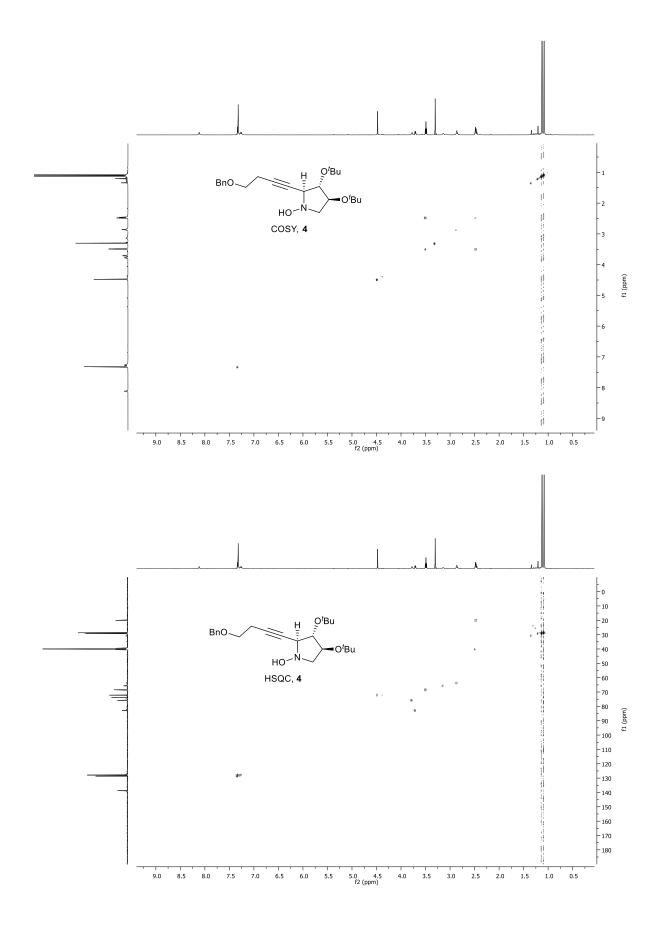


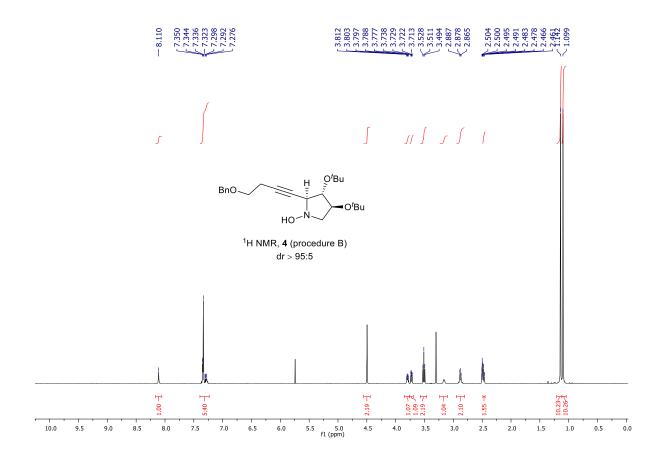


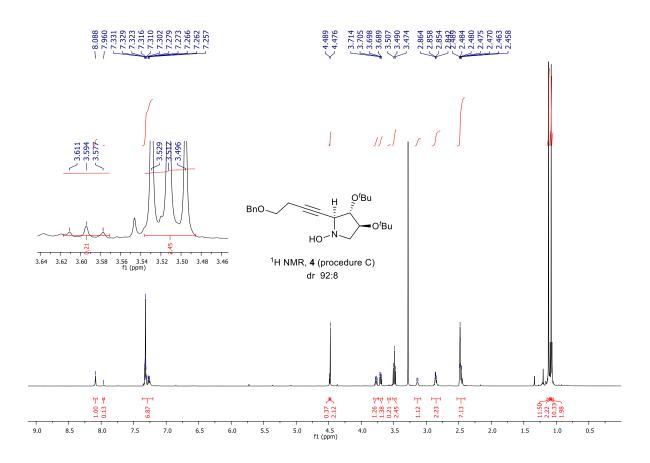


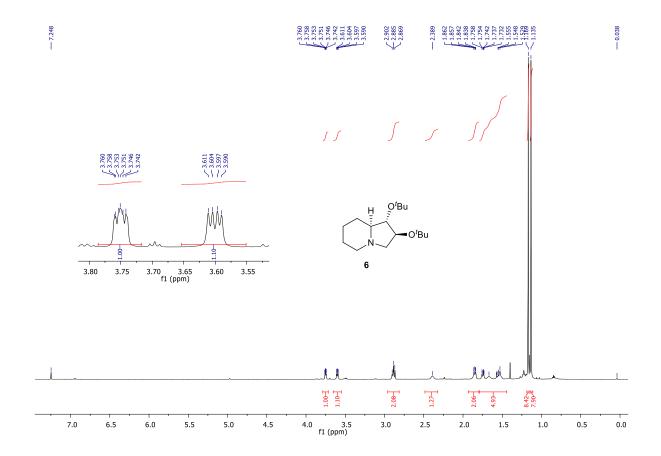


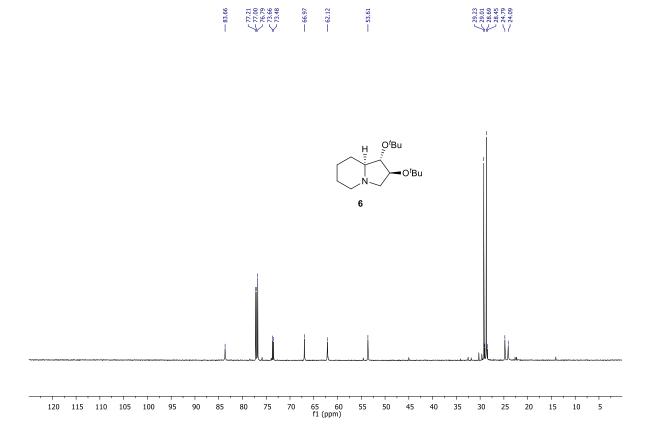


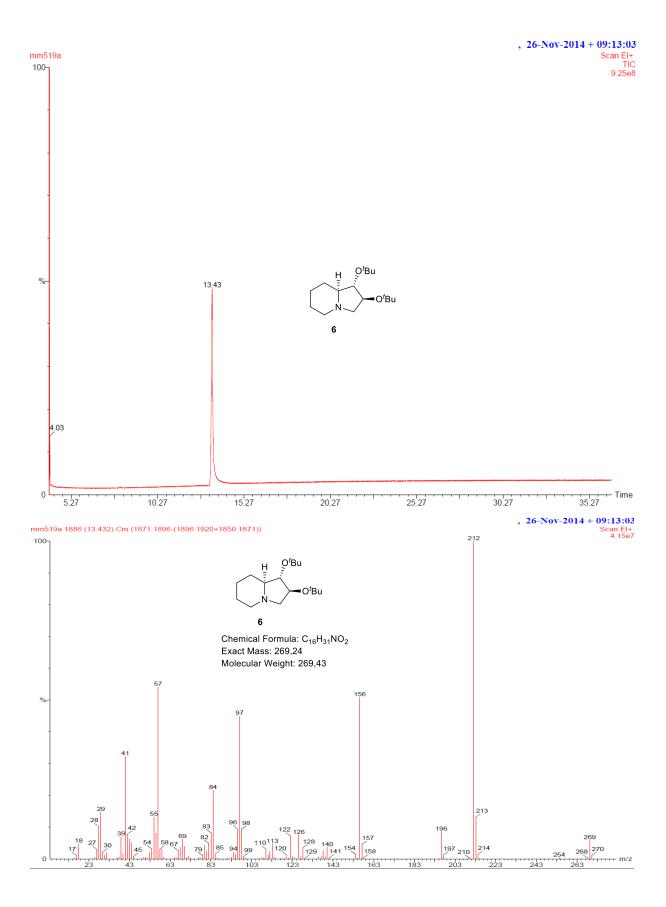


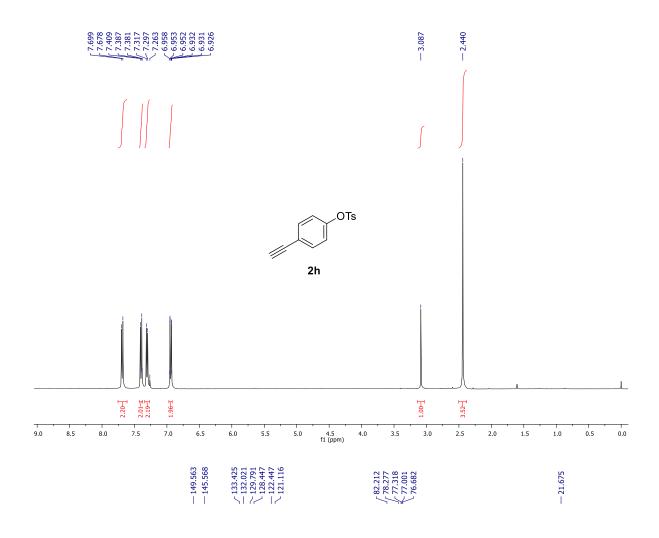


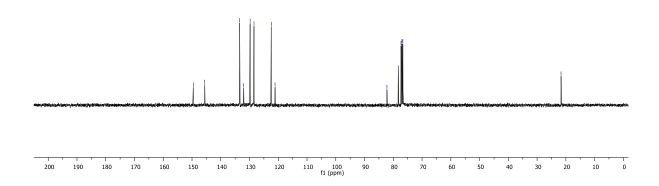









Spectrum Report


Data file: C:\TurboMass\KRZSIEK.PRO\Data\mm519a 26-Nov-2014 09:13:03 Scan: 1886 (13.432)
Process: Cm (1874:1896-(1897:1915+1856:1872))
Function: Scan (15:400) EI+

Description:

Printed: Wed Nov 26 10:00:21 2014

	Mass	Inten	%BPI					%BPI		
1:	16	7.78e4			54:		6.25e5		0.25	
2:				0.19			4.16e6			
3:		2.25e6	5.11	0.91	56:	97	1.98e7	45.08	8.07	
4:	26	2.29e5 1.35e6	0.52	0.09	57:	98	4.05e6 3.18e5	9.20	1.65	
5:	27	1.35e6	3.06	0.55	58:	99	3.18e5	0.72	0.13	
6:	28	4.71e6	10.71	1.92	59:	100	1.45e5	0.33	0.06	
7:	29	4.71e6 6.47e6 9.81e5	14.71	2.63	60:	106	6.49e4	0.15	0.03	
8:	30	9.81e5	2.23	0.40	61:	108	2.24e5	0.51	0.09	
9:	31	4.88e5	1.11	0.20	62:	109	1.46e5	0.33	0.06	
10:	32	4.88e5 8.87e5 1.38e5	2.02	0.36	63:	110	1.32e6	3.01	0.54	
11:	37	1.38e5	0.31	0.06	64:	111	5.32e5	1.21	0.22	
12:	38	2.62e5	0.60	0.11	65:	112	1.06e6	2.42	0.43	
13:	39	3.10e6	7.05	1.26	66:	113	2.09e6	4.75	0.85	
14:	40	7.46e5	1.70	0.30	67:	114	2.36e5	0.54	0.10	
15:	41	1.43e7	32.45	5.81	68:	117	4.81e4	0.11	0.02	
16:	42	2.62e5 3.10e6 7.46e5 1.43e7 3.40e6 2.75e6 2.31e6	7.73	1.38	69:	118	8.78e4	0.20	0.04	
17:	43	2.75e6	6.24	1.12	70:	120	5.83e5	1.32	0.24	
18:	44	2.31e6	5.25	0.94	71:	121	1.15e5	0.26	0.05	
19:	45	3.35e5	0.76	0.14	72:	122	3.14e6	7.13	1.28	
20:	50	2.00e5	0.45	0.08	73:	123	3.20e5	0.73	0.13	
21:	51	3.35e5 2.00e5 2.30e5	0.52	0.09	74:	124	1.58e5	0.36	0.06	
22:	52	1.26e5	0.29	0.05	75:	126	3.31e6	7.52	1.35	
23:	53	1.26e5 8.83e5 1.36e6	2.01	0.36	76:	127	3.38e5	0.77	0.14	
24:	54	1.36e6	3.10	0.55	77:	128	1.51e6	3.44	0.62	
25:	55	5.83e6	13.24	2.37	78:	129	6.89e4	0.16	0.03	
26:	56	5.83e6 3.63e6 2.38e7	8.24	1.47	79:	136	3.13e5	0.71	0.13	
27:	57	2.38e7	54.06	9.67	80:	137	3.79e5	0.86	0.15	
28:	58	1.35e6	3.08	0.55	81:	138	1.18e6	2.67	0.48	
29:	59	1.35e6 1.37e6 2.15e5 2.46e5	3.12	0.56	82:	139	3.29e5	0.75	0.13	
30:	60	2.1565	0.49	0.09	83:	140	1.6206	3.67	0.66	
31:	65	2.4605	0.56	0.10	84:	141	1.1965	0.27	0.05	
34:		1.0005	0.30	0.07	85:	154	5.7165	1.34	0.24	
33:	67	1.10e6 1.62e6	2.49	0.45	86:	155	8.7804	0.20	0.04	
							1.96e6			
35:			6.17	1.10	88:	157				
36:	70	1.70e6 1.88e5	3.85	0.69	89:	158	1.5405	0.35	0.06	
38:	72	2 0205	0.43	0.06	90:	195	2 7606	0.10	1 52	
39:	72	1 2105	0.85	0.16	91:	196	5.7666	1 16	0.31	
40:	77	3.92e5 1.21e5 2.41e5	0.20	0.05	92:	210	5.12e5	0.13	0.21	
41:				0.07	94 .	210	4.40e7	100.00	17 89	
42:	79	4.29e5 1.89e6	0.30	0.07	95.	213	5 7006	12 95	2 32	
43:	80	1.8966	4.29	0.17	96:	214	5.70e6 5.73e5	1.30	0.23	
44:		1.00e6	2.28							
45:		2.13e6	4.84	0.87	98 -	268	8.1764	0.19	0.03	
46:		3.60e6	8.17	1.46	99:	269	2.60e6	5.91	1.06	
47:		9.57e6	21.75	3.89	100:	270	8.17e4 2.60e6 4.61e5	1.05	0.19	
48:			1.47	0.26						
49:	0.6	1 0405	0.24	0.04						
50:	91	1.45e5	0.33	0.06						
51:	92	4.8664	0.11	0.02						
52:	93	2.51e5 9.68e5	0.57	0.10						
53:	94	9.68e5	2.20	0.39						

